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SUMMARY

Hybrid Th1/Tfh cells (IFN-g+IL-21+CXCR5+) predominate in response to several
persistent infections. In Plasmodium chabaudi infection, IFN-g+ T cells control
parasitemia, whereas antibody and IL-21+Bcl6+ T cells effect final clearance, sug-
gesting an evolutionary driver for the hybrid population. We found that CD4-
intrinsic Bcl6, Blimp-1, and STAT3 coordinately regulate expression of the Th1
master regulator T-bet, supporting plasticity of CD4 T cells. Bcl6 and Blimp-1
regulate CXCR5 levels, and T-bet, IL-27Ra, and STAT3 modulate cytokines in
hybrid Th1/Tfh cells. Infected mice with STAT3 knockout (KO) T cells produced
less antibody and more Th1-like IFN-g+IL-21�CXCR5lo effector and memory cells
and were protected from re-infection. Conversely, T-bet KO mice had reduced
Th1-bias upon re-infection and prolonged secondary parasitemia. Therefore,
each feature of the CD4 T cell population phenotype is uniquely regulated in
this persistent infection, and the cytokine profile of memory T cells can be modi-
fied to enhance the effectiveness of the secondary response.

INTRODUCTION

Both cellular and humoral responses are essential for immunity from Plasmodium infection. In humans, CD4

T cells that produce interferon (IFN)-g in response to Plasmodium falciparum antigens accumulate with

exposure, as do antibodies specific for each variant of parasite the host has been infected with, correlating

with lower incidence of both parasitemia and hospitalization. A favorable ratio of interleukin (IL)-10 to tu-

mor necrosis factor (TNF) correlates with resistance from pathology in both mice and people (Li et al., 2003;

Luty et al., 1999; May et al., 2000), and CD4 T cells protect immunodeficient mice from dying of Plasmodium

chabaudi infection (Stephens et al., 2005). Both IL-12 and IFN-g, T helper-type 1 (Th1)-promoting cytokines,

contribute to reduction of peak parasitemia by promoting parasite phagocytosis and generation of Th1-

driven antibody isotypes (Su and Stevenson, 2000; Xu et al., 2000). IFN-g production by T cells in response

to P. chabaudi infection is initially strong, whereas it becomes downregulated as infection becomes

controlled. Thereafter, a much reduced but recrudescent parasitemia is cleared by germinal center

(GC)-derived antibody (Perez-Mazliah et al., 2017). IL-21, made predominantly by CXCR5+ T cells, including

T follicular helper (Tfh), is required for antibody isotype class switch and contributes significantly to full

clearance (Carpio et al., 2015; Perez-Mazliah et al., 2015 ).

In P. chabaudi infection, we and others have shown that many cells express both IFN-g and IL-21 (Carpio

et al., 2015; Perez-Mazliah et al., 2015). IFN-g+IL-21+ CD4 T cells also occur in chronic lymphocytic chorio-

meningitis virus (LCMV), tuberculosis, and Listeria infections (Elsaesser et al., 2009; Li et al., 2016; Tubo

et al., 2013). In vitro, prolonged T cell receptor (TCR) signaling and IL-12 drive T cells from the Th1 to

the Tfh phenotype (Fahey et al., 2011; Schulz et al., 2009; Tubo and Jenkins, 2014). CXCR5int effector

T cells (Teff) have been reported in other Plasmodium infections and can generate CXCR5hiPD-1hi GC

Tfh cells in Plasmodium berghei (Ryg-Cornejo et al., 2016). Moreover, CXCR5int Teff can help B cells

make antibody, although less well than GC Tfh (Obeng-Adjei et al., 2015; Wikenheiser et al., 2018; Zander

et al., 2017). We showed that the IFN-g+IL-21+CXCR5+ T cells in P. chabaudi infection express the Tfh

markers ICOS and BTLA, along with the IFN-g-induced chemokine receptor CXCR3, and the primary tran-

scription factors of both Th1 and Tfh (T-bet and Bcl6) (Carpio et al., 2015). These data led us to the term

‘‘hybrid Th1/Tfh’’ to describe any IFN-g+ CD4 T cell also expressing IL-21 and/or CXCR5, functional markers
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of Tfh. Strikingly, IFN-g+IL-21+ T cells are also the main source of IL-10 (Carpio et al., 2015; Perez-Mazliah

et al., 2015), a critical cytokine as it prevents lethal pathology in P. chabaudi-infected mice (Freitas do Ro-

sario et al., 2012), and promotes antibody responses (Guthmiller et al., 2017). Hybrid Th1/Tfh cells also pref-

erentially expand during P. falciparum infection, where they have been termed Th1-like Tfh (Obeng-Adjei

et al., 2015). However, Bcl6-deficient T cells adoptively transferred into wild-type (WT) mice differentiated

into both CXCR5int and IFN-g+IL-21+ T cells in P. chabaudi infection (Carpio et al., 2015), suggesting that

these hybrid phenotype T cells are not of the Tfh lineage. The impaired ability of hybrid Th1/Tfh to help

antibody production is likely due to an antagonism regulating Tfh effector functions through the network

of STAT4 and T-bet expression and the effects of IL-2, IL-12, IFN-g, and/or TNF, depending on the infection

(Fang et al., 2018;Weinstein et al., 2018). In P. bergheiANKA infection, IFN-g and/or TNF and T cell-intrinsic

T-bet inhibit GC Tfh, GC B cell formation, and IgG production in response to infection (Ryg-Cornejo et al.,

2016). Therefore, the hybrid Th1/Tfh population producing IFN-g, IL-21, and IL-10 are likely to concurrently

provide cellular protection and limit the large humoral response, which leads to hypergammaglobuline-

mia. It is not well understood which differentiation pathways control expression of these effector cytokines,

particularly in persistent infections. Therefore, we have investigated the molecular regulation of T cell cyto-

kine production and phenotype in response to infection with Plasmodium spp. through T cell-specific ge-

netic manipulation to the test the importance of Th differentiation and plasticity in vivo.

Classically, committed IFN-g+ Th1 cells are generated by antigen stimulation in the presence of IL-12,

which signals through STAT4 (Hsieh et al., 1993) which maximizes levels of the master regulator of Th1 dif-

ferentiation, T-bet (Szabo et al., 2000). Th1 cells express CXCR3, but not CXCR5, which allows them to

migrate away from the B cell follicle into the red pulp and inflamed tissues. Fully differentiated GC Tfh cells

are identified as CXCR5hiPD-1hi, and their generation depends on the Tfh cell lineage-determinant tran-

scription factor Bcl6 (Johnston et al., 2009; Nurieva et al., 2009). Many cytokines that regulate Tfh develop-

ment, including IL-6, IL-27, and IL-21, signal through STAT3 (Crotty, 2014). IL-6 signaling through STAT3

secures Tfh programming by limiting Th1 differentiation (Choi et al., 2013). IL-27 signaling through

STAT3 induces IL-21 production in T cells (Batten et al., 2010), which in turn promotes Tfh development

(Nurieva et al., 2008). In vitro and in response to viral infection, STAT3-deficient T cells have a defect in

Tfh differentiation (Ray et al., 2014), whereas humans with STAT3 dominant-negative mutations have

compromised Tfh development (Ma et al., 2012). However, over the last few years, several lines of evidence

suggest a complex regulation of Th1 and Tfh, where lineage determination is intertwined at the molecular

level (Weinmann, 2014). For example, the transcription factor Blimp-1 can inhibit both Tfh and Th1 differ-

entiation via transcriptional inhibition of Bcl6 and T-bet, respectively (Cimmino et al., 2008; Johnston et al.,

2009). In the context of persistent infection, Blimp-1 also controls IL-10 production by Th1 cells (Parish et al.,

2014). Therefore, we used an in vivo approach involving the most relevant transcription factors reported to

date to understand the molecular regulation of T cells and protective responses to Plasmodium spp.

infections.

Both Th1 and Tfh responses are critical for malaria immunity; however, the ideal balance between these

T cell subsets remains unclear. Therefore, we investigated the roles of STAT3, T-bet, Bcl6, and Blimp-1

in the development of hybrid Th1/Tfh cells during persistent P. chabaudi infection to identify protective

responses. We found that in contrast to the hybrid Th1/Tfh cells found in WT mice upon infection,

T cells from T cell-specific STAT3-deficient mice (Stat3fl/flCD4Cre, STAT3 TKO) preferentially differentiated

into Th1 memory cells (IFN-g+IL-21�T-bethi). Strikingly, STAT3 TKO mice were 100% protected from rein-

fection, whereas T-bet-deficient mice had no Th1 memory cells and higher parasitemia. Both mice had

reduced serum levels of Plasmodium-specific IgG2b, the Th1 isotype, suggesting that the strong positive

effect on parasitemia in STAT3 TKO mice was due to improved Th1 memory. Mechanistically, T-bet, and

not STAT1 or STAT4, regulated IFN-g production by T cells; and T cell-intrinsic expression of STAT3,

Bcl6, and Blimp-1 each regulated T-bet expression during the peak of infection. Therefore, STAT3 is a

key player regulating protection and the cytokine plasticity of memory T cells in malaria. These data sup-

port the hypothesis that Th cell pluripotency allows continued responsiveness promoting control of persis-

tent infections and host homeostasis.

RESULTS

Plasmodium Infections Induce Hybrid Th1/Tfh and GC Tfh Cells

We have previously reported the presence of hybrid Th1/Tfh cells expressing both Tfh markers (CXCR5,

ICOS, BTLA, IL-21, and Bcl6) and Th1 markers (CXCR3, IFN-g, T-bet), as well as the regulatory cytokine
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Figure 1. T Helper Differentiation during P. chabaudi Infection Resembles a Hybrid Th1/Tfh Phenotype

C57BL/6J mice were infected with P. chabaudi (105 iRBCs), and splenocytes were analyzed on the days post-infection indicated.

(A) Expression of IFN-g and IL-21. Below, line graphs show percentage (left) and numbers (right) of IFN-g+IL-21- (black filled dots), IFN-g+IL-21+ (open

circles), and IFN-g-IL-21+ (filled triangles) Teff. Bar graph on the right shows CXCR5 expression in cytokine-producing populations.
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IL-10 within effector T cells (CD4+CD44hiCD127-) in P. chabaudi infection on day 7 post-infection (p.i.)

(Carpio et al., 2015). Although hybrid Th1/Tfh cells have been described in several infections, including

LCMV Clone 13 and tuberculosis, the timing of their generation has not been investigated to date. It is

important to distinguish the hybrid Teff from GC Tfh, which are essential for GC formation. Therefore,

we infected C57BL/6J mice with P. chabaudi (AS) or P. yoelii (17XNL) infected red blood cells (iRBCs, Fig-

ure S1A) and measured parasitemia. Using flow cytometry, we measured GC B cell numbers and the

expression of CXCR5, PD-1, IFN-g, IL-21, T-bet, and Bcl6 in Teff for the first 30 days of infection. We iden-

tified Th1-like cells as positive for only Th1 markers (IFN-g+and/or T-bet+, but IL-21�CXCR5-), Tfh-like cells

as positive for only Tfh markers (IL-21+CXCR5+/int, but IFN-g-and/or T-bet-), and hybrid Th1/Tfh as cells that

express any Th1, along with any Tfh marker. GC Tfh have been defined in the literature as (CXCR5hiPD-1hi),

and we follow that convention throughout. GC B cells (B220+GL-7+CD38lo) are highly visible in the third

week of the response to both species. Unbiased t-distributed stochastic neighbor embedding analysis

gated on CD4+ T cells (Figure S1B) shows the small cluster of GC Tfh (Bcl6hiCXCR5hiPD-1hi) and the larger

islands of hybrid Th1/Tfh cells (IFN-g+IL-21+) generated in response to both infections.

Throughout, we identify Teff as CD44hiCD127-, as IL-7Ra (CD127) is transiently downregulated upon acti-

vation, with negative expression in Teff on day 9 p.i. (Stephens and Langhorne, 2010). CD127 downregula-

tion correlates with CD11a high expression (Figure S1C), which is upregulated by TCR, but not cytokine

stimulation (McDermott and Varga, 2011), suggesting that CD127- is also a marker of TCR stimulation. In

the first week of infection, the majority of Teff produce both IFN-g and IL-21, averaging 41.67% of Teff in

P. chabaudi and 48.57% in P. yoelii in the first week of infection (Figures 1A and S1D). The IFN-g+IL-21+

Teff population decreases by half in the second week and then has a stable presence. In addition, there

is an increase of CXCR5 expression on Teff in response to both P. chabaudi and P. yoelii (Figures 1B and

S1E). GC Tfh cells are present in stable numbers starting in the first week in both infections, as previously

suggested (Wikenheiser et al., 2016). Boolean gating analysis using IFN-g, IL-21, CXCR5, T-bet, and Bcl6 at

day 7 p.i. showed that 66.43% Teff from P. chabaudi-infected mice co-express IFN-g+ and at least one

marker of Tfh (IL-21, Bcl6, or CXCR5), with IL-21+IFN-g+ included in the majority of those sub-populations

(Figures 1C and S1F). The other population represented at over 4% of Teff is positive for all markers,

including T-bet, but not IFN-g. On the other hand, the IFN-g+T-bet+ Th1-like cells represent a modest frac-

tion (2.91%) of the response. Therefore, infection with Plasmodium spp. drives generation of a large pop-

ulation of IFN-g+IL-21+ hybrid Th1/Tfh effector cells, which peak in the first week, as well as GC Tfh that are

more stably represented, but very few IFN-g+ Th1-like cells without Tfh markers. These IFN-g+IL-21+ hybrid

Th1/Tfh cells are reminiscent of CD4 T cells identified in other persistent infections (Crawford et al., 2014),

leading us to investigate the role of continuing infection in their generation, and to identify molecular

mechanisms regulating their generation.

Shorter Infection Results in Fewer Hybrid Th1/Tfh Cells

Hybrid Th1/Tfh cells have been documented in human patients with malaria (Obeng-Adjei et al., 2015) and

in other persistent infections including LCMV Clone 13 (Crawford et al., 2014; Nakayamada et al., 2011) us-

ing various combinations of Th1 and Tfh markers. On the other hand, acute infections can promote inde-

pendent differentiation of Th1 and Tfh populations (Curtis et al., 2010; Hale et al., 2013). We have previously

shown that complete parasite clearance by the antimalarial drug mefloquine (MQ) given starting on day 3

p.i. increased the Tcm/Tem ratio in the memory phase compared with persistently infected animals (Opata

et al., 2015). As no qualitative change in phenotype was observed when drug treatment began on day 5 or

30 p.i., there seems to be a limited window for determining the quality of T cell priming. As Tcm and Tfh

generation seems to be linked (Pepper et al., 2011), we tested if limiting the duration of infection by

drug treatment would alter the T cell cytokine profile away from IFN-g+IL-21+ hybrid Th1/Tfh. MQ treat-

ment of P. chabaudi-infected animals starting on day 3 cleared infection almost completely by day 5

Figure 1. Continued

(B) Expression of PD-1 and CXCR5 on CD4 Teff (CD44hiCD127-) and naive (CD44loCD127+). Below, line graphs show percentage (left) and numbers (right) of

CXCR5- (black filled dots), CXCR5int (open circles) Teff, and CXCR5hiPD-1hi GC Tfh (filled triangles) populations. Bar graph on the right shows IFN-g

production by the different populations.

(C) Boolean gating of all possible combinations of IFN-g, IL-21, CXCR5, T-bet, and Bcl6 expression of CD4 Teff on day 7 p.i. Top, histograms show gate

marker used to define IFN-g+, IL-21+, CXCR5+, T-bet+, and Bcl6+ in CD4 Teff. Bottom left, pie chart shows the distribution of subsets. Bottom right, bar graph

shows the percentage of the subsets.

Data representative of 3 experiments with 3 mice/group. Data are represented as mean G SEM. * p%0.05, ** p%0.001, *** p%0.0001, **** p%0.0001. See

also Figure S1.
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(Figure 2A). MQ treatment has no known effect on immune cells at this low dose (Paivandy et al., 2014).

Stopping the infection early (+MQ) decreased the numbers of Teff (Figure 2B). In addition, there were

also striking qualitative changes. MQ-treated animals had a higher fraction of Th1-like IFN-g+IL-21- Teff,

and a strong reduction in the fraction and number of IFN-g+IL-21+ T cells (Figure 2C). These IFN-g+IL-

21- Teff also did not express more CXCR5 than naive T cells, unlike the Th1-like cells in persistent

P. chabaudi (Figure 2D). In fact, treatment of infection significantly reduced the proportions of all CXCR5int

cells in the Teff population at day 7 p.i. (Figure 2E). Examining all markers together, MQ treatment reduced

the proportion of IFN-g+IL-21+CXCR5+ by 79.33% G 3.41%, but not IFN-g+IL-21+CXCR5-, and increased

the proportions of Th1-like IFN-g+CXCR5�IL-21- compared with untreated animals (Figure 2F), suggesting

that generation of CXCR5- Th1-like cells is inhibited by infection lasting longer than 3 days. To investigate

any potential role of hybrid Th1/Tfh in early GC formation, we measured GC B cells on day 7, the day of

peak T-bet expression in T cells. GC B cell numbers were increased at day 7 p.i. in treated compared

with untreated mice (Figure 2G), opposite to hybrid Th1/Tfh cells. The untreated mice also showed a

distinct population of CD38hiGL-7+ B cells, which has been previously described as GC-independent mem-

ory B cell precursors (Taylor et al., 2012). In contrast, starting treatment on day 5 rather than day 3 reduced

infection immediately (Figure S2A), but had no effect on the fraction of IFN-g+IL-21+ (Figure S2B) or

CXCR5int Teff (Figure S2C). T cell priming occurs before day 5 of P. chabaudi infection (Opata et al.,

Figure 2. Drug-Cured Mice Have Fewer IFN-g+IL-21+CXCR5+ Hybrid Th1/Tfh and More IFN-g+IL-21�CXCR5- Th1-Like Cells

C57BL/6J mice were infected, one group was treated with anti-malarial drug mefloquine (MQ) by oral gavage starting day 3 p.i. and splenocytes analyzed at

day 7 p.i.

(A) Parasitemia in treated (+MQ, open circles) and not-treated (NTx, black filled circles) groups. Arrows indicate MQ treatment.

(B, C, and E) (B) CD4 Teff numbers in +MQ (white bar) and NTx (black bar). (C) Expression of IFN-g and IL-21 and (E) PD-1 and CXCR5 in Teff. Bar graphs show

percentages and numbers of Teff subsets.

(D) Histogram overlay shows CXCR5 expression in Th1-like IFN-g+IL-21- Teff. Bar graph shows fold change of CXCR5 mean fluorescence intensity (MFI) over

isotype control.

(F) Boolean gating analysis of CXCR5+, IFN-g+, and IL-21+ expression by Teff.

(G) Expression of CD38 and GL-7 on B cells (gated on B220+MHCII+). Bar graph shows numbers of GC B cells (CD38loGL7+) per spleen.

Data representative of 3 experiments with 3–4mice/group. Data are represented asmeanG SEM. * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001, n.s., not

significant. See also Figure S2.
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2015; Sponaas et al., 2012). Therefore, we conclude that the cytokine milieu surrounding antigen presen-

tation regulates priming of the hybrid Th1/Tfh cell phenotype. However, the transcriptional mechanisms

regulating this new phenotype are not clear.

T-bet Regulates IFN-g and IL-21 Production by Hybrid Th1/Tfh Cells

Th1 cells play a crucial role in immunopathogenesis and host survival in Plasmodium spp. infection (Oakley

et al., 2013; Su and Stevenson, 2000). Basal levels of T-bet expression can be driven by TCR signaling, IFN-g,

and STAT1. T-bet then upregulates IL-12Rb2, promoting IL-12 signaling through STAT4, to drive increased

T-bet expression and full Th1 commitment (Afkarian et al., 2002; Szabo et al., 2000). Interestingly, T-bet has

been shown to work in concert with Bcl6 to regulate the plasticity of Th1 cells (Oestreich et al., 2012).

Although we have observed very few T-bethi Th1 committed cells in our studies, most Teff express T-bet

at a low level (Carpio et al., 2015). The role of Th1 transcriptional activators in P. chabaudi infection has

not been well established, particularly in the differentiation of hybrid Th1/Tfh cells. Using P. chabaudi-in-

fected mutant mice, we found that STAT4 was not required for the generation of IFN-g+IL-21+ Teff (Fig-

ure S3A), but it was critical for GC Tfh differentiation (Figure S3B). Although surprising, this agrees with

recent reports showing a role for STAT4 in generating GC Tfh in infection (Weinstein et al., 2018). T cell-

intrinsic STAT1 was not required for generation of IFN-g+IL-21+ T cells as well (Figure S3C). T-bet-deficient

(tbx21-/-, T-bet knockout (KO)) mice infected with P. chabaudi had a strong reduction in IFN-g production

and a significant increase in the fraction and number of IL-21+IFN-g- Tfh-like cells (Figure 3A). The overall

percentage of IL-21+ Teff in WT mice was 38.33% G 1.77%, whereas in KO mice was 52.93% G 2.38% (p =

0.008), suggesting a role for T-bet in IL-21 production. In addition, there was a large decrease in the overall

numbers of tbx21-/- Teff compared with WT on day 7 p.i. (Figure 3B). T-bet deficiency increased the level of

expression of CXCR5 on Teff but had no effect on the relative fraction of GC Tfh (Figure 3C). Boolean gating

analysis revealed a reduction in hybrid IFN-g+IL-21+CXCR5+ cells and a shift toward more Tfh-like Teff

(IFN-g-IL-21+CXCR5+/�) in the absence of T-bet (Figure 3D). However, we did not identify a significant

change in the number of GC B cells at day 7 p.i. (Figure 3E). Supporting an important role for IFN-g+

Teff and T-bet+ B cells in control of this infection, 40% of T-bet KO mice died from infection (Figure S3D).

T-bet KO mice that survived the infection did not control parasitemia as well as WT (Figure S3E) and had

worse weight loss and hypothermia (Figure S3F). These data suggest that T-bet regulates IFN-g and IL-21

production by hybrid Th1/Tfh cells. Moreover, T-bet expression is required for control of parasitemia and

immunopathology in P. chabaudi infection.

Bcl6 and Blimp-1 Regulate CXCR5 Levels in P. chabaudi Infection

The major Tfh regulatory transcription factor, Bcl6 can bind T-bet and inhibit its function (Oestreich et al.,

2012), and indeed, we previously reported that Bcl6 levels correlate with the level of ifng transcription in

Teff in P. chabaudi (Carpio et al., 2015). To test the role of Bcl6 in the differentiation of hybrid Th1/Tfh,

we infected Bcl6fl/flCD4Cre (Bcl6 TKO) and Bcl6fl/fl (WT) mice with P. chabaudi. The percentage of IFN-

g+IL-21+ Teff did not change in the Bcl6 TKO mice on day 7 p.i, although IFN-g-IL-21+ and overall Teff

numbers were reduced (Figure 4A). As expected, bcl6�/� Teff did not generate GC Tfh (Figure 4B). Inter-

estingly, the proportion and numbers of CXCR5+ Teff decreased at day 7 p.i. on bcl6�/� Teff. Overall, Bcl6

deficiency resulted in an average 65% reduction of CXCR5+IL-21+IFN-g- Tfh-like fraction (Figure 4C). We

confirmed that T cell-specific Bcl6 deficiency had an effect only on parasite clearance (Figure S4A,

Perez-Mazliah et al., 2017) and a slight increase in IL-10 in T cells (data not shown).

In CD4 T cells, Blimp-1 can inhibit both T-bet and Bcl6 and is known to promote IL-10 production in

P. chabaudi (Cimmino et al., 2008; Montes deOca et al., 2016). We also tested the role of Blimp-1, the recip-

rocal regulator of Bcl6 (Johnston et al., 2009), infecting Prdm1fl/flCD4Cre (Blimp-1 TKO) animals. We found

modest differences in cytokine production (Figure 4D). However, the percentage, but not the number, of

CXCR5+ Teff was increased in prdm1�/� Teff due to a shift in mean fluorescence intensity (Figure 4E). Bool-

ean analysis revealed that the relative fraction of IFN-g+IL-21+CXCR5+ hybrid Th1/Tfh was also increased,

whereas Th1 IFN-g+IL-21�CXCR5- cells decreased in infected Blimp-1 TKO animals (Figure 4F). Despite

equal parasite levels, all the Blimp-1 TKO mice died, similar to IL-10 KO mice (Figure S4B). In summary,

Bcl6 and Blimp-1 coordinately regulate CXCR5 (and IL-10) expression levels in hybrid Th1/Tfh cells.

Effector T Cells Deficient in STAT3 Become More Th1-like Cells

Because STAT3 promotes the Tfh phenotype (Batten et al., 2010; Choi et al., 2013; Nurieva et al., 2008; Ray et al.,

2014), we hypothesized that STAT3 could also be a transcriptional regulator of the phenotype and/or function of
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hybrid Th1/Tfh cells. To test this hypothesis, we infected Stat3fl/flCD4Cre (STAT3 TKO) and Stat3fl/fl (WT) animals

with P. chabaudi or P. yoelii and analyzed splenocytes at day 7 or 10 p.i, respectively, by flow cytometry. STAT3

TKO mice infected with P. chabaudi showed a decrease in the percentage of IFN-g+IL-21+ Teff, whereas the

opposite was true for mice infected with P. yoelii (Figures 5A and S5A). We found no significant differences in

the proportions of GC Tfh in either infection model (Figures 5B and S5B). However, using Boolean gating it

became clear that STAT3 TKO mice infected with either P. chabaudi or P. yoelii both showed a reduction in

the percentage of hybrid Th1/Tfh cells (IFN-g+IL-21+CXCR5+, Figures 5C and S5C). There was a concomitant in-

crease in the fraction of Th1-like cells (IFN-g+IL-21-CXCR5-) in STAT3 TKO, and some small differences in the in-

dividual markers. In both infections, STAT3 TKO mice also had a significant reduction in IFN-g-IL-21+ Teff, sup-

porting reports that STAT3 signaling promotes IL-21 expression. Moreover, STAT3 TKOmice had an increase in

the more Th1-like CXCR5int/loT-bethi population compared with the two apparently separable populations seen

inWT (Figures 5D and S5D). We interpret these data to suggest a continuum of plastic hybrid Th1/Tfh cells from

a Th1-like to Tfh-like bias, rather than separate or terminally differentiated subsets. This would predict that cy-

tokines that signal through STAT3 could shift the hybrid population over the course of infection. To test this,

we blocked IL-6 and IL-27 signaling. Both cytokines signal through STAT3 and can influence Tfh and Th1 differ-

entiation in other models (Batten et al., 2010; Sebina et al., 2017). Neutralization of IL-6 during infection of

WT animals did not change the hybrid Th1/Tfh phenotype (Figure S6A). However, when T cells deficient in

Figure 3. T-bet Deficiency Reduces IFN-g+IL-21+CXCR5+ Hybrid Teff and Th1 but Promotes IFN-g-IL-21+ T Helper Differentiation in P. chabaudi

Infection

T-bet KO and WT animals were infected, and splenocytes were analyzed at day 8 p.i.

(A) Expression of IFN-g and IL-21 in Teff. Bar graphs show percentages and numbers in WT (black bars) and T-bet KO (white bars).

(B) Bar graph shows CD4 Teff numbers.

(C and D) (C) Expression of PD-1 and CXCR5 in Teff. (D) Boolean analysis of CXCR5+, IFN-g+, and IL-21+ within WT and T-bet KO Teff.

(E) CD38 and GL-7 in B cells (B220+MHCII+). Bar graph shows numbers of GC B cells (CD38loGL7+).

Data representative of 2 experiments, 3–8 mice/group. Data are represented as mean G SEM. * p <0.05, ** p <0.01, *** p <0.001, **** p >0.05, n.s, not

significant. See also Figure S3.
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WSX-1 (IL-27Ra) were transferred into congenically marked recipients, which were then infected, the resulting

divided Teff population (CD4+CTV-) contained more IFN-g+IL-21- Th1-like cells compared with WT donor cells

(Figure S6B). This suggests that IL-27 is responsible for promoting IL-21 expression in IFN-g+ T cells in

P. chabaudi infection. IL-27Ra deficiency in T cells also strongly reduced GC Tfh but did not affect CXCR5int

T cells. Generation of P. chabaudi-specific antibody was also affected by STAT3 deficiency in T cells. IgG titers

were significantly less at day 35 p.i. in STAT3 TKO mice, whereas the relative concentration of IgM was not

affected (Figure 5E). In addition, the proportion of GC B cells was significantly reduced in STAT3 TKO mice at

days 20 and55p.i. (Figure 5F, d55 not shown).P. chabaudi-infected STAT3 TKOmice had consistently prolonged

parasitemia (Figure S6C) and pathology (Figure S6D). However, no STAT3 TKO mice died of P. chabaudi infec-

tion (n = 40). These results indicate that STAT3 regulates the phenotype and cytokine production of hybrid

Th1/Tfh cells during Plasmodium infection through IL-27Ra signaling. However, STAT3 deficiency is detrimental

for parasite control, prolonging pathology in the first infection.

T-bet Expression Is Regulated by Bcl6, Blimp-1 and STAT3

Based on the strong effect of T-bet deletion on IFN-g production, we hypothesized that T-bet regulation could

modulate the pathogenicpotential of T cells in vivo.Wepreviously showed that T-bet is downregulated fromday

7 today 9p.i., even thoughday 9 is the peak of IFN-g+ Teff numbers (Carpio et al., 2015). Therefore, wemeasured

T-bet expression in all the TKO mice previously described. In Bcl6 TKO animals, T-bet expression was main-

tained at intermediate levels in Teff from day 7 to day 9 p.i., suggesting Bcl6 controls T-bet expression at the

peak of infection (Figure 6A). Blimp-1 expression was also increased at day 9 p.i. in Bcl6 TKO. Prdm1�/� Teff

showed an increase in the expression of T-bet, as well as in Bcl6, at day 7 p.i. (Figure 6B). STAT3 TKO Teff

also had more T-bet and Blimp-1 expression at day 7 p.i. (Figure 6C). Bcl6 expression was not affected in

STAT3 TKO Teff in P. chabaudi infection; however, it was reduced on day 10 p.i. of P. yoelii infection of

STAT3 TKO (Figure S5F). In conclusion, Bcl6, Blimp-1, and STAT3 work in concert to regulate the expression

of T-bet, IFN-g, CXCR5, and each other, in Teff during persistent Plasmodium infection.

As the hybrid Th1/Tfh phenotype is increased when infection lasts longer than 3 days, we investigated the

functional phenotype of Teff in TKOmice during shorter infection. WT and TKO animals were infected, and

one group of each was treated with MQ starting at day 3 p.i. (Figure S7). Data are quantified as a ratio of

TKO overWT to illustrate the degree of the effect of removal of each transcription factor in the longer (NTx)

or the shorter (+MQ) infection. Both Th1-like IFN-g+IL-21- and hybrid IFN-g+IL-21+ Teff were significantly

increased in the short-term infection in Bcl6 TKO mice compared with WT, showing a larger effect of

Bcl6 on IFN-g expression in shorter stimulation than longer (Figure S7A). Blimp-1 plays a larger role in

longer infection, as only untreated infected Blimp-1 TKO (NTx), but not treated, had fewer IFN-g+IL-21-

with a concomitant increase in hybrid IFN-g+IL-21+, supporting its role in IL-10 expression. On the other

hand, STAT3 regulates IFN-g in both long and short infections. This is clearly shown in the strong increase

of IFN-g+IL-21- Teff in STAT3 TKOmice compared with WT. Strikingly, GC Tfh generation was only affected

by STAT3 deficiency in the shortened infection, supporting the previously described role of STAT3 in Tfh in

acute infection (Figure S7B, Ray et al., 2014). Together, these results suggest that the role of each transcrip-

tion factor is dependent on the duration of strong priming, presumably due to differential expression of

cytokines and transcription factors driven by the milieu.

Increasing Th1 Bias in Memory T Cells Correlates with Lower Parasitemia in Reinfection

Th type-1 cytokines have a strong impact on parasitemia in mice and humans (Luty et al., 1999; Su and Ste-

venson, 2000), although less is known about re-infection. Given the increase of Th1 cells and effective clear-

ance of persistent parasite in STAT3 TKO mice, we re-infected STAT3 TKO animals to test for immunity

(Figure 7). To ensure parasite clearance after the first infection in both STAT3 TKO and WT, we treated

Figure 4. Roles of Bcl6 and Blimp in T Cell Differentiation during P. chabaudi Infection

(A–C) Bcl6fl/flCD4Cre (TKO) and Bcl6fl/fl (WT) animals were infected, and splenocytes were analyzed at day 7 p.i. Contour plots and bar graphs show expression

of (A) IFN-g/IL-21 or (B) PD-1/CXCR5 gated on Teff. (C) Boolean analysis of CXCR5+, IFN-g+, and IL-21+ subsets within WT (black bar) and Bcl6 TKO (white

bar) Teff.

(D–F) Prdm11fl/flCD4Cre (Blimp-1 TKO) and Prdm11fl/fl (WT) animals were infected and splenocytes were analyzed at day 7 p.i. Contour plots and bar graphs

show subsets of (D) IFN-g/IL-21 or (E) PD-1/CXCR5 gated on Teff. (F) Boolean analysis of CXCR5+, IFN-g+, and IL-21+ within WT (black bars) and Blimp-1 TKO

(white bars) Teff.

Data representative of 3 experiments, 3–4 mice/group. Data are represented as mean G SEM. * p <0.05, ** p <0.01, n.s. p >0.05, not significant. See also

Figure S4.
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with the anti-malarial drug chloroquine (CQ), which effectively eliminates low levels of P. chabaudi parasi-

temia (Hunt et al., 2004). STAT3 TKO mice controlled a high-dose second challenge (1 3 107 iRBCs)

completely, with infection becoming undetectable by day 3 post-reinfection (p.r.i, Figure 7A). WT mice

showed significantly higher parasitemia that peaked around day 4 and was controlled by day 7 p.r.i. The

proportion of IFN-g+IL-21- T cells was higher in STAT3 TKO mice at day 7 p.r.i, and the numbers of IFN-

g+IL-21+ Teff were less (Figure 7B). The numbers of both GC Tfh (Figure 7C) and GC B cells (Figure 7D)

were significantly less in STAT3 TKOmice than WT at day 7 p.r.i. Importantly, the levels of P. chabaudi-spe-

cific IgG and Th1-driven isotype, IgG2b, were significantly less in STAT3 TKO mice than WT (Figure 7E).

To determine if increased Th1 bias in the stat3�/� Teff observed during the first infection was maintained

into the memory phase, we analyzed antigen-experienced memory T cells (Tmem, CD11ahiCD49dhi

CD44hiCD127hi) at day 55 p.i. Indeed, STAT3-deficient Tmem had higher percentages of IFN-g+IL-21-

Th1-like cells (Figure 7F) and maintained higher expression of T-bet (Figure 7G) than WT.

Figure 5. STAT3 Deficiency Reduces IFN-g+IL-21+CXCR5+ Hybrid Teff and Increases Th1 Bias in P. chabaudi Infection

(A and B) Stat3fl/flCD4Cre (TKO) and Stat3fl/fl (WT) animals were infected, and splenocytes were analyzed at day 7 p.i. Expression of (A) IFN-g and IL-21 and (B)

PD-1 and CXCR5 in Teff. Bar graphs show percentages and numbers of subsets.

(C) Boolean analysis of CXCR5+, IFN-g+, and IL-21+ within WT (black bars) and STAT3 TKO (white bars) Teff.

(D) Expression of CXCR5 and T-bet in Teff. Bar graph shows percentages Tfh-like (CXCR5+T-betlo) and Th1-like (CXCR5�T-bethi) subsets.
(E) Bar graphs showing P. chabaudi-specific IgM (left) and IgG (right) from serum d35 p.i.

(F) Expression of CD38 and GL-7 in B cells (B220+MHCII+) day 20 p.i. Bar graph shows numbers of GC B cells (CD38loGL7+).

Data representative of 3 experiments, 3–4 mice/group. Data are represented as mean G SEM. * p <0.05, ** p <0.01, *** p <0.001, **** p >0.05, n.s, not

significant. See also Figures S5 and S6.
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The increase in Th1-like (IFN-g+IL-21-) cells, decrease in Plasmodium-specific serum antibody, and

concomitant very strong protection in STAT3 TKO mice support a role for Th1 cells rather than antibody

in reinfection. Therefore, we tested the importance of Th1 cells in immunity by giving T-bet KO mice a sec-

ond infection (Figure 8). T-bet KO mice showed prolonged parasite growth compared with WT mice, with

days 6 and 7 p.r.i. remaining uncontrolled (Figure 8A). This was the opposite phenotype to STAT3 TKO, as

predicted. Upon P. chabaudi reinfection, Teff in T-bet-deficient mice still produced IL-21, but little IFN-g

(Figure 8B). T-bet-deficient mice had increased levels of P. chabaudi-specific IgG, but lower levels of

Th1-isotype IgG2b (Figure 8C). Furthermore, we observed a significant increase in the proportions of

GC Tfh cells that could explain the aberrant isotype switching (Figure 8D). In summary, T cell-intrinsic

STAT3 regulates the Th1 bias of memory T cells in P. chabaudi infection. Importantly, Th1 cells promote

immunity, in addition to the role of pre-existing antibody, particularly IgG2b (Su and Stevenson, 2002).

DISCUSSION

Both Th1 and Tfh cells are required to eliminate parasites in Plasmodium infection. Previous work on the

immune response to P. chabaudi shows that IFN-g controls the height of the peak of parasitemia, whereas

Tfh and IL-21 are required for antibodies to eliminate the parasite (Perez-Mazliah et al., 2015, 2017; Su and

Stevenson, 2002; Gbedande et al., 2020; Meding and Langhorne, 1991). We have found that both types of

effector functions are combined in one cell type in this infection (Carpio et al., 2015). Although there are

certainly GC Tfh that make IFN-g, we continue to term the multi-functional Teff cells found in persistent

infections hybrid Th1/Tfh, rather than Th1-like Tfh, due to the larger effect and active regulation of T-bet

(which controls their IFN-g production) and the smaller effect of Bcl6 (suggesting a more Th1-like lineage),

as well as their lack of the true GC Tfh (CXCR5hiPD-1hi) phenotype. It is important to note that in some stain-

ing combinations, two populations (i.e., CXCR5intT-bethi, CXCR5loT-betint) appeared detectable within the

hybrid population by fluorescence-activated cell sorting, as previously predicted by single cell RNA

sequencing analysis (Lonnberg et al., 2017). While the populations are separable, as now clearly shown

by CXCR6 staining of the Th1-like population (Soon MSF, et al, 2019), we would argue that the CXCR5int

population we detect here, and the two plastic populations within it, do not represent truly differentiated

populations, but rather two ends of a continuum. However, we agree that this population can intuitively be

Figure 6. Bcl6, Blimp-1, and STAT3 Control T-bet Expression during P. chabaudi Infection

TKO and WT animals were infected and splenocytes were analyzed.

(A) Expression of T-bet (left) and Blimp-1 (right) in Teff from Bcl6 TKO (Bcl6fl/flCD4Cre, dotted line), WT (Bcl6fl/fl, gray line), and naive (gray filled line) cells at

day 9 p.i. Bar graphs show average MFI of T-bet and Blimp-1 at days 7 and 9 p.i.

(B) Expression of T-bet (left) and Bcl6 (right) in Teff from Blimp-1 TKO (Prdm1fl/flCD4Cre, dotted line) andWT (Prdm1fl/fl, gray line) animals and naive (gray filled

line) cells at day 7 p.i. Bar graphs show average MFI of T-bet and Bcl6 at day 7 p.i.

(C) Expression of T-bet (left) and Blimp-1 (right) expression in Teff from STAT3 TKO (Stat3fl/flCD4Cre, dotted line) and WT (Stat3fl/fl, gray line) animals and

naive (gray filled line) cells at day 7 p.i. Bar graphs show average MFI of T-bet, Blimp-1, and Bcl6 expression.

Data representative of 3 experiments with 3–4 mice/group. Data are represented as mean G SEM. * p <0.05, ** p <0.01, *** p <0.001, **** p >0.05, n.s, not

significant. See also Figure S7.
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termedmore Th1- or Tfh-like, as has been the convention in the literature to date. The fact that each feature

of these cells is actively regulated by so many transcription factors highlights their plasticity, as a necessity

of adapting to the current infection-mediated cytokine milieu. Therefore, we conclude that the Teff pop-

ulation in this infection is not made up of subsets, but is a plastic, heterogeneous, hybrid population

that is actively regulated by multiple inputs and transcription factors throughout the infection.

Protection from repeated episodes of malaria in humans correlates with serum IFN-g and memory Th1 cells

(Luty et al., 1999; Moormann et al., 2013; Stephens and Langhorne, 2010). CD4 T cells in adults frommalaria-

endemic areas also express cytokines of multiple lineages including IFN-g, IL-10, and IL-21, even in cells with

a Tfh-like phenotype (Obeng-Adjei et al., 2015; Roetynck et al., 2013). Human Teff expressing both CXCR3

and CXCR5 andmouse CXCR5+ Teff expressingmarkers of a high level of activation (Ly6C, NK1.1) can help B

cells make antibody; however, they are less effective helper cells in vitro than those expressing only CXCR5

(Obeng-Adjei et al., 2015; Zander et al., 2017; Wikenheiser et al., 2018). In humans, CXCR3+CXCR5+ T cells

were not shown to correlate with Plasmodium-specific antibody levels (Obeng-Adjei et al., 2015). Strikingly,

hybrid Th1/Tfh cells (ICOS+CXCR3+CXCR5+) did correlate with antibody levels in influenza, where they were

also shown to contain IFN-g+IL-21+ T cells (Bentebibel et al., 2013). Acute infections, like those caused by

Listeria, can induce a stable Th1 memory phenotype (Curtis et al., 2010; Hale et al., 2013), whereas chronic

LCMV and tuberculosis infections have T cell responses skewed away from a committed Th1 phenotype, and

toward concomitant expression of Tfh markers in mice (Crawford et al., 2014; Li et al., 2016). Therefore,

Th phenotype plasticity appears to be a shared feature of the immune response to persistent infections

and has been shown to be beneficial in control of tuberculosis (Khader et al., 2007; O’Shea and Paul,

2010). Similarly, our data suggest that preserving plasticity would be optimal for protection.

We found that T-bet regulates cytokine production in T cells in P. chabaudi infection. In addition, the expression

of T-bet is highly regulated, including by STAT3, Blimp-1, and Bcl6, presumably to avoid immunopathology.

T-bet expression kinetics also support ongoing regulation.We previously observed that T-bet is downregulated

before day 9, the peak of Ifng+ T cell expansion (Carpio et al., 2015). Here, we show that this downregulation

occurs in a Bcl6-dependent manner. Although T-bet is generally induced by STAT1 in CD4 T cells (Afkarian

et al., 2002), and upregulated upon IL-12 signaling through STAT4, neither STAT4 nor STAT1 deficiency nega-

tively regulated the hybrid cytokine profile in T cells. This observation suggests that T-bet in this infection is

induced primarily by TCR signaling and IL-18 and/or that there is some redundancy between STATs. T-bet regu-

lation is a critical focus in the control of Th plasticity in this persistent infection.

The hybrid T cell dominant at the peak of infection facilitates strong early cellular and humoral responses. How-

ever, the two types of responses clearly also regulate one another. T-bet in T cells has recently been shown to

impair GC Tfh cell differentiation andGC formation (Ryg-Cornejo et al., 2016), though it is critical in B cells (Ly et

al., 2019). On the other hand, a recent study concluded that T-bet and STAT4 are actually required for GC Tfh

development and GC formation during acute viral infection (Weinstein et al., 2018). We confirm that STAT4 is

also required for GC Tfh in P. chabaudi infection. We did not detect any change in the number of GC Tfh in

T-bet-deficient animals infected with P. chabaudi during the primary infection as seen in Plasmodium berghei

ANKA. However, we observed a significant reduction in the percentage of GC Tfh in the secondary infection

in T-bet KOmice. T-bet, presumably in its capacity for driving IFN-g in T cells and thereby promoting production

of the IgG2 isotype of antibody, was essential for full parasite control in both the first and second infections.

Clearly, the regulation of T-bet and IFN-g is a high priority for promoting an effective Teff response and survival

Figure 7. STAT3 TKO Mice Are Protected from Reinfection Despite Weaker Humoral Response

STAT3 TKO (Stat3fl/flCD4Cre) and WT (Stat3fl/fl) animals were infected. At day 60 p.i. both groups were treated with chloroquine (CQ) before reinfection at

6 weeks with 107 iRBCs.

(A) Parasitemia of WT (filled circles) and STAT3 TKO (open circles) animals.

(B and C) Expression of (B) IFN-g and IL-21 and (C) PD-1 and CXCR5 by antigen-experienced CD4 T cells (CD44hiCD11ahi) from STAT3 TKO andWT animals at

day 7 post-re-infection. Bar graphs show percentages and numbers.

(D) Expression of CD38 and GL-7 in B cells (B220+MHCII+) at day 7 post-re-infection. Bar graphs show percentages and numbers.

(E) Bar graphs showing P. chabaudi-specific IgM, IgG, and IgG2b at day 7 post-re-infection.

(F) Expression of IFN-g and IL-21 in Tmem (CD44hiCD11ahiCD49dhi) from STAT3 TKO and WT animals at day 55 p.i. (first infection). Bar graphs show

percentages and numbers.

(G) Expression of T-bet in Tmem fromWT (gray line) and STAT3 TKO (dotted black line) animals and naive (gray filled line) cells at day 55 p.i. Bar graph shows

MFI of T-bet.

Data representative of 2 experiments, 4–5 mice/group. Data in (A) are pooled from 2 independent experiments, 3–5 mice/group/experiment. Data are

represented as mean G SEM. * p <0.05, ** p <0.01, *** p <0.001, **** p >0.05, n.s, not significant.
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of the animals given the multiple transcription factors involved. However, the production of different cytokines

during continued infection leads to functional T cell plasticity due to the unique regulationof functional attribute,

and overlap in TCR, co-stimulation, and cytokine signaling cascades.

Overlapping signaling cascades control the balance of Th1 and Tfh programs (Weinmann, 2014). IL-12, the

primary cytokine responsible for induction of Th1 cells can be essential for generation of Tfh in vivo and can

also induce IL-10 (Saraiva et al., 2009; Weinstein et al., 2018). In addition, in vitro-generated Th1 cells tran-

siently express Bcl6 and IL-21, whereas Tfh transiently express T-bet (Fang et al., 2018; Nakayamada et al.,

2011). T-bet can bind and inhibit the Tfh-driving transcription factor, Bcl6 (Oestreich et al., 2012). On the

other hand, T cells that express T-bet will not necessarily express IFN-g, particularly if they also express

the transcriptional Bcl6 (Oestreich et al., 2011). Although we previously showed that Bcl6 levels correlate

with the level of Ifng transcription in intact mice (Carpio et al., 2015), the Bcl6 TKO Teff do not have more

IFN-g protein by intracellular cytokine staining here. Both STAT3 and Bcl6 are reported to be required for

Tfh differentiation, whereas Blimp-1 inhibits both Th1 and Tfh differentiation (Cimmino et al., 2008; Johnston

et al., 2009; Ma et al., 2012; Nurieva et al., 2009; Ray et al., 2014). However, in our studies, deficiency in either

Bcl6 or STAT4 in T cells eliminated GC Tfh, whereas STAT3 deficiency did not. STAT3 deficiency did, how-

ever, reduce the proportions of GC Tfh in the setting of a shorter P. chabaudi infection, in agreement with

previous reports that used acute infections as stimuli (Ray et al., 2014). In addition, we consistently observed

that STAT3-deficient T cells did not develop into Tfh-like IFN-g-IL-21+ Teff in both P. yoelii and P. chabaudi

infections. The shorter infection also resulted in an increase of GC B cells, similar to the increase in GC B cells

induced by inactivated P. berghei ANKA (Ryg-Cornejo et al., 2016). Given the differences in regulation in

shorter versus longer infections shown here, the regulation of prdm1 expression by type1-I IFN is likely cen-

tral to the regulation of terminal Tfh differentiation and the increased plasticity during prolonged infection

(Zander et al., 2016). Bcl6 also reduced the level of expression of CXCR5, whereas Blimp-1 had the opposite

effect. Our data suggest that Bcl6 and Blimp-1 have a stronger effect on regulation of CXCR5 expression

than on production of IFN-g or IL-21. This may be explained by the inhibition by Bcl6 of microRNAs that con-

trol cxcr5 expression (Yu et al., 2009).

The most compelling result here is that skewing the hybrid-lineage cells toward a more committed Th1

phenotype in STAT3 TKO dramatically sped up clearance of parasitemia on reinfection. Supporting this

interpretation, T-bet-deficient mice, with less Th1 bias and more IFN-g-IL-21+ T cells, were significantly

Figure 8. T-bet KO Mice Have Few Th1 Memory Cells, Reduced IgG2b, and Prolonged Parasitemia on Reinfection

(A, B, and D) T-bet KO andWT animals were infected. At day 60 p.i. both groups were treated with chloroquine (CQ) before reinfection. After 3 weeksmice were re-

infected with 107 iRBCs. (A) Parasitemia of WT (filled circles) and T-bet KO (open circles) animals. Expression of (B) IFN-g and IL-21 and (D) PD-1 and CXCR5 by

antigen-experienced CD4 T cells (CD44hiCD11ahi) from T-bet KO and WT animals at day 7 post-reinfection. Bar graphs show percentages and numbers.

(C) Bar graphs showing P. chabaudi-specific IgM, IgG, and IgG2b at day 7 post-re-infection.

Data representative of 1 experiment, 3–5 mice/group. Data are represented as mean G SEM. * p <0.05, ** p <0.01, *** p <0.001, **** p >0.05, n.s, not

significant.
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slower at clearing a second infection.While the protection did not correlate with antibody levels, we did not

rule out a role for antibody, particularly affinity maturation and isotype switching, in the improved immunity

of STAT3 TKO. The mechanism of evolutionary pressure regulating this balance becomes clear in that the

shift toward Th1 in STAT3 TKO animals, as well as the shift away from Th1 in the T-bet KO, as also shown for

P. berghei ANKA, both prolong high parasitemia and pathology in the first infection. STAT3 has been pre-

viously suggested to be able to promote Tfh and inhibit Th1 differentiation (Ray et al., 2014;Wu et al., 2015).

We found that IL-6 had no impact on the differentiation of Teff. Although IL-27Ra-deficient animals have

long been known to have a hyperactive T cell response to pathogens including Plasmodium, we have

shown that IL-27Ra on T cells regulates the balance between IFN-g and IL-21 and GC Tfh differentiation,

which is supported by the work of others (Batten et al., 2010; Guthmiller et al., 2017; Gwyer Findlay

et al., 2014; Hibbert et al., 2003; Kane et al., 2014; Ma et al., 2012; Stumhofer et al., 2007). Supporting

our analysis, IL-27 has been shown to be made by CD4 T cells in Plasmodium infection (Kimura et al.,

2016). It would be of great interest to dissect the molecular pathway that IL-27 uses to guide cytokine pro-

duction versus its effect on GC Tfh differentiation, for example, the relative role of STAT1 and STAT3 in

each. Recent studies have shown that IL-12 can promote STAT3 association with the bcl6 and il21 loci in

T cells in vitro, suggesting a possible signaling pathway for the regulation of plastic Th1 and Tfh popula-

tions in the context of complex cytokine milieus (Powell et al., 2019).

Previous studies have demonstrated that the delicate balance of a P. chabaudi-infected animal’s life or

death is regulated by CD4 T cells, as is the case in other persistent infections such as tuberculosis and toxo-

plasmosis (Caruso et al., 1999; Denkers and Gazzinelli, 1998; Stephens et al., 2005). Animals deficient in

either of the pro-Th1 factors IL-12 or IFN-g, or the regulatory cytokine IL-10, are more susceptible to die

of P. chabaudi infection, even though it is a normally mild infection in mice (Li et al., 1999; Su and Stevenson,

2000, 2002). T-bet has been shown to be required for control of P. berghei ANKA parasitemia but is also

essential for pathogenesis of experimental cerebral malaria (Oakley et al., 2013). Although we did not

see any mortality from an increase in Th1-type cells in the infected STAT3 TKO, mice that either had

more (STAT3) or less (T-bet) IFN-g+IL-21- Th1-type cells had prolonged pathology. Therefore, although

our data, and the human literature, suggest that a stronger Th1 response is beneficial for immunity to

P. chabaudi, it remains to be tested if the combination of Th1/Tfh and regulatory cytokines into one cell

type represents an evolutionary benefit, particularly in the first infection, which is likely to drive evolution

the most (next to pregnancy malaria). Further work considering the finely-tuned balance required to ensure

host survival is needed to determine if this hybrid response is maladaptive.

In summary, persistent Plasmodium infection drives generation of a plastic mixed-lineage T cell with char-

acteristics of both uncommitted Th1 (T-betint) and pre-Tfh (CXCR5int), that is balanced by STAT3, Bcl6,

Blimp-1, and T-bet, which coordinate the relative degree of antibody and IFN-g responses for optimal

pathogen control and host survival. Changing this balance toward Th1 in the first infection may prolong

pathology, whereas it promotes sterilizing immunity in the longer term, suggesting a potential direction

for vaccine development.

Limitations of the Study

Defining Th1 and Tfh cells by themarkers they express can both enhance and limit our understanding. How-

ever, we have focused on threemarkers (CXCR5, IFN-g, and IL-21) with functional consequences and assays

with good discrimination of positive and negative. In addition, most of the Teff population appears to ex-

press both T-bet and Bcl6; however, flow cytometry does not report on transcriptional activation. As both

Th1/Tfh and GC Tfh express both CXCR5 and CXCR3, it will be important to study the location of each cell

type and interactions with B cells in vivo in our next study. Although we have used multiple models of ro-

dent malaria, and the predictions from these models are often predictive of human malaria immunology

(Stephens et al., 2012; Gbedande et al., 2020), there are likely to be differences of degree in

P. falciparum infection. These models have the potential to inform other immune environments including

other persistent pathogens and the response to transformed cells in vivo.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to, and will be fulfilled by,

the Lead Contact, Robin Stephens (rostephe@utmb.edu).
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

This study did not generate/analyze datasets/code.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101310.
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Figure S1. T helper differentiation during P. chabaudi and P. yoelii infections. Related to Figure 1. C57BL/6J mice 
were infected with either P. chabaudi or P. yoelii 17XNL and splenocytes analyzed on days indicated. (A) Parasitemia, and 
expression of CD38 and GL-7 in B cells (B220+MHCII+). Bar graph shows numbers of GC B cells (CD38loGL7+) at 
indicated days. (B) Density t-SNE plots of CD4+ T cells from C57BL/6J mice infected with P. chabaudi at day 8 p.i. or P. 
yoelii at day 7 p.i. Plots show 105 representative T cells from each of 3 mice, concatenated and overlaid with the expres-
sion of selected markers. (C) Expression of CD44, CD127, and CD11a in CD4+ T cells at day 8 of P. chabaudi infection 
showing concordance of CD127- and CD11ahi as markers of activation. Expression of (D) IFN-γ and IL-21 or (E) PD-1 
and CXCR5 in Teff during P. yoelii infection. Line graphs show percentage (left) and numbers (right) of subsets over time. 
(F) Boolean gating of CXCR5+, IFN-γ+, and IL-21+ of Teff in P. yoelii infection at each time point. Pie charts show the 
distribution of subsets on each day. Bar graphs show the percentages and cell numbers of the subsets on each day. Data 
representative of 2 experiments with 3 mice/group. Data are represented as mean ± SEM.
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Figure S2. Stopping the infection on day 5 post-infection has no effect on hybrid Th1/Tfh cell 
phenotype. Related to Figure 2. C57BL/6J mice were infected, and one group was treated with 
mefloquine (MQ) daily starting day 5, and splenocytes were analyzed at day 7 p.i. (A) Parasitemia 
on day 7 p.i. from untreated (NTx, black filled circles) and treated (+MQ, open circles) groups. 
Expression of (B) IFN-γ and IL-21, or (C) PD-1 and CXCR5 in Teff. Bar graphs show percentage 
of Teff (top) and numbers (bottom). Data representative of 2 experiments with 3 mice/group. Data 
are represented as mean ± SEM.
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Figure S3. T-bet, but not STAT4 nor STAT1, is required for IFN-γ production by hybrid 
Th1/Tfh. Related to Figure 3. (A) C57BL/6J (WT), STAT4 KO, and  Tbx21 (T-bet) KO mice 
were infected and splenocytes were analyzed at day 7 p.i. Contour plots and bar graphs show 
expression of IFN-γ and IL-21 in Teff from WT (black bar), STAT4 KO (gray bar) and T-bet KO 
(white bar). (B) Expression of PD-1 and CXCR5 in Teff from WT and STAT4 KO mice at day 7 
p.i. Below, bar graphs show percentages. (C) Splenocytes from uninfected Stat1fl/flCD4Cre (STAT1 
TKO) or Stat1fl/fl (WT) were labeled with cell trace violet (CTV) and adoptively transferred into 
Ly5.1 (CD45.1) congenic mice, which were then infected with P. chabaudi. Expression of IFN-γ 
and IL-21 in divided Teff (CTV- gated) on day 8 p.i. (D) Survival curve and (E) Parasitemia of 
WT (filled circles) and T-bet KO (open circles) groups. (F) Temperature and weight loss of 
infected WT and T-bet KO groups. Data representative of 2 experiments with 3-8 mice/group for 
(A, D, E, and F) and 1 experiment with 4-5 mice/group for (C). Data are represented as mean ± 
SEM.
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Figure S4. Roles of Bcl6 and Blimp in T cell differentiation during P. chabaudi infection. 
Related to Figure 4. (A) Bcl6fl/flCD4Cre (TKO, open circles) and Bcl6fl/fl (WT, filled circles) animals 
were infected and parasitemia was measured for 2 months. (B) Prdm1fl/flCD4Cre (Blimp-1 TKO) 
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tive of 3 experiments, 3-4 mice/group. Data are represented as mean ± SEM.
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Figure S7. T cell response to long or shortened P. chabaudi infection in Bcl6, Blimp-1, and 
STAT3 TKO mice. Related to Figure 6. TKO and WT animals were infected and given meflo-
quine (+MQ) starting on day 3 p.i. or left untreated (NTx). Splenocytes were harvested and 
analyzed by flow cytometry at day 7 p.i. (A) Contour plots show expression of IFN-γ and IL-21 in 
Teff. Bar graphs show difference of IFN-γ+IL-21- and IFN-γ+IL-21+ Teff (average of fold change 
difference between TKO and WT (log 2 of %TKO/%WT)) from NTx (black bars) or +MQ (white 
bars) from Bcl6 TKO (top), Blimp-1 TKO (middle), or STAT3 TKO (bottom). (Intracellular cyto-
kine staining in STAT3 TKO was the only one done with commercially prepared secretion inhibi-
tor, hence higher cytokine staining) (B) Expression of PD-1 and CXCR5 in Teff from STAT3 TKO 
and WT mice. Bar graphs show percentages from STAT3 TKO (black bars) or WT (white bars). 
Data representative of 2 experiments with 3 mice/group.   p < 0.05,  p < 0.01 are statistical 
significance of the difference between WT and TKO mice for each group. Data are represented as 
mean ± SEM.



Supplemental Information  

Transparent Methods 

Experimental Model and Subject Details 

C57BL/6J (B6), B6.129S1-Stat3tm1Xyfu/J (STAT3fl/fl), B6.129-Prdm1tm1Clme/J (Blimp-1fl/fl), and 

B6.129S6-Tbx21tm1Glm/J (T-bet KO) mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME) and bred to B6.Cg-Tg (CD4-Cre)1Cwi N9 mice from Taconic (Hudson, NY). Bcl6fl/fl 

x CD4-Cre mice (Indiana University School of Medicine, Indianapolis, IN) were bred at UTMB. 

Six to twelve-week-old animals of both sexes were used for all experiments. All mice were 

maintained in our specific pathogen free animal facility with ad libitum access to food and water. 

All animal experiments were carried out in compliance with the protocol specifically approved for 

this study by the University of Texas Medical Branch Institutional Animal Care and Use 

Committee. Mice were infected i.p. with 105 (or 107 for re-infection) P. chabaudi chabaudi (AS; 

courtesy of Jean Langhorne (Francis Crick Institute, London, UK)) or 105 P. yoelii (clone 17XNL; 

MR4/ATCC) infected red blood cells (iRBCs). Parasites were counted in thin blood smears stained 

with Giemsa (Sigma, St. Louis, MO) by light microscopy. In some experiments, mice were treated 

with mefloquine hydrochloride (MQ, 4mg/kg body weight, Sigma, St. Louis, MO) by oral gavage 

daily five times or until the mice were euthanized. In some experiments (STAT3 TKO) mice were 

treated with 50 mg/kg body weight per animal of Chloroquine (CQ) in saline (both from Sigma) 

every other day for a total of three times, starting 10 weeks p.i. 

Flow Cytometry and Adoptive Transfer 

Single-cell suspensions from spleens were made in Hank’s Balanced Salt Solution (Gibco, Life 

Technologies, Grand Island, NY), with added HEPES (Sigma), followed by red blood cell lysis 

buffer (eBioscience, San Diego, CA). Multicolor panels including anti-CXCR5 were stained in 



PBS + 0.5% BSA + 0.1% sodium azide + 2% Normal Mouse Serum (NMS) and 2% FBS (Sigma, 

St. Louis, MO). Rat anti-mouse purified CXCR5 (2G8, BDbioscience, San Jose, CA, 1 hr., 4C) 

was followed by biotin-conjugated AffiniPure Goat anti-rat (H+L, Jackson ImmunoResearch, 

West Grove, PA, 30 min, 4C) followed by Streptavidin-eFluor 450, –PE or –Brilliant Violet 650 

(BV650). As described in Crotty et al., the third step included the other antibodies (Crotty, 2014).  

Combinations of FITC–, phycoerythrin (PE)–, Peridinin Chlorophyll Protein Complex (PerCP)-

Cyanine (Cy)5.5, PE/ Cyanine 7 (Cy7), Allophycocyanin (APC) monoclonal antibodies (all from 

eBioscience, San Diego, CA), and CD127-PE/Cy5, CD44-Brilliant Violet 785 (Biolegend, San 

Diego, CA) were used. For B cell staining we used B220-PE/Cy5, MHC-II (I-A/I-E)-APC, CD38-

PE, GL-7-FITC (all from eBioscience, San Diego, CA). For intracellular staining, total cells were 

stimulated for 2 h with phorbol myristate acetate (PMA, 50 ng/mL), Ionomycin (500 ng/mL), and 

Brefeldin A (10 g/mL, all from Sigma) in complete Iscove’s Media 10% FBS, 2mM L-glutamine, 

0.5 mM sodium pyruvate, 100 U/ml penicillin, 100ug/ml streptomycin, 50 M 2--

Mercaptoethanol (all from Gibco, LifeTechnologies). Figures 4B and S7A STAT3 TKO used 

GolgiPlug (BDbioscience) in place of Brefeldin A solution. Cells were fixed in 2% 

paraformaldehyde (Sigma), permeabilized using Permeabilization buffer (Perm buffer, 

eBioscience) and incubated for 40 minutes with anti-IFN--Brilliant Violet 605 (XMG1.2), T-bet-

eFluor 660 or -PerCP-Cy5.5 (eBio4B10, eBioscience), Bcl6-Alexa Fluor 488 or –PE (K112-91), 

and/or Blimp-1-Alexa Fluor 647 (6D3, BDbioscience). For IL-21 staining, cells were incubated 

with recombinant mouse IL-21R-Fc chimera (1 g, 40 min., R&D systems, Minneapolis, MN in 

Perm buffer), washed twice in Perm buffer followed by AlexaFluor647 goat anti-human IgG 

F(ab')₂ (0.3 g, 30 min, Jackson ImmunoResearch, West Grove, PA) in Perm buffer. After three 

washes in Perm buffer, cells were resuspended in FACS buffer and collected on a LSRII Fortessa 



at the UTMB Flow Cytometry and analyzed in FlowJo versions 9.4.11, 10.5.3 (TreeStar, Ashland, 

OR). Compensation was performed in FlowJo using single CD4 stained splenocytes. Cell Trace 

Violet (CTV, Invitrogen) staining of splenocytes was done in calcium- and magnesium-free PBS 

at 107 cells/ml with 5μM CTV for 10 minutes at 37C in the dark with periodic shaking, then 

quenched with Fetal Calf Serum. After washing, 2 x106 cells were transferred into each mouse i.p.  

Reagents are listed in the next table. 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

Purified Rat Anti-Mouse CXCR5 (Clone 2G8) BD Bioscience Cat No. 551961, RRID:AB_394302 
Biotin-SP (long spacer) AffiniPure Goat Anti-
Rat IgG (H+L) 

Jackson 
ImmunoResearch 
Labs 

Cat No. 112-065-167, 
RRID:AB_2338179 

eBioscience™ Streptavidin eFluor™ 450 
Conjugate 

Thermo Fisher 
Scientific 

Cat No. 48-4317-82, 
RRID:AB_10359737 

PE anti-Streptavidin  Biolegend Cat No. 410503, RRID:AB_2571914 
Brilliant Violet 650™ Streptavidin Biolegend Cat No. 405232 
PE/Cy7 anti-moue CD279 (PD-1) Biolegend Cat No. 109110, RRID:AB_572017 
GL-7 Monoclonal Antibody (GL-7), Alexa 
Fluor 488, eBioscience™ 

Thermo Fisher 
Scientific 

Cat No. 53-5902-82, 
RRID:AB_2016717 

CD38 (clone HB7), PE, eBioscience™ Thermo Fisher 
Scientific 

Cat No. 12-0388-42, 
RRID:AB_1518748 

CD11a (LFA-1alpha) (clone HI111), FITC, 
eBioscience™ 

Thermo Fisher 
Scientific 

Cat No. 11-0119-42, RRID: 
AB_10596521 

PE/Cy5 anti-mouse CD127 (IL-7Rα) Biolegend Cat No. 135016, RRID:AB_1937261 
Brilliant Violet 785™ anti-mouse/human 
CD44 

Biolegend Cat No. 103059, RRID:AB_2571953 

CD45R (B220) (Clone RA3-6B2), PE-
Cyanine5, eBioscience™ 

Thermo Fisher 
Scientific 

Cat No. 15-0452-82, 
RRID:AB_468755 

MHC Class II (I-A/I-E) (clone M5/114.15.2), 
APC, eBioscience™ 

Thermo Fisher 
Scientific 

Cat No. 17-5321-82, 
RRID:AB_469455 

Brilliant Violet 605 anti-mouse IFN-γ Biolegend Cat No. 505840, RRID:AB_2734493 
Alexa Fluor® 647 AffiniPure F(ab’)2 Fragment 
Goat Anti-Human IgG, F(ab’)2 fragment 
specific 

Jackson 
ImmunoResearch 
Labs 

Cat No. 109-606-006, 
RRID:AB_2337893 

Anti-mouse IL-10 (Clone JES5-16E3), PE, 
eBioscience™ 

Thermo Fisher 
Scientific 

Cat No. 12-7101-41, 
RRID:AB_10669561 

Anti-mouse T-bet (Clone eBio4B10(4B10)), 
eFluor 660, eBioscience™ 

Thermo Fisher 
Scientific 

Cat No. 50-5825-82, 
RRID:AB_10596655 

Anti-mouse T-bet (Clone eBio4B10(4B10)), 
PerCP-Cyanine5.5, eBioscience™ 

Thermo Fisher 
Scientific 

Cat No. 45-5825-82, 
RRID:AB_953657 

Alexa Fluor® 488 Mouse anti-Bcl-6 (Clone 
K112-91) 

BD Bioscience Cat No. 561524, 
RRID:AB_10716202 



PE Mouse anti-Bcl-6 (Clone K112-91) BD Bioscience Cat No. 561522, 
RRID:AB_10717126 

Alexa Fluor® 647 Rat Anti-Blimp-1(Clone 
6D3) 

BD Bioscience Cat No. 565002, RRID:AB_2739040 

Anti-Mouse IgM (µ-chain specific)-Alkaline 
Phosphatase antibody produced in goat 

Sigma-Aldrich Cat No. A9688, RRID:AB_258472 

Goat Anti-Mouse IgG, Human ads-AP Southern Biotech Cat No. 1030-04, 
RRID:AB_2794293 

Goat Anti-Mouse IgG2b-AP Southern Biotech Cat No. 1091-04, 
RRID:AB_2794541 

Chemicals, Peptides, and Recombinant Proteins 

Recombinant Mouse IL-21 R Fc Chimera 
Protein, CF 

R&D Cat No. 596-MR-100 

Phorbol Myristate Acetate (PMA) Sigma Cat No. P1585 

Ionomycin Sigma Cat No. I0634 

Brefeldin A Sigma Cat No. B7651 

Protein Transport Inhibitor (Containing 
Brefeldin A) 

BD Bioscience Cat No. 555029 

Ricca Chemical Giemsa Stain Fisher Scientific Cat No. 3250-4 

Mefloquine hydrochloride Sigma Cat No. M2319 

Chloroquine diphosphate salt Sigma Cat No. C6628 

CellTrace™ Violet Cell Proliferation Kit Invitrogen™ Cat No. C34571 

Experimental Models: Organisms/Strains 

C57BL/6J mice The Jackson 
Laboratory 

Cat No. 000664 

B6.129S1-Stat3tm1Xyfu/J (STAT3fl/fl) The Jackson 
Laboratory 

Cat No. 016923 

B6.129-Prdm1tm1Clme/J (Blimp-1fl/fl) The Jackson 
Laboratory 

Cat No. 008100 

B6.129S6-Tbx21tm1Glm/J The Jackson 
Laboratory 

Cat No. 004648 

B6.Cg-Tg (CD4-Cre)1Cwi N9 Taconics Cat No. 4196 
Bcl6fl/fl x CD4-Cre (Hollister et al., 

2013) 
N/A 

Parasite Strains 

Plasmodium chabaudi chabaudi (AS) Jean Langhorne, 
Crick Institute 

N/A 

Plasmodium yoelii (Clone 17XNL) ATCC-BEI  

Software and Algorithms 

FlowJo™ (version 9.4.11) FlowJo.LLC https://www.flowjo.com/ 
FlowJo™ (version 10.5.3) FlowJo.LLC https://www.flowjo.com/ 
Prism GraphPad https://www.graphpad.com/scientific-

software/prism/ 
SPICE (version 5.35) NIAID-NIH https://niaid.github.io/spice/ 

 

 

 



ELISA 

Serum samples were obtained on the indicated days by bleeding mice from the tail vein under a 

heat lamp. Nunc-Immuno Plates (MaxiSorp) were coated with whole freeze-thaw parasite lysate 

(transfer from N2(l) to 37C, 4-5 times (Guthmiller et al., 2017). Plates were blocked with 2.5% 

BSA + 5%FCS in PBS. Bound antibody was detected using Alkaline Phosphatase (AP)-conjugated 

goat anti-mouse IgM (Sigma), IgG and IgG2b (Southern Biotech, Brimingham, AL) which was 

revealed with a 4-Nitrophenyl phosphate disodium salt hexahydrate (PNPP, Sigma) solution (1 

mg/ml). Plates were analyzed with a FLUOstar Omega plate reader (BMG Labtech, Cary, NC). 

Statistics 

Statistical analysis was performed in Prism (GraphPad, La Jolla, CA) using Student’s t-test.  p < 

0.05 was accepted as a statistically significant difference, * p ≤0.05, **p ≤0.01, ***p ≤0.001, 

****p ≤0.001. Boolean gating analysis and Pie graphs were performed in SPICE software version 

5.35 (http://exon.niaid.nih.gov/spice/). 
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