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Muscle synergy theory is a new appealing approach for different research fields. This study is aimed at evaluating the robustness of
EMG reconstruction via muscle synergies and the repeatability of muscle synergy parameters as potential neurophysiological
indices. Eight healthy subjects performed walking, stepping, running, and ascending and descending stairs’ trials for five
repetitions in three sessions. Twelve muscles of the dominant leg were analyzed. The “nonnegative matrix factorization” and
“variability account for” were used to extract muscle synergies and to assess EMG goodness reconstruction, respectively.
Intraclass correlation was used to quantify methodology reliability. Cosine similarity and coefficient of determination assessed
the repeatability of the muscle synergy vectors and the temporal activity patterns, respectively. A 4-synergy model was selected
for EMG signal factorization. Intraclass correlation was excellent for the overall reconstruction, while it ranged from fair to
excellent for single muscles. The EMG reconstruction was found repeatable across sessions and subjects. Considering the
selection of neurophysiological indices, the number of synergies was not repeatable neither within nor between subjects.
Conversely, the cosine similarity and coefficient of determination values allow considering the muscle synergy vectors and the
temporal activity patterns as potential neurophysiological indices due to their similarity both within and between subjects. More
specifically, some synergies in the 4-synergy model reveal themselves as more repeatable than others, suggesting focusing on
them when seeking at the neurophysiological index identification.

1. Introduction

Several locomotive activities, such as walking, running,
and ascending and descending stairs, are commonly and
continuously performed in daily life [1]. Though perceived
as simple, these activities involve the coordination of a
high number of muscles of lower limbs [2]. It is generally
understood that the central nervous system (CNS) can
reduce the dimensionality of neural activation outputs to
control muscles and achieve a predefined movement [3,
4]. The reduction is obtained through the simultaneous
coactivation of muscle groups, addressed as muscle syner-
gies [5, 6]. Parameter estimation of muscle synergy models
is usually obtained from the factorization of the electro-
myographic (EMG) signals by using decomposition
algorithms [7]. The nonnegative matrix factorization [8]

is the most widespread, even though other methods, such
as principal or independent component analysis and
inverse Gaussian, can lead to similar results [7, 9].

The factorization of the EMG signals by means of the
muscle synergy model has been used in several tasks, such
as locomotion [9, 10], balance [11, 12], reaching [13, 14],
or sport gestures, such as cycling, bench press, and rowing
[15–17]. Nowadays, the goal of using EMG or muscle
synergy parameters as neurophysiological indices, in
clinical routine [18–20], sport [17, 21], and robot control
[22–25], is gaining more and more appeal [26]. As regards
clinical routine, Rodriguez et al. [19] demonstrated that
patients with Parkinson’s disease adopted a simplified
muscle control, i.e., a lower number of muscle synergies,
during walking with respect to healthy subjects, while
Shuman et al. [18] provided a comparison between
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children with cerebral palsy (CP) and age-matched controls,
assessing a lower number of muscle synergies in the
experimental group. A lower number of muscle synergies
was also observed in poststroke patients [27, 28].

In sport field, Frère and Hug [21] showed that 3 synergies
are sufficient to explain the EMG signals during backward
giant swing on the high bar performed by expert gymnasts.
Kristiansen et al. [17] found that the CNS has the capability
to activate only twomuscle synergies during bench press exer-
cises in bodybuilders. As an example of cross-contamination
in the robotic field, Artemiadis and Kyriakopoulos [22] and
Lunardini et al. [23] used muscle synergies to control a robot
for the rehabilitation of the upper limbs, in adults and chil-
dren with CP, respectively.

To verify that muscle synergies are not a mere output of
a mathematical approach but a useful tool to understand the
organization of CNS in the achievement of a motor task, sev-
eral studies investigated the methodological issues related to
EMG factorization. In particular, Steele et al. [29] evaluated
the effects of both the number and the specific examined
muscles, finding that the two variables affect the structure
of muscle synergies. Tresch and colleagues [7], instead, dem-
onstrated that different factorization algorithms allow reach-
ing equal results, as also confirmed by Santuz et al. [9]. The
influence of filter parameters required for the EMG prepro-
cessing on the muscle synergies was demonstrated consider-
ing both the repeatability [9] and the accuracy [30] of the
selected number of muscle synergies. Finally, Oliveira et al.
[31] focused their study on the effects of averaging or
concatenating repetitions of the same task, assessing that
the average allows obtaining a higher reconstruction quality
even though it neglects the contribution of the step-to-step
variability. In addition, to evaluate the viability of using
muscle synergy parameters as neurophysiological indices,
the robustness in the muscle synergy extraction needs to be
deeply investigated. An excellent within-subject repeatabil-
ity, both within and between days, has been already demon-
strated during walking trials of children with cerebral palsy
[18] and during walking and running trials of healthy sub-
jects [9]. As regards the between-subject repeatability, it
has been showed to be good in bench press exercises [17]
and pedaling trials [15]. All the abovementioned papers have
some methodological limitations since they did not quantify
(i) the within- and between-subject repeatability in tasks dif-
ferent to the gait involving daily life activities, such as step-
ping in place and ascending and descending stairs, that
could be implemented as useful scenarios in the control of
lower limb robotic devices and (ii) the within- and
between-subject robustness of the EMG reconstruction by
means of a specific muscle synergy model considering both
the overall reconstruction and each muscle individually. To
the best of authors’ knowledge, all these methodological
implications have not been evaluated. A thorough investiga-
tion is mandatory before validating the neurophysiological
parameters based on the muscle synergy extraction and to
give insightful information to researchers involved in the
control design of lower limb robotic devices.

The aim of the present study is to investigate the reliabil-
ity of muscle synergy theory, following two crucial questions

still untapped. Firstly, we investigated the robustness of the
EMG reconstruction in within- and between-subject analy-
sis, focusing on both the overall reconstruction and the
reconstruction of each single muscle. Robustness of EMG
reconstruction, in fact, is a mandatory requirement when
using EMG factorization in clinical, robotic, and sport appli-
cations [9, 26]. Secondly, we assessed the within-subject
repeatability, i.e., both within and between sessions, and
the between-subject repeatability of the parameters provided
by the muscle synergy model in several daily life activities, to
evaluate the viability of muscle synergy parameters as robust
neurophysiological indices.

2. Materials and Methods

2.1. Experimental Protocol. Eight healthy volunteers (three
males and five females, age: 27.8± 3.8 years, height: 1.72
± 0.12m, mass: 61.5± 14.9 kg) were enrolled in the experi-
mental protocol. Subjects have never had known neuromus-
cular and vestibular pathologies. A written informed consent
was obtained from the participants according to the ethical
standards outlined in the 1964 Declaration of Helsinki.

The protocol consisted of five tasks: walking (W), step-
ping in place (S), running (R), ascending stairs (A), and
descending stairs (D). W and R were performed through
a pathway of 15m at the self-selected speed, and the
acquisition was stopped at the end of the pathway after
one passage. S task lasted for 15 s, and each subject was
free to choose the preferred cadence. In A and D tasks,
subjects were asked to perform only one ascent (A) or
descent (D) per repetition using a staircase with 20 steps.
All tasks were repeated five times in barefoot condition.
The entire protocol was repeated for three different ses-
sions, separated each other by at least 24 h. Consequently,
each subject performed a total of 75 trials that are five
repetitions of five tasks for three sessions.

The activity of 12 muscles, shown in Figure 1, was
recorded from the dominant leg, identified as the one used
to kick a ball [32]. All the subjects were right dominant.
The placement of passive surface Ag/AgCl circular elec-
trodes (BlueSensor M, Ambu, Ballerup, Denmark) in differ-
ential configuration was performed by a skilled operator, the
same for all subjects, according to the SENIAM guidelines
[33]. Following these guidelines, the maximum electrode size
in the direction of the muscle fibers is equal to 9mm. In
addition, these guidelines ensure placing electrodes far
enough from the innervation zone, which can influence the
recorded signals. Such recommendations were chosen as
SENIAM is a recognized association in EMG research [34].
The repetitions within the same session were performed
without removing the electrodes, while electrode replace-
ment was performed between sessions. No measures were
conducted to ensure the same positioning neither a marker
on the subject was drawn among different sessions. Thus,
the potential effects of intraoperator electrode replacement
have been taken into account as a variable for muscle syn-
ergy parameter repeatability.

The foot of the dominant side was equipped with two
footswitches (Footswitch FSR sensors, Wave, Cometa, Italy)
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underneath the toe and the heel. EMG and footswitch sig-
nals were synchronously acquired at 2000Hz via a wireless
system for electromyography (Wave, Cometa, Milan, Italy).

2.2. Data Processing. The footswitch status (pressed/not
pressed) was used to identify the strides in W and R tasks
and the single event in S, A, and D tasks, both defined as
the interval between two consecutive heel strikes of the same
foot. In order to avoid the influence of acceleration and
deceleration phases and consider the same number of cycles
for all tasks, only data corresponding to eight strides in W
and R or steps in S, A, and D were selected from the acquired
signals. In particular, for W and R tasks, the eight strides are
the ones in the center of the acquired signal. In addition, the
footswitch outputs were used to compute the cadence,
expressed in steps/min, related to each subject in each repe-
tition and session, independently for each task. Then, mean
and SD were computed for each task across subjects and
sessions. The ratio between SD and mean, expressed as per-
centage, allows calculating the coefficient of variation (CoV),
quantifying the variability of the cadence in each task.

Following the methodological guidelines proposed by
Santuz et al. [9], the mean value was removed from EMG
signals and a high-pass filter at 50Hz was applied. EMG sig-
nals were rectified and low-pass filtered at 20Hz, to extract
the envelope. All filters were 4th-order, zero-phase, Butter-
worth type. Negative values in the resulting signal due to a
low-pass filter overshoot were artificially set to zero. The
envelope signal was then divided into the eight previously
identified strides based on footswitch data, interpolated to
1000 frames, and averaged across the strides, to obtain a

higher reconstruction quality [31]. The amplitude of the
EMG vector was normalized with respect to the maximum
activation, defined as the maximum value found in a set
including all tasks and all sessions. Thus, a single value for
each muscle was used for the normalization process as
suggested by de Marchis et al. [35]. An EMG matrix
(m × n) was obtained for each task, each repetition, and
each session by grouping the n-sample signals of the m
considered muscles by row. In our case, m was equal to
12 and n was equal to 1000.

The extraction of muscle synergy parameters from EMG
matrix was performed via the nonnegative matrix factoriza-
tion (NNMF), which allows decomposing the EMG signals
into muscle synergy vectors (Wi) and temporal activity pat-
terns (Ci), according to a linear combination, as in the fol-
lowing equation [8]:

EMG = 〠
s

i=1
WiCi + residual, s ≤m, 1

where s represents the number of muscle synergies in the
tested model and the residual was considered as the
difference between the acquired EMG matrix and the
reconstructed one. Briefly, each Wi is a time-invariant
vector, composed by positive weights, indicating the
relative contribution of each muscle to the i-th synergy.
Each Ci is a time-variant waveform vector hypothesized as
the neural command for the activation of the i-th synergy.

Equation (1) can provide multiple solutions for Wi and
Ci, once the number s of synergies in the model is selected.

Figure 1: Muscles recorded during the experimental protocol from the dominant leg of each subject: example of electrode placement. 1:
tensor fasciae latae (TFL); 2: rectus femoris (REF); 3: vastus lateralis (VLAT); 4: vastus medialis (VMED); 5: peroneus longus (PERO); 6:
tibialis anterior (TA); 7: soleus (SOL); 8: gluteus maximus (GLU); 9: semitendinosus (SEMT); 10: biceps femoris (BIF); 11: gastrocnemius
lateralis (LGAS); 12: gastrocnemius medialis (MGAS).
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We solved the equation 12 times, increasing s from 1 to m,
using the following parameters: 50 replicates and 1000 max-
imum iterations for minimizing squared residual between
acquired and reconstructed signals [18]. We performed the
NNMF in MATLAB (2012b, MathWorks, Inc., Natick, Mas-
sachusetts, United States).

2.3. Data Analysis. The variability account for (VAF) was
chosen to assess the similarity between the acquired and
reconstructed EMG signals [36], computed for all tested
numbers of synergies. VAF was computed as uncentered
Pearson’s coefficient, expressed as percentage. In particular,
Pearson’s correlation coefficient between the acquired and
the reconstructed EMG matrices was used to compute the
global VAF (VAFglo), while the local VAF (VAFloc) was
calculated by correlating the acquired and the reconstructed
EMG signal of each muscle.

For each subject, task, repetition, and session, we
selected the model with the minimum number of synergies
(NoS), which simultaneously met two selection criteria: V
AFglo ≥ 90% and VAFloc ≥ 75% [15, 36]. Range of NoS for
each subject across the three sessions was calculated, and
median value and statistic frequency of each NoS were
computed across all the repetitions and subjects, individu-
ally for each task. Thus, the potentiality of the NoS to be
considered as a neurophysiological index is assessed focus-
ing on its repeatability both within and between subjects
in all examined tasks.

Focusing only on themost commonmodel selected by the
subjects considering all the examined tasks, we evaluated the
repeatability of the muscle synergies considering three analy-
ses: (i) within-subject-within-session (WW), to quantify the
robustness of the muscle synergy extraction with respect to
the variability induced by different muscle activations of the
same subject to achieve the same motor task; (ii) within-sub-
ject-between-sessions (WB), to quantify the robustness with
respect to the variability of the muscle activation of the same
subject due to electrode replacement; and (iii) between-sub-
jects (B), for quantifying the robustness of the algorithm with
respect to different muscle activations by different subjects to
achieve the same motor task.

As regards the WW analysis, mean and SD of the VAFglo
and VAFloc were computed individually for each subject and
each session. Then, the minimum and maximum of the mean
value and their standard deviations (SDs) across subjects and
sessions were selected for each task. SDs quantify the robust-
ness of reconstruction goodness of EMG data gathered from
the same subject in the same session. Moreover, to assess
the robustness of the W, we computed the cosine similarity
(cossim), which is the ratio between the scalar product and
the product of the Euclidian norms of two vectors, as in the
following equation [9]:

cossim Wx,Wy =
Wx ⋅Wy

Wx Wy

, 2

where Wx and Wy represent the pair of tested W in turn.
This index ranges from 0 to 1, corresponding to no and

perfect similarity, respectively. The threshold value for
cossim to assume similarity was set to 0.60 [3]. While to
assess the similarity of the C, we computed the coefficient
of determination (R2) as follows [9]:

R2 = 1 −
∑n

i=1 Cxi
− Cyi

2

∑n
i=1 Cxi

−Cx
2 , 3

where Cx and Cy represent the pair of tested C in turn. R2

ranged from −∞ to 1, where 1 indicates the perfect similarity
and 0.70 is the threshold to assess the similarity [9].

Considering that the order of synergies in the model
obtained via NNMF is not consistent among different
runs of the algorithm [18], we performed a K-means
cluster analysis to select and to order similar synergies
between repetitions, sessions, and subjects for each task
[37]. In particular, the most correlated synergy vectors
that fell within one cluster according to the K-mean
outputs were considered related to the same i-th synergy
in the selected model between repetitions, sessions, and
subjects for each task.

For WW, WW cossim and WWR2 values were obtained,
respectively, by pairwise comparisons of the W and of the
C related to the five repetitions in the same session. Thus,
we performed 10 comparisons for each subject, each session,
each task, and each synergy in the selected model. Mean and
SD of WW cossim and of WWR2 across the comparisons were
computed; then, minimum and maximum and related SDs
across subjects and sessions were selected. Each SD was used
to quantify the robustness of both the muscle synergy
vectors W and the temporal activity patterns C in the same
session performed by the same subject. Moreover, mean
and SD of the overall model were computed by
independently averaging the WW cossim and WWR2 related
to all muscle synergies.

As concerns WB analysis, mean and SD of the VAFglo
and VAFloc were computed individually for each subject,
considering the values obtained during all the sessions
together. Then, the minimum and maximum of the mean
value and the related SDs across subjects were evaluated
for each task. SDs quantify the robustness of the recon-
struction goodness of the EMG data gathered from the
same subject in different sessions. As regards the repeat-
ability of the muscle synergy vectors and the temporal
activity parameters, we firstly averaged the W and the C
related to the five repetitions of each session, obtaining
three W and the C. Then, WB cossim and WBR2 values were
computed by pairwise comparisons of the three W and of
the three C. Thus, we performed three comparisons for
each subject, each task, and each synergy in the selected
model. Then, mean and SD of WB cossim and of WBR2

across the comparisons were computed, and minimum
and maximum and related SDs across subjects were evalu-
ated. These parameters quantify the robustness of the
muscle synergy vectors W and temporal activity patterns
C in different sessions performed by the same subject.
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Moreover, mean and SD of the overall model were com-
puted by independently averaging the WB cossim and the
WBR2 related to all muscle synergies.

Finally, for the B analysis, mean and SD of the V
AFglo and VAFloc were computed considering the values
obtained during all the sessions and all subjects together.
SDs were used to quantify the robustness of the recon-
struction goodness of the EMG data gathered from
different subjects in different sessions. In addition, to
compute B cossim and BR2 values, we firstly averaged
the W and the C of the three sessions individually for
each subject and then, we performed pairwise compari-
sons among subjects using the obtained mean W and
mean C. Thus, we performed 28 comparisons for each
task and each synergy in the selected model. Then,
mean and SD of B cossim and of BR2 across the compar-
isons were computed to quantify the robustness of the
muscle synergy vectors W and the temporal activity pat-
tern C in different sessions performed by different sub-
jects. Moreover, mean and SD of the overall model
were computed by independently averaging the B cossim
and the BR2 related to all muscle synergies.

Considering the results of the WW cossim, WB cossim, B

cossim, WWR2, WBR2, and BR2, we assessed the potentiality
of both the W and C, related to the overall composition
and to the i-th synergy in the selected muscle synergy
model, to be considered as neurophysiological indices.

2.4. Statistical Analysis. To assess the reliability of the
method, ICC was computed both on the VAFglo and
VAFloc for each task, considering all sessions together.
ICC values in the range 0.00–0.39 were classified as
poor, 0.40–0.59 as fair, 0.60–0.74 as good, and 0.75–
1.00 as excellent [38].

All data, with the exception of the NoS, were tested for
normality with the Shapiro-Wilk test, and they resulted
normally distributed. For all the following test, a signifi-
cance level equal to 0.05 was set.

A Kruskal-Wallis nonparametric test was performed to
evaluate statistical differences in the NoS, considering the
task as the independent variable. If statistical differences
were found, Dunn’s test was conducted to analyze where
the differences were present.

One-way repeated measurement ANOVA tests were
conducted for mean values of the BVAFloc, considering
muscles as the independent variable. The Greenhouse-
Geisser correction was adopted if the assumption of
sphericity was violated. Bonferroni’s test for multiple
comparisons was performed when statistical differences
were found.

The influence of the i-th synergy on B cossim and BR2

in the selected synergy model was tested through one-
way ANOVAs, independently for each task. When the
statistical differences were found, Bonferroni’s test for
multiple comparisons was performed.

Statistical analysis was conducted using SPSS software
package (IBM-SPSS Inc., Armonk, NY, USA).

3. Results

The following cadence values were obtained by processing
the footswitch outputs: (i) 120± 10 steps/min with a vari-
ability equal to 8.3% for W, (ii) 110± 8 steps/min with a
variability equal to 7.2% for S, (iii) 155± 15 steps/min with
a variability equal to 9.7% for R, (iv) 100± 6 steps/min
with a variability equal to 6.0% for A, and (v) 102± 9
steps/min with a variability equal to 8.8% for D.

As regards NoS, the ranges for each subject related to all
tasks were reported in Table 1. Taking into account the three
sessions, no subject recruited the same muscle synergy model
during all examined repetitions related to each task. Consid-
ering all subjects, NoS ranged from 3 to 6 and the median
value is always equal to 4 for all the tested daily life activities.
However, some statistical differences were found among the
activities: W vs. S, W vs. R, S vs. R, S vs. A, R vs. A, and R
vs. D (always p < 0 01).

In Figure 2, the frequencies of the selected synergy
model for all tasks are shown. The most frequent model
was the 4-synergy one for all tasks, with the exception of
running (3 synergies). Moreover, it was also found that
the 6-synergy model was the less likely selected for all
tasks since it was the one associated with the minimum
value of frequency occurrence, with the exception of step-
ping in place (3 synergies). Means and SDs of the VAFglo
as function of the number of synergies for each task are
reported in Figure 3. To compare the results across the
daily life tasks, we focused only on the 4-synergy model,
as it resulted the most selected model considering all the
subjects and all the tasks together.

Focusing on reliability analysis, ICC values of the VAFglo
and VAFloc among sessions are reported in Table 2. The
methodology showed an excellent reliability for the global
reconstruction in all tasks. Considering each muscle, reliabil-
ity ranged from fair to excellent in walking and from good to
excellent in the other tasks.

Taking into account the within-subject-within-session
(WW) analysis, WWVAFglo and WWVAFloc values were
always above 90.4% and 71.6%, respectively (Table 3). The
highest values of SD were 1.2% and 9.7% for the global
and the local reconstructions, respectively. As reported in
Table 4, WW cossim ranged from 0.71 to 0.99 considering all
synergies and all activities, while a SD up to 0.24 was found.
The highest overall mean value, averaging all synergies in the
model, was related to A, i.e., 0.94, while the lowest one was
related to D, i.e., 0.89. Taking into account the similarity
related to the temporal activity patterns, WWR2 ranged from
0.80 to 0.99 considering all synergies and all tasks, while the
maximum value of SD was 0.10 (Table 5). The highest over-
all mean value was related to the R (0.94) and the lowest one
to the D (0.91).

As concern the within-subject-between-session (WB)
analysis, a paradigmatic example of the differences of W
and C during the three sessions related to one subject in
one task is shown in Figures 4 and 5. Table 6 reports that
the lowest WBVAFglo and WBVAFloc values were 91.9% and
74.2%, respectively, while the highest SD values were 1.9%

5Applied Bionics and Biomechanics



and 9.8%. By analyzing Table 7, WB cossim ranged from
0.84 to 0.99 considering all synergies and all activities
and a SD up to 0.08 was found. The results obtained by
averaging the outcomes of all muscle synergies in the model

showed the highest overall mean value of the WB cossim for
the R and A (0.95) and the lowest one for the W (0.92).
Focusing on Table 8, WBR2 ranged from 0.85 to 0.99 with a
maximum SD value equal to 0.08. Considering the overall
composition, R was associated to the highest value (0.91)
and the other tasks to the lowest one (0.90).

Finally, considering the between-subject analysis (B),
the mean values of both the muscle synergy vectors W
and the temporal activity patterns C considering all sub-
jects and all sessions are shown in Figures 6 and 7 for
each task. The histograms and waveforms are useful to
clarify the inner composition of the synergies in the
model, necessary to understand the following results in
terms of repeatability related to each specific synergy.
Table 9 reports the minimum value of 93.9% and 84.3%
for the BVAFglo and BVAFloc and a maximum SD value
of 1.7% and 7.6%, respectively. As regards the statistical
outcomes, the mean value of BVAFloc related to the GLU
was statistically different from the same parameter com-
puted for LGAS (p = 0 02) during W task. Statistical differ-
ences were found also in S task, between BVAFloc related
to TA and MGAS (p = 0 05). As regards A task, statistical
differences were found between the BVAFloc related to the
TFL and the one computed for REF (p = 0 02), VLAT
(p = 0 01), VMED (p = 0 01), PERO (p = 0 01), TA
(p = 0 01), SOL (p = 0 02), and MGAS (p = 0 01) and other
differences were observed between BVAFloc related to the
GLU and the ones computed for REF (p = 0 03), VLAT
(p = 0 01), VMED (p = 0 01), PERO (p = 0 04), SOL
(p = 0 04), and MGAS (p = 0 02). No statistical differences
were found in R (p = 0 17) and D (p = 0 18). The B cossim
values were in the range of 0.79–0.90, with a SD up to
0.10 (Table 10). Differences among the specific synergies
in the model were found in W (always p < 0 01), R (always
p = 0 01), and D (always p < 0 01), as reported in Table 10.
By averaging the B cossim of all muscle synergies in the
model, the highest overall mean value was associated to
the A (0.86) and the lowest to the S (0.82). Finally, the
BR2 felt in the range 0.84–0.92, with a SD up to 0.08. Dif-
ferences among the specific synergies in the model were
found in all tasks (always p < 0 01), as reported in
Table 11. By taking into account the overall composition,
all tasks reached an BR2 equal to 0.87, with the exception
of D (0.84).

4. Discussion

The present study represents an experimental insight on
the reliability of synergy-based EMG signal factorization.
Specifically, we evaluated the within- and between-
subject variability of the reconstruction of the EMG sig-
nals associated with the technique. Further, we aimed to
assess the repeatability of the muscle synergy parameters,
which are number of muscle synergies, goodness of
reconstruction, muscle synergy vectors, and temporal
activity patterns, both within and between sessions dur-
ing a set of daily life activities.

Table 1: Range of number of synergies for each subject across the
sessions related to each task.

Range of NoS
Sbj W S R A D

#1 4–6 4–5 4–6 4–5 3–6

#2 3–6 4–6 3–5 4–6 3–6

#3 3–5 3–6 3–4 3–4 3–6

#4 3–6 3–6 3–4 3–5 3–6

#5 4–5 3–6 4–5 3–6 4–6

#6 3–5 3–6 3–4 3–5 3–5

#7 3–6 4–6 3–5 3–5 3–6

#8 3–4 3–6 3–5 4–6 3–6
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Figure 2: Frequency of occurrence of the synergy model for each
daily life activities. ∗ stands for statistical differences.
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Figure 3: Mean and standard deviation of the VAFglo across the
subjects as function of the number of muscle synergies for each task.
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Table 2: Interclass correlation coefficient (ICC) evaluated among sessions of variability account for values in the 4-synergy model for all tasks
and for global EMG matrix and each muscle. Cells indicate the range of ICC values.

Interclass correlation coefficient (ICC)

Task
Muscles

Global TFL REF VLAT VMED PERO TA SOL GLU SEMT BIF LGAS MGAS

W 0.79 0.76 0.84 0.83 0.81 0.53 0.90 0.89 0.81 0.54 0.56 0.60 0.92

S 0.93 0.90 0.94 0.91 0.87 0.68 0.80 0.80 0.89 0.85 0.97 0.74 0.80

R 0.94 0.87 0.70 0.93 0.80 0.97 0.95 0.88 0.78 0.88 0.70 0.95 0.93

A 0.94 0.83 0.77 0.61 0.78 0.75 0.85 0.73 0.85 0.96 0.92 0.82 0.88

D 0.93 0.89 0.91 0.86 0.66 0.97 0.96 0.90 0.92 0.64 0.87 0.89 0.78

Poor; fair; good; excellent.

Table 3: Maximum and minimum and related standard deviation (SD) of the WWVAFglo and WWVAFloc related to each task.

Task
WWVAFglo

(%)

WWVAFloc (%)
TFL REF VLAT VMED PERO TA SOL GLU SEMT BIF LGAS MGAS

W
Min 92.1 (0.8)

79.7
(5.0)

81.8
(8.8)

83.7
(9.3)

77.9
(6.9)

79.5
(3.7)

71.8
(1.6)

87.5
(3.2)

79.2
(8.1)

86.6
(7.7)

78.6
(5.5)

91.3
(3.1)

86.5
(4.1)

Max 96.3 (0.3)
96.7
(3.0)

98.2
(0.6)

99.3
(0.3)

98.6
(0.7)

98.5
(0.8)

98.4
(0.8)

98.9
(0.3)

97.4
(1.3)

99.3
(0.2)

99.2
(0.5)

99.3
(0.2)

98.9
(0.5)

S
Min 90.4 (1.0)

79.5
(8.4)

76.4
(9.5)

78.3
(7.0)

77.6
(5.4)

78.4
(8.2)

71.6
(4.9)

90.1
(3.1)

74.8
(7.4)

83.8
(9.6)

72.7
(2.6)

83.0
(3.8)

88.1
(9.6)

Max 95.8 (0.8)
97.3
(0.7)

98.4
(0.7)

98.5
(0.7)

98.9
(0.5)

97.5
(0.4)

95.6
(2.2)

97.6
(1.1)

97.2
(1.3)

97.8
(1.5)

98.5
(0.4)

99.0
(0.5)

97.7
(1.6)

R
Min 94.1 (0.7)

88.2
(7.0)

88.3
(5.3)

90.2
(3.1)

88.9
(9.3)

89.7
(3.1)

73.2
(2.7)

94.2
(1.8)

78.7
(7.0)

90.8
(2.5)

91.0
(4.8)

80.6
(5.2)

93.2
(2.4)

Max 98.4 (0.5)
98.6
(0.7)

98.8
(0.4)

99.4
(0.2)

99.5
(0.2)

99.2
(0.2)

99.6
(0.3)

99.4
(0.3)

98.8
(0.5)

99.5
(0.1)

99.0
(0.4)

99.6
(0.2)

99.6
(0.3)

A
Min 91.8 (0.9)

73.4
(1.1)

87.0
(9.3)

96.7
(0.6)

96.2
(1.0)

92.9
(1.5)

90.4
(2.0)

91.1
(7.1)

75.8
(8.6)

77.8
(2.2)

77.0
(8.7)

89.6
(5.5)

95.0
(1.5)

Max 97.1 (0.4)
97.8
(0.7)

98.9
(0.6)

98.9
(0.4)

99.0
(0.3)

99.0
(0.4)

98.5
(1.3)

98.6
(0.5)

95.8
(1.7)

99.6
(0.3)

99.5
(0.2)

99.2
(0.3)

98.8
(0.2)

D
Min 91.7 (1.2)

76.6
(6.0)

89.4
(5.9)

93.0
(2.2)

94.6
(3.6)

75.1
(3.1)

77.6
(7.9)

74.2
(0.3)

73.4
(3.4)

90.0
(3.8)

77.6
(9.7)

78.5
(6.2)

82.9
(9.7)

Max 96.4 (0.4)
96.7
(1.3)

98.0
(0.7)

98.7
(0.4)

98.4
(1.0)

98.2
(1.2)

99.1
(0.3)

98.2
(0.7)

98.5
(0.7)

98.0
(0.9)

97.2
(0.5)

96.9
(1.3)

96.9
(1.7)

Table 4: Maximum and minimum and related standard deviation (SD) of WW cossim related to each task. The overall means evaluated
considering all the synergies together are reported in italic.

Task
Muscle synergies

I II III IV Overall

W
Min 0.84 (0.10) 0.84 (0.11) 0.84 (0.10) 0.82 (0.24)

0.92 (0.08)
Max 0.98 (0.01) 0.99 (0.00) 0.99 (0.01) 0.99 (0.00)

S
Min 0.83 (0.12) 0.80 (0.08) 0.82 (0.15) 0.77 (0.11)

0.90 (0.09)
Max 0.98 (0.01) 0.98 (0.01) 0.98 (0.01) 0.98 (0.01)

Min 0.81 (0.13) 0.73 (0.14) 0.81 (0.17) 0.82 (0.10)
0.92 (0.09)R

Max 0.98 (0.01) 0.99 (0.01) 0.97 (0.01) 0.99 (0.00)

Min 0.78 (0.16) 0.87 (0.07) 0.87 (0.10) 0.79 (0.15)
0.94 (0.07)A

Max 0.99 (0.00) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

Min 0.71 (0.13) 0.73 (0.09) 0.80 (0.10) 0.73 (0.12)
0.89 (0.09)D

Max 0.98 (0.01) 0.98 (0.01) 0.97 (0.02) 0.98 (0.01)
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4.1. Is the EMG Reconstruction Reliable and Repeatable in
Within-Subject and Between-Subject Analysis? Results
related to the reliability of the muscle synergy extraction
permit to assume that factorization of EMG data via mus-
cle synergies expresses an excellent reliability, considering
the global reconstruction of muscle activities during the
examined tasks. On the contrary, fair reliabilities related
to local reconstruction of some muscles confirm the find-
ings reported by Kristiansen et al. [17], recommending a

particular attention to the variability of the method, when
handling data from some specific muscles such as biceps
brachii, triceps brachii, and the rectus femoris, which is
also found to be the one with the lowest value of ICC in
this study. These results could be ascribed to the high
between-subject variability of the VAF, as already shown
by Kristiansen et al. [17].

The walking task showed a lower reliability than the
other motor tasks, suggesting that the CNS is able to

Table 5: Maximum andminimum and related standard deviation (SD) ofWWR2 related to each task. The overall means evaluated considering
all the synergies together are reported in italic.

Task
Muscle synergies

I II III IV Overall

W
Min 0.90 (0.07) 0.88 (0.08) 0.80 (0.09) 0.80 (0.07)

0.93 (0.06)
Max 0.99 (0.01) 0.98 (0.01) 0.96 (0.04) 0.95 (0.04)

S
Min 0.91 (0.05) 0.82 (0.03) 0.88 (0.10) 0.87 (0.07)

0.92 (0.03)
Max 0.98 (0.02) 0.99 (0.02) 0.98 (0.01) 0.96 (0.03)

Min 0.85 (0.05) 0.90 (0.03) 0.88 (0.07) 0.86 (0.05)
0.94 (0.03)R

Max 0.99 (0.01) 0.99 (0.02) 0.98 (0.01) 0.98 (0.02)

Min 0.91 (0.06) 0.84 (0.03) 0.82 (0.04) 0.90 (0.05)
0.92 (0.03)A

Max 0.98 (0.01) 0.99 (0.00) 0.99 (0.02) 0.99 (0.02)

Min 0.88 (0.05) 0.84 (0.02) 0.85 (0.02) 0.84 (0.04)
0.91 (0.06)D

Max 0.99 (0.02) 0.99 (0.01) 0.96 (0.03) 0.96 (0.04)
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Figure 4: A paradigmatic example of the mean value of muscle synergy vectors in the 4-synergy model related to the ascending task for one
subject for each session. The mean has been obtained averaging the repetitions of the same session. For visualization purposes, muscle synergy
vectors are normalized to unity. Muscle numbers: 1: TFL; 2: REF; 3: VLAT; 4: VMED; 5: PERO; 6: TA; 7: SOL; 8: GLU; 9: SEMT; 10: BIF; 11:
LGAS; 12: MGAS.
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Figure 5: A paradigmatic example of the mean value of the temporal activity pattern in the 4-synergy model related to the running task for
one subject for each session. The mean has been obtained averaging the repetitions of the same session. For visualization purposes, temporal
activity patterns are normalized to unity.

Table 6: Minimum and maximum and relative standard deviation (SD) of the WBVAFglo and WBVAFloc related to each task.

Task
WBVAFglo

(%)

WBVAFloc (%)
TFL REF VLAT VMED PERO TA SOL GLU SEMT BIF LGAS MGAS

W
Min 93.0 (1.4)

88.0
(6.6)

85.6
(5.2)

89.2
(3.7)

83.3
(7.2)

85.1
(4.8)

78.1
(6.0)

92.4
(5.1)

85.7
(9.8)

92.9
(6.3)

87.8
(7.3)

95.3
(1.2)

90.6
(4.0)

Max 95.2 (1.6)
95.1
(3.8)

97.7
(0.8)

96.9
(3.4)

98.2
(1.0)

97.3
(1.9)

93.4
(2.9)

98.1
(1.0)

95.4
(2.5)

98.6
(1.0)

98.0
(1.3)

98.6
(0.9)

97.9
(1.8)

S
Min 91.9 (1.9)

90.8
(4.2)

82.3
(8.8)

86.1
(6.4)

85.2
(6.3)

80.7
(8.4)

78.1
(7.8)

91.0
(4.9)

83.5
(8.7)

89.0
(6.9)

74.2
(4.8)

88.8
(9.7)

90.1
(6.8)

Max 95.5 (0.7)
96.9
(1.3)

97.6
(1.2)

97.6
(1.6)

98.9
(0.4)

96.2
(2.1)

93.0
(5.1)

96.9
(1.8)

95.5
(2.2)

96.9
(1.3)

97.3
(2.0)

96.3
(1.7)

96.9
(1.9)

R
Min 95.1 (1.1)

90.7
(3.9)

91.8
(4.9)

93.9
(3.7)

94.3
(3.7)

91.5
(3.9)

78.7
(6.1)

95.7
(2.1)

87.6
(8.3)

92.6
(4.1)

94.0
(3.8)

88.7
(9.0)

95.0
(3.1)

Max 97.8 (0.7)
97.5
(1.4)

98.1
(0.6)

99.0
(0.8)

99.0
(0.5)

98.8
(0.7)

99.5
(0.6)

99.2
(0.4)

98.3
(1.1)

98.0
(1.7)

97.3
(1.3)

99.4
(0.3)

99.2
(1.1)

A
Min 93.5 (1.8)

80.7
(9.6)

92.7
(7.3)

97.8
(1.2)

97.3
(1.2)

95.0
(1.9)

92.8
(5.0)

94.9
(4.9)

81.6
(7.5)

81.3
(7.6)

84.0
(8.5)

92.4
(3.0)

96.6
(1.6)

Max 96.4 (0.5)
95.6
(2.2)

98.1
(0.8)

98.8
(0.7)

98.6
(0.7)

97.9
(1.6)

97.9
(2.0)

98.1
(0.8)

92.9
(6.2)

99.0
(0.8)

99.2
(0.5)

98.8
(0.6)

98.7
(0.5)

D
Min 92.5 (1.0)

81.3
(6.2)

89.7
(6.0)

95.1
(2.4)

96.2
(2.4)

77.8
(5.6)

81.3
(8.6)

82.1
(9.0)

80.3
(7.4)

92.7
(4.3)

83.4
(9.3)

82.6
(7.9)

88.2
(8.6)

Max 96.1 (0.6)
95.6
(2.2)

97.2
(0.9)

98.0
(0.9)

97.6
(1.0)

96.9
(1.8)

98.4
(0.7)

96.1
(2.0)

96.8
(2.5)

96.4
(2.0)

96.4
(2.6)

96.5
(1.2)

96.1
(2.1)
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Table 7: Maximum and minimum and relative standard deviation (SD) of the WB cossim related to each task. The overall means evaluated
considering all the synergies together are reported in italic.

Task
Muscle synergies

I II III IV Overall

W
Min 0.90 (0.00) 0.87 (0.05) 0.87 (0.06) 0.84 (0.01)

0.92 (0.04)
Max 0.96 (0.02) 0.97 (0.01) 0.99 (0.01) 0.96 (0.02)

S
Min 0.89 (0.03) 0.88 (0.03) 0.91 (0.01) 0.86 (0.04)

0.94 (0.04)
Max 0.98 (0.00) 0.98 (0.01) 0.98 (0.01) 0.97 (0.02)

Min 0.90 (0.08) 0.91 (0.04) 0.89 (0.03) 0.92 (0.05)
0.95 (0.04)R

Max 0.98 (0.01) 0.99 (0.01) 0.98 (0.00) 0.99 (0.00)

Min 0.93 (0.05) 0.90 (0.06) 0.91 (0.03) 0.95 (0.01)
0.95 (0.03)A

Max 0.98 (0.02) 0.98 (0.01) 0.98 (0.01) 0.99 (0.01)

Min 0.91 (0.06) 0.91 (0.02) 0.86 (0.04) 0.88 (0.02)
0.94 (0.04)D

Max 0.98 (0.01) 0.98 (0.01) 0.96 (0.02) 0.97 (0.02)

Table 8: Maximum and minimum and relative standard deviation (SD) of the WBR2 related to each task. The overall means evaluated
considering all the synergies together are reported in italic.

Task
Muscle synergies

I II III IV Overall

W
Min 0.91 (0.05) 0.90 (0.05) 0.86 (0.08) 0.86 (0.04)

0.90 (0.04)
Max 0.95 (0.04) 0.92 (0.06) 0.91 (0.07) 0.91 (0.05)

S
Min 0.91 (0.05) 0.85 (0.03) 0.90 (0.02) 0.87 (0.07)

0.90 (0.04)
Max 0.94 (0.03) 0.90 (0.01) 0.93 (0.04) 0.90 (0.05)

Min 0.86 (0.04) 0.90 (0.02) 0.90 (0.07) 0.88 (0.03)
0.91 (0.04)R

Max 0.93 (0.01) 0.98 (0.01) 0.94 (0.02) 0.93 (0.05)

Min 0.90 (0.03) 0.86 (0.05) 0.86 (0.02) 0.89 (0.04)
0.90 (0.05)A

Max 0.95 (0.03) 0.96 (0.03) 0.91 (0.02) 0.99 (0.01)

Min 0.92 (0.01) 0.87 (0.05) 0.87 (0.05) 0.85 (0.05)
0.90 (0.05)D

Max 0.98 (0.00) 0.91 (0.01) 0.94 (0.05) 0.91 (0.05)
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Figure 6: Mean value of muscle synergy vectors in the 4-synergy model related to each daily life activities. The mean has been obtained by
averaging across subjects the muscle synergy vector mean of the three sessions of each subject. For visualization purposes, muscle synergy
vectors are normalized to unity. Muscle numbers: 1: TFL; 2: REF; 3: VLAT; 4: VMED; 5: PERO; 6: TA; 7: SOL; 8: GLU; 9: SEMT; 10: BIF;
11: LGAS; 12: MGAS.
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control thesemovements bymeans of different activation pat-
terns, as also reported by De Marchis et al. [39]. Comparing
walking with running, the outcomes of lower reliability can
be justified considering that the gait cycle becomes less
variable as speed increases [40]; instead, comparing walking
with the other examined tasks, we speculate that external
constraints, such as stairs, cause a decrease of gait variability
as also reported by Donath et al. [41].

As regards the repeatability of EMG reconstruction
goodness, the high value of the VAFglo and the low SD

values proved that the selection criterion on the global
reconstruction was always met in both within- and
between-subject analyses for all tasks. Thus, the variability
induced by the different muscle activations of the same
subject, that is, the recruitment of different NoS to per-
form the same task, does not influence the goodness of
the linear combination used for the global reconstruction.
Considering these outcomes, we can affirm the robustness
of the EMG factorization by means of the 4-synergy model
if researches have to pay attention only to the global
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Figure 7: Mean value of the temporal activity pattern in the 4-synergy model related to each daily life activities. The mean has been obtained
by averaging across subjects the temporal activity pattern mean of the three sessions of each subject. For visualization purposes, temporal
activity patterns are normalized to unity.

Table 9: Mean value and standard deviation (SD) of BVAFglo and BVAFloc related to each task. Differences among muscles are reported
in superscript.

Task

BVAFglo
(%)

BVAFloc (%)

TFL (1)
REF
(2)

VLAT
(3)

VMED
(4)

PERO
(5)

TA (6)
SOL
(7)

GLU (8)
SEMT
(9)

BIF
(10)

LGAS
(11)

MGAS
(12)

W
94.1
(1.4)

91.8 (2.8)
90.4
(3.7)

94.0
(2.4)

90.2
(4.2)

92.2
(4.7)

86.5
(4.8)

96.3
(1.8)

90.811 (3.2)
95.1
(2.3)

93.9
(3.9)

97.18

(1.2)
95.3
(2.1)

S
93.9
(1.7)

92.5 (4.0)
92.9
(5.1)

92.3
(4.4)

91.0
(4.4)

91.0
(4.8)

84.312

(4.6)
94.1
(2.0)

91.3 (3.8)
94.3
(2.4)

90.4
(7.6)

93.9
(2.5)

94.36

(2.0)

R
96.6
(1.3)

93.8 (2.6)
95.9
(2.5)

97.8
(1.6)

97.2
(1.7)

97.2
(2.5)

90.8
(7.0)

98.1
(1.2)

91.9 (3.5)
96.1
(1.8)

96.1
(1.1)

97.6
(3.6)

98.0
(1.4)

A
95.4
(1.4)

86.72,3,4,5,6,7,12

(4.3)
96.01,8

(1.6)
98.11,8

(0.3)
97.91,8

(0.6)
96.81,8

(0.9)
95.01

(1.9)
97.11,8

(1.0)
88.82,3,4,5,7,12

(3.6)
91.2
(6.9)

91.8
(4.9)

95.1
(2.1)

97.71,8

(0.7)

D
94.5
(1.6)

89.1 (5.3)
95.2
(2.4)

96.8
(0.9)

96.9
(0.6)

91.4
(6.2)

92.9
(6.0)

91.1
(4.8)

88.5 (5.1)
94.7
(1.4)

92.0
(3.9)

89.4
(4.4)

92.7
(2.5)
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reconstruction of the EMG activity. By looking to the high
SD values related to the VAFloc, we can affirm that the
selection of the most common synergy model can lead to
inaccurate EMG reconstructions related to some specific
muscles; in particular, the reconstruction of the EMG
signals related to the TFL, TA, and GLU generally
appeared to be the one less accurate in all tasks when a
4-synergy model is selected. Finally, the statistical differ-
ences found in the mean values of BVAFloc in walking,
stepping, and ascending stairs suggest to carefully selecting
the muscles to include in the experimental setup, to
respect the goodness of the reconstruction required by
the specific application. The greater number of statistical
differences was found for the gluteus, both in walking
and in ascending stairs, and the tensor fasciae latae in
the ascending task. These findings can be ascribed to the
more relevant soft tissue and cross talk artifacts due to
the position of the electrodes [42].

By summarizing the findings related to the reliability
and repeatability analysis of the VAF, the extraction of
muscle synergy by means of the nonnegative matrix fac-
torization can be used in several applications, requiring
robust goodness of EMG reconstruction, such as clinical
analysis, sports performance evaluation, or robotics.
However, the use of EMG factorization via the muscle
synergies is recommended only in applications that
require a reliable overall reconstruction of the acquired
EMG signals. In fact, when the reconstruction of the
single muscle has been required, such as for controlling
a robotic device via muscle synergies [22] or monitoring
the severity of a pathology [43], the actual reliability and
variability of the specific muscle reconstruction have to
be considered.

4.2. Might Muscle Synergy Parameters Be Considered as
Neurophysiological Indices? Both the range (3–6) and the
median value (4) of NoS found in this study for all tasks pro-
vide a further confirmation of the hypothesis that the CNS
reduces the complexity of muscle activation for achieving a
motor task, also in activity never explored before, such as
ascending and descending stairs. Concerning the frequency
values of NoS, we observed that our results, related to the
walking and stepping, are in accordance with the literature
[5, 9, 36, 44]. Conversely, a lower dimensionality of the syn-
ergy model is observed in the running task with respect to
Santuz et al. [9]. In particular, they analyzed the activation
of lower and upper body muscles and found a greater num-
ber of muscle synergies in running than in walking. This dif-
ference could be ascribed to the reduced number of muscles
that we analyzed, as we neglected those in the upper body. It
is worth noticing that synced arm movements are necessary
to keep balance in running [45]. Thus, we speculate that the
absence of upper body muscles in the experimental setup
could explain how the dimensionality of our model is in
contrast with literature for running task, but in accordance
for walking and stepping, where the recruitment of upper
body muscles is less crucial for the body balance. Moreover,
statistical differences on the median value found for the NoS
in running compared with those in the other tested daily life
activities suggest that the EMG signals gathered during run-
ning can be reconstructed with a lower number of synergies.
The absence of a frequency of NoS equal to 100% in all tasks,
both within and between sessions for healthy subjects with
similar demographic characteristics, might be ascribed to
the capability of the CNS to generate different activation
profiles for reaching the same motor task, resulting in a dif-
ferent number of muscle synergies [39]. The ability of NoS

Table 10: Mean value and standard deviations (SDs) related to the BCOSsim evaluated synergy by synergy for each task. Differences between
pair of synergies in each task are reported in superscript with the relative roman number; ∗ stands for statistical differences among all
synergies. The overall means evaluated considering all the synergies together are reported in italic.

Task
Muscle synergies

I II III IV Overall

W 0.84III (0.06) 0.83III (0.07) 0.90∗ (0.05) 0.83III (0.06) 0.85 (0.07)

S 0.83 (0.07) 0.84 (0.09) 0.82 (0.09) 0.80 (0.11) 0.82 (0.08)

R 0.84IV (0.09) 0.83IV (0.10) 0.83IV (0.07) 0.90∗ (0.06) 0.85 (0.08)

A 0.82II (0.10) 0.90I (0.05) 0.85 (0.07) 0.86 (0.08) 0.86 (0.08)

D 0.79III (0.08) 0.81III (0.09) 0.90∗ (0.05) 0.81III (0.05) 0.83 (0.08)

Table 11: Mean value and standard deviations (SDs) related to the BR2 evaluated synergy by synergy for each task. Differences between pair of
synergies in each task are reported in superscript with the relative roman number; ∗ stands for statistical differences among all synergies. The
overall means evaluated considering all the synergies together are reported in italic.

Task
Muscle synergies

I II III IV Overall

W 0.89III,IV (0.05) 0.90III,IV (0.03) 0.84I,II (0.06) 0.86I,II (0.07) 0.87 (0.06)

S 0.85II (0.08) 0.91∗ (0.04) 0.85II (0.06) 0.87II (0.05) 0.87 (0.06)

R 0.84II (0.04) 0.92∗ (0.07) 0.87II (0.04) 0.86II (0.06) 0.87 (0.06)

A 0.89II (0.04) 0.84I,IV (0.06) 0.86 (0.08) 0.89II (0.05) 0.87 (0.06)

D 0.90∗ (0.04) 0.84I,IV (0.06) 0.84I,IV (0.05) 0.79∗ (0.06) 0.84 (0.06)
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to discriminate between healthy subjects and patients with
neurological diseases was previously assessed in patients with
cerebral palsy [18] and Parkinson’s disease [19]. In particu-
lar, the authors found a maximum spread of 2 NoS between
the control and patient groups in walking tasks. Our findings
showed a 2 NoS difference also in within-subject and
between-subject analyses performed on a healthy population.
Consequently, the NoS lacks in the sufficient repeatability
level to be considered a robust neurophysiological index.

Focusing on the weights of W, instead, we observed that
WWcossimwas always above the threshold value of 0.60 for each
synergy and for the overall model; however, the variability
related to some synergies is not negligible. In fact, SDs indi-
cated that cossim values spanned also under the similarity
threshold of 0.60, considering a confidence interval of 95.5%,
i.e., mean value± 2SD. The variability in the muscle synergy
vectors could be addressed to the CNS capability to generate
different within-subject activation profiles to achieve the same
motor task [15]. It confirmsourfindings related to thedifferent
NoS to perform the same task by the same subject. Moving to
the WBcossim, the variability can be considered negligible
since the SD values related to each synergy and the overall
model were above the similarity threshold also considering
the confidence interval of 95.5%. By summarizing, the
variability of the cossim in within-session analysis implies also
values lower than 0.60; thus, our results suggest caution in
assuming that the weights related to the i-th muscle synergy
are consistent across repetitions of the same task performed
by the same subject if an average across the repetitions is not
conducted. Similar repeatability with respect to the one
observed by Santuz et al. [9] for the intra- and interday
repeatability in walking and running was observed in this
study. Thus, we can speculate that the use of a treadmill, as in
[9], does not influence the walking and running patterns
[46]. As regards the B cossim, the mean values were lower
than those evaluated in the WW and WB analyses. These
findings can be mainly ascribed to the well-known between-
subject variability of the EMG signals [47]. As an alternative
hypothesis, they could be due to the variability of the
biomechanical data in the execution of the same task by
different subjects. However, such effect appeared limited, as
shown by the variability of the cadence always lower than
10%. However, some i-th synergies and the overall
composition of the muscle synergy vector reached mean
values above the similarity threshold also with a confidence
of 95.5%, affirming themselves repeatable across subjects and
potentially useful as neurophysiological indices. The only
exception of this finding was the IV synergy related to the
stepping task. From the statistical results, it emerged that the
third for walking and descending stairs and the fourth for
running can be considered the most repeatable synergy
vectors related to each motor task. On the contrary, the
absence of significant differences in stepping and in
ascending stairs did not allow selecting only one W as the
most repeatable. We can conclude that the muscle synergy
vectors related to some specific synergy in the 4-synergy
model can be considered acceptable as neurophysiological

indices due to demonstrated similarity across a cohort of
subjects having similar demographic characteristics and
health condition. In addition, it is worth noticing that in W,
D, and R, it is suggested to use only the most repeatableW.

The same trend of the muscle synergy vectors can be
observed for the repeatability analysis related to the tempo-
ral activity parameters by considering the WW and WB. In
fact, WWR2 and WBR2 values are always above the threshold
value of 0.70 for each synergy and the overall model, but
the value of some SD related to WWR2 indicated that some
comparisons in WW analysis did not reach the set threshold
if a confidence level of 95.5% is considered. The found values
are in line with the one obtained by Santuz et al. [9]. As for
the W, the variability in the temporal activity patterns sug-
gests that the CNS can organizes different muscle activations
to achieve the same motor task [15]. Thus, our results sug-
gest caution in assuming that the each Ci in the 4-synergy
model is consistent across repetitions of the same task per-
formed by the same subject in the same session. By moving
to the BR2, all the values related to each synergy and to the
overall model were above the similarity threshold also con-
sidering a confidence interval at 95.5%, with the exception
of the third synergy for walking and the first synergy for
the stepping. However, by considering the statistical out-
comes, we can select the neurophysiological index in the
most repeatable temporal activity pattern for each task, in
particular, the one related to the second synergy for stepping
and running and the one related to the first synergy for the
descending stairs. A further selection to identify the most
repeatable C between the one related to the first and second
synergies in W and among the one related to the first, third,
and fourth synergies in ascending stairs cannot be per-
formed with the found statistical outcomes. In conclusion,
we can state that also the temporal activity patterns related
to some specific synergy in the 4-synergy model can be
assumed as neurophysiological indices due to the promising
results related to their repeatability. As for W, the selection
of the most repeatable C is preferred in S, R, and D.

Thus, we can conclude that both the W and the C can
be considered as feasible neurophysiological indices due to
the verified good repeatability in within- and between-
subject analysis. It is worth noticing that the verified
repeatability has two different meanings: the repeatability
of the W indicates that the weighting of the examined
muscles in the i-th synergy is similar across subjects, while
the repeatability of the C shows that the neuromotor
signal modulating the excitation of the i-th synergy is con-
sistent across subjects [16].

5. Conclusion

In this paper, we analyzed the reliability and repeatability
of the EMG factorization by means of muscle synergy
theory in several daily life activities, such as walking,
running, stepping, and ascending and descending stairs.
These analyses have been conducted both within and
between subjects. Actually, the final goal of the study is
to identify the most potential neurophysiological index
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among the muscle synergy parameters. The outcomes of
our study endorse muscle synergy factorization as a
robust tool to interpret the CNS activation model, as the
repeatability can be mainly affected by the intrinsic EMG
signal variability and the electrode replacement rather
than the factorization algorithm. A 4-synergy model can
be used for all examined tasks if only the global
reconstruction has to be considered, while attention has
to be paid in the choice of muscles if their specific
reconstruction has to be performed. Moreover, we
recommend focusing on the muscle synergy vectors or
the temporal activity patterns rather than the number of
the synergies, when seeking at the identification of a
neurophysiological index.
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