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Abstract
A major ecosystem effect of biodiversity is to stabilise assemblages that perform particular functions. How-

ever, diversity–stability relationships (DSRs) are analysed using a variety of different population and com-

munity properties, most of which are adopted from theory that makes several restrictive assumptions that

are unlikely to be reflected in nature. Here, we construct a simple synthesis and generalisation of previous

theory for the DSR. We show that community stability is a product of two quantities: the synchrony of

population fluctuations, and an average species-level population stability that is weighted by relative abun-

dance. Weighted average population stability can be decomposed to consider effects of the mean-variance

scaling of abundance, changes in mean abundance with diversity and differences in species’ mean abun-

dance in monoculture. Our framework makes explicit how unevenness in the abundances of species in real

communities influences the DSR, which occurs both through effects on community synchrony, and effects

on weighted average population variability. This theory provides a more robust framework for analysing

the results of empirical studies of the DSR, and facilitates the integration of findings from real and model

communities.
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INTRODUCTION

In nature, many species’ ecological roles are essential for ecosystem

functioning or for the provision of ecosystem services to human

societies (Lawton 1994; Worm et al. 2006; Cardinale et al. 2012). For

example, species that forage for pollen or nectar facilitate reproduc-

tion in the plants on which they forage, a function that is essential

for the maintenance of plant populations, including in agricultural

ecosystems (McGregor 1976; Hoehn et al. 2008). On coral reefs,

grazing by fishes helps to maintain healthy, coral-dominated reefs

(Bellwood et al. 2004). One essential service provided by biodiver-

sity is to stabilise the overall abundance of an assemblage of organ-

isms that provides a particular ecosystem service or function,

thereby making it less vulnerable to fluctuations in the abundances

of individual populations. This phenomenon, or components of it,

has been characterised using a variety of terms (e.g. statistical aver-

aging, portfolio effect, covariance effect, insurance hypothesis and

stabilising effect: Doak et al. 1998; Tilman et al. 1998; Yachi &

Loreau 1999; Loreau 2010). For simplicity, we here refer to the rela-

tionship between the number of populations and temporal stability

of total community abundance as the ‘diversity–stability relation-

ship’, or DSR, and the tendency for DSRs to be positive (i.e. for

stability to increase with diversity), as the ‘portfolio effect’. This

definition of the latter term is consistent with its use in other

disciplines, such as finance (Markowitz 1952, 1987), and with its

original use in the context of the DSR (Tilman et al. 1998; contra

Tilman 1999).

In both model and experimental communities, stability is typically

taken to be inversely related to the coefficient of variation of some

measure of ecosystem function, such as total community

abundance. The DSR is the relationship between this measure of

stability, and diversity (here defined as the number of constituent

populations). Usually, diversity is quantified as species richness, but

communities can be stabilised by diversity at other levels of organi-

sation as well, such as functional groups (Bai et al. 2004) or number

of phenotypes within populations (Norberg et al. 2001). Various

proposed statistical formalisms for the DSR have suggested that, at

least in principle, it may be positive or negative (Tilman 1999;

Lhomme & Winkel 2002). However, stochastic competition models

have consistently found portfolio effects (e.g. Lehman & Tilman

2000; Ives & Hughes 2002; Loreau & de Mazancourt 2008). Simi-

larly, two decades of experimental research into DSRs indicates that

portfolio effects are overwhelmingly present, but that their strength

and magnitude varies considerably (Campbell et al. 2011). However,

inverse portfolio effects, where stability decreases with diversity,

also can occur in nature (DeClerck et al. 2006; Yang et al. 2011).

Several community properties have been identified as important

determinants of the portfolio effect. Four that have received particu-

lar attention are asynchrony in population fluctuations, evenness of

abundance, effects of diversity on total community abundance and

the way in which temporal variability in abundance scales with its

mean (Cottingham et al. 2001). Firstly, theoretical studies indicate that

portfolio effects should strengthen as asynchrony in the fluctuations

of a community’s constituent populations increases (Doak et al. 1998;
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Loreau 2010). Despite its importance in diversity–stability
relationships, however, there is no consensus about how asynchrony

should be measured, or about how it contributes to the DSR. A

variety of metrics have been proposed, including coefficients of pair-

wise correlations of species’ fluctuations in abundance (Doak et al.

1998), summed species-level variances and covariances (Tilman 1999)

and total community variance relative to that of a perfectly synchro-

nous community (Loreau & de Mazancourt 2008). All of these met-

rics are still used in empirical studies (e.g. Mikkelson et al. 2011;

Roscher et al. 2011; Thibaut et al. 2012). Secondly, models of the

DSR also predict that the portfolio effect will be stronger, where

evenness of mean abundance among populations is greater (Doak

et al. 1998; Lhomme & Winkel 2002): when evenness is very low, the

rarest species make a limited contribution to overall stabilisation of

function at the community level, compared with when evenness is

high. However, researchers have found positive relationships between

evenness and stability (Mikkelson et al. 2011), no relationship (Isbell

et al. 2009) and even negative relationships (van Ruijven & Berendse

2007), leading to calls for the development of theory to better under-

stand how evenness affects community stability (Grman et al. 2010;

Mikkelson et al. 2011). Thirdly, mean community biomass often

increases with increasing diversity (Duffy 2009; Cardinale et al. 2012),

a phenomenon sometimes termed ‘overyielding’ (Tilman 1999), and

several empirical studies have identified overyielding as a mechanism

driving the DSR (Tilman et al. 2006; Isbell et al. 2009; Hector et al.

2010). Finally, there is a well-known tendency for the temporal vari-

ance in population abundance to exhibit a power-law relationship

with the mean (Taylor 1961). Theoretical studies have suggested that

stability should increase as the value of the exponent of this mean-

variance scaling relationship increases above unity (Tilman et al. 1998;

Tilman 1999). However, some experimental studies have found con-

trary results (Valone & Hoffman 2003; van Ruijven & Berendse 2007;

Yang et al. 2011).

A comprehensive understanding of the combined effects of syn-

chrony, overyielding, mean-variance scaling and evenness on the

diversity–stability relationship has been hampered by the need to

make idealised assumptions about some of these phenomena when

investigating effects of others. For example, to examine the effect

of evenness, Doak et al. (1998) assumed that all between-species

correlations are equal, and that total community size is independent

of diversity (no overyielding). Tilman’s (1999) framework assumes

perfect evenness (all species’ mean abundances are equal), and inde-

pendence of species fluctuations (all qij = 0), to examine the effect

of overyielding. Similarly, community-dynamic approaches have

made strong symmetry assumptions (e.g. all species have the same

intrinsic growth rates, carrying capacities, competition coefficients

and between-species correlations in responses to environmental

fluctuations: Ives & Hughes 2002; Loreau 2010). These assumptions

have come under increasing criticism, particularly in empirical stud-

ies that have obtained anomalous results (such as ‘inverse’ portfolio

effects, where communities become less stable as diversity increases)

under conditions where particular simplifying assumptions are vio-

lated (e.g. Valone & Hoffman 2003; Steiner et al. 2005; van Ruijven

& Berendse 2007; Grman et al. 2010; Yang et al. 2011).

An additional challenge to understanding the DSR is teasing apart

the factors that drive the relationship between community stability,

and stability of the individual populations that constitute the com-

munity. In a meta-analysis, Campbell et al. (2011) found strongly

bimodal responses of population stability with diversity: some stud-

ies find that diversity stabilises populations, while a comparable

number of studies find that diversity destabilises populations.

Because either of these contrasting population-level responses may

occur in assemblages exhibiting portfolio effects at the community

level, clarifying the relationship between population stability and

overall community stability has been identified as a critical knowl-

edge gap in our understanding of the DSR (Vogt et al. 2006; Camp-

bell et al. 2011).

To generalise the theory that we use to understand the DSR, and

to place earlier theoretical and empirical findings in a broader con-

text, we here synthesise key elements of previous approaches (e.g.

Doak et al. 1998; Tilman 1999; Loreau 2010), to produce a simple

model of portfolio effects that makes explicit how community sta-

bility relates to the stability of a community’s constituent popula-

tions, and in turn how asynchrony, overyielding, mean-variance

scaling and evenness influence this relationship. Analysis of this

model reveals that the DSR is the product of a synchrony effect

and a weighted average population variability effect, a simple

expression that is robust to the presence or absence of overyielding,

and to differences in means or variances of species abundances (i.e.

arbitrary violation of the evenness assumption). Weighted average

population variability can be further decomposed into an overyield-

ing-related effect and a single-species variability effect. This syn-

thetic framework clarifies the sometimes counter-intuitive ways that

evenness can affect the DSR, and helps to explain apparent incon-

sistencies among alternative statistical frameworks, empirical studies

of the DSR and theoretical studies based on analysis of community-

dynamic models. It also suggests some additional assumptions com-

mon to DSR theory that are likely to be violated in nature, but

whose effects on the DSR have received little or no attention to

date.

TOWARDS A UNIFIED MODEL OF PORTFOLIO EFFECTS

Following previous theory for the portfolio effect (e.g. Doak et al.

1998; Tilman 1999; Loreau 2010), we here treat species abundances

as stationary random variables (i.e. abundances fluctuate over time,

with a fixed mean and variance). Thus, a community of n species

can be described with a vector of mean species abundances, mn and

a variance–covariance matrix of abundances, Vn:

mn ¼
ms
nð1Þ
..
.

ms
nðnÞ

0
B@

1
CA ð1aÞ

Vn ¼
vsnð1; 1Þ � � � vsnð1; nÞ

..

. . .
. ..

.

vsnðn; 1Þ . . . vsnðn; nÞ

0
B@

1
CA ð1bÞ

where

vsnði; jÞ ¼ qij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vsnði; iÞvsnð j ; jÞ

q
ð1cÞ

In eqn 1, and throughout this article, we use the superscript c to

designate community level quantities and the superscript s for spe-

cies-level quantities. n is the number of species in the community, m

denotes mean abundances and v denote variances and covariances.

Thus, ms
nðiÞ denotes the mean abundance of species i, vsnði; iÞ the
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variance (over time) of abundance of species i, and vsnði; jÞ the tem-

poral covariance of abundances of species i and j, in a community

of n species. By definition, the covariances depend on the species-

specific variances, and a coefficient, qij, characterising the temporal

correlation between the abundances of the two species.

Measuring asynchrony

Of particular interest in analyses of the portfolio effect has been the

development of measures of community synchrony. In early study,

community synchrony was defined using the correlation coefficients

in eqn 1, which were assumed to be the same for all pairs of species

in the community (qij = q for all i,j) (Doak et al. 1998; Tilman 1999).

As, in real communities, correlation coefficients will differ between

different pairs of species, based on the idiosyncratic characteristics

that determine their interactions and responses to environmental

fluctuations, most empirical analyses rely on the mean of the correla-

tion coefficients, �q (Valone & Barber 2008; Thibaut et al. 2012),

which is bounded in the range ½� 1
n�1

; 1�. A problem with this

approach is that, in real communities, species may differ substantially

in their variances, so some between-species correlations are likely to

be more important to overall community stability than others. Conse-

quently, two communities with the same mean correlation coefficient

could differ substantially in their synchrony (see Appendix S1 in Sup-

plementary Information for an example).

An alternative approach to measuring synchrony considers the

sum of the species-level variances (diagonal elements of eqn 1b) and

the sum of the between-species covariances (off-diagonal elements

of eqn 1b). Tilman (1999) argued that these two quantities measure

different drivers of asynchrony: the former a ‘portfolio effect’ – the

benefit of diversity due to statistical averaging (a narrower definition

of the term than used in this article) – and the latter a ‘covariance

effect’, which represents the stabilising effect of compensatory inter-

actions (e.g. the tendency for a species to increase in abundance

from competitive release, when another species decreases). However,

while there is still some disagreement in the literature about the util-

ity of summed covariances as an indicator of compensatory interac-

tions, there is now broad consensus that summed variances and

covariances do not partition statistical averaging and compensatory

interaction effects (Ives & Carpenter 2007; Houlahan et al. 2008; Lo-

reau & de Mazancourt 2008; Ranta et al. 2008).

More recently, Loreau & de Mazancourt (2008) proposed quanti-

fying community synchrony using the statistic:

/ ¼
P

ij v
s
n i; jð ÞP

i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
vsn i; ið Þp� �2 ¼ vcnP

i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
vsn i; ið Þp� �2 ð2Þ

(also see Loreau 2010). Here, the scalar vcn indicates the variance of

total community abundance for a community of n species, which,

by definition, is the sum of all elements of the community variance

–covariance matrix (the summed variances plus the summed covari-

ances). The denominator is the variance of a hypothetical commu-

nity with the same species-level variances, but in the presence of

perfect synchrony (Loreau & de Mazancourt 2008). One advantage

of /, hereafter termed the ‘synchrony index’, is that it makes no

assumptions about the particular distribution of values for the pair-

wise correlation coefficients. This is because the off-diagonal ele-

ments of the community variance–covariance matrix influence /
only through their combined effect on the total community variance

in abundance, vcn, which can be measured directly in the aggregate

(i.e. without separate estimation of pairwise covariances). / is also

normalised, independent of diversity: it always varies between zero

(when total community abundance is constant), and one (when fluc-

tuations are perfectly synchronous). Finally, in contrast to the mean

correlation coefficient, it explicitly incorporates the effects of

unequal species-level variances on synchrony (see Appendix S1).

Unifying population and community variability

We can derive a very general relationship for the relationship

between population and community variability by taking advantage

of the synchrony index, re-arranging eqn 2 and rescaling our mea-

sure of community variability from total variance to CV:

CV c
n ¼

ffiffiffiffi
/

p gCV s
n ð3Þ

where CV c
n is the coefficient of variation of total community abun-

dance, for a community of n species, and gCV s
n is the average spe-

cies-level coefficient of variation for a community of n species,

weighted by species’ relative mean abundance:

gCV s
n ¼

X
i

ms
nðiÞ
mc
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
vsnði; iÞ

p
ms
nðiÞ

ð4Þ

(see Appendix S2 in Supplementary Information for derivation). mc
n

is the temporal mean of total community abundance (i.e. the sum

of species-level mean abundances). Equation 3 shows that the

dimensionless community variability in abundance is completely

determined by the weighted average species-level coefficient of vari-

ation, and the synchrony index / (Fig. 1, black arrows). In eqn 3,

dimensionless population and community variability are linearly pro-

portional to one another, with a constant of proportionality that

depends on how synchronous the fluctuations of different species

are. When fluctuations are highly synchronous (/~1), community

+

+/–+/–+/–

+

EvennessMean-variance
scalingOveryielding

Weighted average
population variability Synchrony

Community variability

Figure 1 Schematic illustrating how population and community variability

(ellipses) are influenced by the four determinants of the DSR highlighted in the

Introduction: synchrony of population fluctuations, evenness, overyielding and

the way variance in population fluctuations scales with the mean (rectangles).

Arrows merge where an effect arises from an interaction between two

determinants. ‘+’ indicates that an effect is positive (e.g. community variability

increases as synchrony increases), and ‘+/�’ indicates that an effect may be

either positive or negative.
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variability tracks population variability. When fluctuations are less

synchronous (/ is smaller), population variability is damped at the

community level. The fact that population variability is a weighted

average in eqn 3 indicates that the variability of more abundant

populations make larger contributions to overall community vari-

ability.

Equation 3 is much more general than previous DSR models. In

particular, it makes no assumptions about evenness of mean

abundances, about the distribution of variances or correlation

coefficients in the covariance matrix, or about the direct ecological

interactions or responses to environmental fluctuations that influ-

ence those variances and correlation coefficients. Note that, because

/ � 1, community variability is never greater than population

variability.

To examine more specifically the role of overyielding and mean-

variance scaling, we extend eqn 3 by making two further assump-

tions that have reasonably broad empirical support. Firstly, we

assume that temporal variances in species’ population sizes scale

with their means according to Taylor’s (1961) power law:

vsn ¼ a ms
n

� �b ð5Þ
where a and b are coefficients relating mean and variance of abun-

dance. Secondly, both species and community mean abundance may

vary as a function of diversity. We model this phenomenon using

Tilman’s (1999) functional form for this relationship, modified to

allow unequal mean abundances:

mc
n ¼

X
i
ms
nðiÞ ¼

X
i

m1ðiÞ
nx

; ð6Þ

where m1(i) is the abundance of species i in monoculture, and x

drives how the total abundance of the community changes with

diversity. If x = 1, the abundance of the total community is fixed,

independent of diversity, as is assumed in many theoretical studies

of the DSR (sensu Doak et al. 1998; Ives et al. 1999; Loreau 2010).

‘Overyielding’ occurs whenever x < 1: the mean of total community

abundance increases with diversity. If 0 < x < 1, this increasing

community abundance is accompanied by decreases in mean species

abundances with diversity; if x = 0, mean species abundances are

independent of diversity; and if x < 0, mean species abundances

actually increase with diversity. Finally, if x > 1, mean community

abundance and mean species abundances both decrease with diver-

sity (underyielding).

Incorporating eqns 5 and 6 into eqn 3, we can extend our frame-

work to explicitly include the effect of overyielding on the DSR:

CV c
n ¼

ffiffiffiffi
/

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2�bÞx

p gCV1 ð7Þ
(see Appendix S3 in Supplementary Information for derivation).

This essentially sub-divides species-level population variability into

two components: an ‘average single-species variability’ term, gCV1

which represents species’ weighted average CV in monoculture, and

a ‘mean-abundance effect’,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2�bð Þx

p
, which characterises how gCV s

n

changes with diversity as a consequence of associated systematic

changes in mean abundance (Fig. 1, blue arrows). Equation 7 gener-

alises Tilman’s (1999) model considering the effect of overyielding

on the portfolio effect, which assumes that all species have the

same mean abundance, and species’ fluctuations in abundance are

uncorrelated with one another. Similarly, it can be considered a

generalisation of eqn 5.8 in Loreau (2010), who considered the spe-

cial case of no overyielding and perfect evenness. Note that, if the

mean-abundance effect increases with diversity, then changes in

mean species abundances associated with increasing diversity tend

to be destabilising at both population and community levels. In

contrast, if the mean-abundance effect decreases with diversity, then

changes in mean species abundance associated with increasing diver-

sity are stabilising at both population and community levels.

Synchrony, overyielding, evenness and the portfolio effect

Equation 3 makes explicit how portfolio effects arise from changes

in synchrony and population variability with species richness. To

understand how synchrony is likely to change with diversity, it is

helpful to consider the relationship between φ and the mean corre-

lation coefficient, �q, derived by Loreau (2010):

/ ¼ 1þ ðn� 1Þ�q
n

¼ 1

n
ð1� �qÞ þ �q; ð8Þ

Equation 8 holds only for the special case when all species have

the same variances, but is still useful for thinking about the implica-

tions of different community structures for the diversity-dependence

of synchrony. For instance, in the limiting case of perfect synchrony,

�q ¼ 1 and / = 1, regardless of diversity (Fig. 2, green line). Con-

versely, for perfect asynchrony, �q ¼ � 1
n�1

, and / = 0 everywhere

(except in monoculture, where / = 1) (Fig. 2, magenta line). For the

special case of a community of non-interacting species, fluctuations

in abundance between species are correlated only due to similarities

in their responses to environmental fluctuations, so pairwise correla-

tion coefficients are constant, independent of diversity (Ives et al.

1999). If �q is small, / decreases strongly with diversity (Fig. 2, black

and blue lines), while if �q is large, then / is less strongly diversity-

dependent (Fig. 2, orange line). This tendency for / to decline

asymptotically with diversity also occurs in the presence of competi-

tion (see Appendix S4 in Supplementary Information), and there are

good reasons to expect this tendency to be common in nature.

Firstly, / = 1 in monoculture, and must decline from this value as

diversity increases if species are not perfectly positively correlated.

Secondly, as diversity becomes large, each additional species makes a

progressively smaller marginal contribution to the overall mean cor-

relation coefficient, implying that changes in �q (and thus, by eqn 8,

/) will become smaller and smaller as diversity increases.

Although the influence of overyielding on population variability

has been investigated previously, these studies have tended to focus

on the ranges 0 < x < 1 and 1 < b < 2 (e.g. Lhomme & Winkel

2002). In this range, the mean-abundance effect causes population

variability to increase with diversity (Fig. 3a, blue line). The focus

on 1 � b � 2 was likely due to a belief that exceptions to this

range are rare (e.g. Kilpatrick & Ives 2003). However, a growing

number of studies report scaling exponents > 2 (e.g. Valone &

Hoffman 2003; Vogt et al. 2006; van Ruijven & Berendse 2007).

Similarly, a focus on 0 � x � 1 makes sense for manipulations of

diversity under fixed environmental conditions, where x reflects

mainly the combined effects of competition and niche partitioning

(Tilman 1999; Lehman & Tilman 2000). However, in nature, diver-

sity often covaries with environmental conditions that influence

mean abundance in other ways, and DSR studies along natural gra-

dients have found both cases of underyielding (x > 1; Yang et al.

2011), and cases where mean species abundance actually increases

© 2012 Blackwell Publishing Ltd/CNRS
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with diversity (x < 0: Valone & Hoffman 2003). Considering this

broader range of parameter values, the mean-abundance effect can

be seen to have both positive and negative effects on population

variability (Fig. 3). The direction of the mean-abundance effect

depends on whether mean species abundance decreases with species

richness or not (x > 0 or x < 0), and whether species-level vari-

ances scale less than or more than quadratically with the mean

(b < 2 or b > 2). Specifically, if mean species abundance decreases

with species richness (x > 0), then the mean-abundance effect is de-

stabilising at the population level when variance scales less than

quadratically with mean species abundance (b < 2), and stabilising

when b > 2 (compare blue, orange and green lines in Fig. 3a,c). If

mean species abundance increases with species richness (x < 0),

then mean-variance scaling has the opposite effect (compare

magenta lines in Fig. 3a,c).

Figure 4 illustrates how the DSR may be influenced by the inter-

action between community synchrony and the mean-abundance

effect. Several non-intuitive results are worth highlighting. Firstly, a

portfolio effect can be apparent even when synchrony is perfect, if

population variability decreases with species richness (Fig. 4f, blue,

orange and green lines). Secondly, Fig. 4 shows that inverse portfo-

lio effects are possible (e.g. Fig. 4m). Thirdly, when population vari-

ability and synchrony act in opposite directions, non-monotonic

DSRs can be produced, for which community variability initially

decreases with species richness, then increases. For instance, when

�q ¼ 0:1, independent of diversity, / decreases asymptotically

towards 0.1 as richness increases (eqn 8). Thus, its response to

diversity may dominate the DSR at low diversity, while population

variability dominates at high diversity (compare blue line in Fig. 2a

with orange lines in Figs 3a and 4j).

Considering the effect of unevenness in light of eqns 3 and 7 indi-

cates that it may actually increase or decrease community variability,

and may increase or decrease the strength of the portfolio effect,

depending on its effects on the synchrony index, /, and on species
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P
op

ul
at

io
n 

va
ria

bi
lit

y

0.5

1.0

1.5

1 41 4 16 64 256 16 64 256 1 4 16 64 256

b  = 1.5 b = 2.5b = 2.0 (c)(b)(a)

x = –0.5
x = 0.0
x = 0.5
x = 1.0
x = 1.5

(C
V

ns )

Figure 3 Illustration of the diversity-dependence of the mean-abundance effect for mean-variance scaling exponents of (a) b = 1.5, (b) b = 2, and (c) b = 2.5. Results are

qualitatively identical to (a) whenever b < 2, and to (c) whenever b > 2. The different-coloured lines show the mean-abundance effect for different values of the

overyielding coefficient, x, as indicated in the figure. Note that all lines are super-imposed when b = 2. Species richness is plotted on a logarithmic scale.
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Figure 2 Illustration of relationship between diversity-dependence of (a) the synchrony index, /, and (b) the mean correlation coefficient, �q, under the assumption of

equal population variances. The green line shows the limiting case of perfect synchrony (�q ¼ 1;/ ¼ 1). The magenta line shows the limiting case of perfect asynchrony
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eqn 8 using the specified value of �q. Because �q is only defined for n > 1, the lines in panel (b) commence at n = 2. Note that species richness is plotted on a logarithmic

scale.
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population variability, gCV s
n . The effect of evenness on / (Fig. 1,

orange arrow) depends on the how the population sizes of the differ-

ent species fluctuate relative to one another (i.e. on the structure of

the covariance matrix, Vn [eqn 1b]). Previous consideration of the

effect of evenness on the DSR has assumed, implicitly or explicitly,

that the populations of all species pairs are equally correlated (all

qij = q: see, e.g. Doak et al. 1998). However, in the general case

where the qij differ, the effect of unevenness is more contingent. For

example, consider an assemblage in which population fluctuations of

most species are highly synchronous, except for one species, whose

fluctuations are strongly negatively correlated with all the other spe-

cies (as in Appendix S1). For this community, the portfolio effect will

be maximised when this latter species is disproportionately abundant

(or, more precisely, contributes disproportionately to the total com-

munity variance). Moreover, non-intuitive effects of evenness can

emerge even when correlation coefficients are independent of relative

abundance. For example, in Fig. 5a, we generated hypothetical com-

munities by drawing species’ mean abundances at random from a
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lognormal distribution, and we assigned pairwise correlation coeffi-

cients at random with respect to abundance such that the expected

mean correlation coefficient is zero, regardless of evenness or diver-

sity. [We achieved the latter by exploiting a hyperspherical parame-

terisation of the correlation matrix (Pinheiro & Bates 1996). By

drawing each parameter from a uniform distribution on [0, p], we
sample from the entire universe of possible correlation matrices

where, on average, the mean correlation coefficient is zero.] When

there is perfect evenness, / for the randomly assembled community

is identical to the theoretical prediction (eqn 8 with �q ¼ 0). As even-

ness decreases, synchrony increases, consistent with the hypothesis

that unevenness is destabilising at the community level. However, the

same asymptotic value is approached at high diversity, so the effect

of this is to cause synchrony to decrease more gradually with diver-

sity when unevenness is higher (Fig. 5a).

Evenness can also influence weighted average population variabil-

ity, gCV s
n but its qualitative effect depends upon the nature

of mean-variance scaling (Fig. 1, green arrows). Specifically, as

evenness decreases, gCV s
n decreases when species’ population vari-

ability scales less than quadratically with the mean (b < 2), and

increases when b > 2 (Fig. 5b). This is because weighted average

population variability becomes progressively less dominated by the

more abundant species as evenness increases. In particular, when

b < 2, CV decreases with mean abundance. As evenness decreases,

the most abundant species occupy a progressively larger fraction of

the community, and thus, population variability becomes progres-

sively more dominated by these low-variability populations.

This relationship between evenness and population variability

implies that unevenness can alter the way in which population

variability changes with species richness, even when species are

assembled randomly into communities with respect to their mean

abundances. It is easiest to understand this effect by considering

first the special case, when species’ mean abundances are inde-

pendent of diversity (x = 0, so the mean-abundance effect in

eqn 7 is unity). In this case, unevenness tends to cause popula-

tion variability to decrease with diversity when b < 2, and to

increase when b > 2 (Fig. 5c). We interpret this result as follows.

As diversity increases, the likelihood of the assemblage, by

chance, containing a species with very high mean abundance

increases. The populations of these highly abundant species will

be more or less stable than the populations of species with aver-

age mean abundance, depending on whether b < 2 or b > 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0
b = 1.5, x = 0.9, σ = 1
b = 1.5, x = 0.2, σ = 2
b = 2.5, x = 0.9, σ = 1
b = 2.5, x = 0.2, σ = 2

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

0.8

1.0

Species richness (n)

Species richness (n) Species richness (n)

S
yn

ch
ro

ny
 (

φ
)

21 4 8 16 32 64

21 4 8 16 32 64 21 4 8 16 32 64

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

Evenness

P
op

ul
at

io
n 

va
ria

bi
lit

y
(C

V
ns )

P
op

ul
at

io
n 

va
ria

bi
lit

y
(C

V
ns )

(d)

P
op

ul
at

io
n 

va
ria

bi
lit

y
(C

V
ns )

(c)

σ = 0

σ = 3

σ = 1
σ = 2

b = 1.5
b = 2.0
b = 2.5

b = 1.5
b = 2.0
b = 2.5

Figure 5 Illustration of effects of unevenness on the DSR. In all panels, species abundances are drawn from a lognormal distribution with mean of log abundance l = 1,

and mean-variance scaling coefficient a = 1. (a) Diversity-dependence of synchrony for different levels of unevenness, generated using the specified standard deviation of

log abundance, r. For all curves, b = 2 and correlation coefficients were assigned randomly as described in the text. (b) gCV s
n as a function of evenness [Communities

were simulated using 0 � r � 3, and evenness quantified using the index Evar (Smith & Wilson 1996)]. (c) gCV s
n vs. diversity, illustrating the effect of b. For all lines,

r = 2 and x = 0. (d) gCV s
n vs. diversity, illustrating the interaction between evenness and mean-abundance effects. Note the log-scale for species richness.

© 2012 Blackwell Publishing Ltd/CNRS

146 L. M. Thibaut and S. R. Connolly Idea and Perspective



respectively. Of course, there is also a progressively greater likeli-

hood of including species with unusually small mean abundances

as diversity increases. However, because gCV s
n is a weighted aver-

age, the effect of sampling further out in the abundant tail of the

distribution outweighs the countervailing effect of sampling fur-

ther out in the rare tail. This interpretation is supported by simu-

lations using a wide variety of shapes of species-abundance

distributions (including symmetrical, left and right-skewed distribu-

tions), and by the fact that in contrast to gCV s
n unweighted popu-

lation variability exhibits no trends with diversity, when x = 0,

regardless of b (results not shown).

The nature of the interaction between unevenness and the mean-

variance scaling parameter b implies that when species’ abundances

differ (i.e. unevenness is present) and species’ mean abundances

tend to decrease with species richness (x > 0), mean-variance scal-

ing may actually act in countervailing ways along a diversity gradi-

ent. For instance, when x > 0 and b < 2, the mean-abundance

effect is destabilising at the population level, but the effect of

unevenness is stabilising (e.g. compare Fig. 3a, blue line, and

Fig. 5c, solid line), whereas the opposite occurs when b > 2 (e.g.

Fig. 3c, blue line, and Fig. 5c, dotted line). This makes sense:

increasing unevenness will tend to make the most abundant species

– which dominate the weighted average population variability –
increasingly more abundant relative to the average species mean

abundance. Consequently, populations will be more stable if b < 2

and less stable if b > 2. Conversely, x > 0 will tend to reduce all

species’ mean abundances as diversity increases, so populations will

become less stable if b < 2, and more stable if b > 2. Thus, whether

population variability is stabilised or destabilised by unevenness

depends upon the magnitude of the overyielding parameter, x, rela-

tive to the among-species variance in mean abundances (i.e. the

extent of unevenness), and on whether b < 2 or b > 2 (Fig. 5d).

Of course, along natural diversity gradients, species may not be

added at random with respect to their mean abundances, with

implications for how population variability changes with species

richness. For example, species’ colonisation abilities are sometimes

hypothesised to be negatively correlated with their resource-use

efficiency, (and thus population density at equilibrium: e.g. Tilman

& Downing 1994). In such cases, succession would be expected to

commence with species that have coloniser strategies, low resource-

use efficiency and thus low equilibrium abundance, and to progress

by adding poorer colonisers that have greater resource-use efficiency

and higher equilibrium abundances (Tilman & Downing 1994). As

these conditions imply that species tend to be added to communi-

ties in order of progressively increasing mean abundances, weighted

average population variability would tend to decrease with species

richness if b < 2 (because species with higher mean abundances

have lower CV when b < 2, and these species are increasingly repre-

sented as species richness increases). Conversely, weighted average

population variability would increase with species richness under

these conditions if b > 2.

DIVERSITY AND STABILITY IN NATURE

The model in eqn 3 shows that there are two key elements to

making explicit the relationship between population and community

variability. The first is to define community synchrony in terms of

the synchrony index / of Loreau & de Mazancourt (2008). The

second is to measure population variability as a weighted average

across species. The resulting relationship is extremely general. It

holds regardless of extent or nature of unevenness of abundances

among species, and regardless of the pattern of variances or covari-

ances of species’ abundances. Thus, it is robust to the nature of

overyielding (if it is present), or the nature of the mean-variance

scaling of species’ abundances. Consequently, it offers a promising

framework for understanding the broad range of relationships

between population and community variability observed in natural

and experimental systems.

The fact that portfolio effects are commonly found even in the

presence of increasing population variability suggests that synchrony

tends to decrease with diversity in DSR studies, consistent with our

conjecture that this pattern is likely to be common in nature. There

have been only two empirical studies that explicitly quantify the

diversity-dependence of synchrony, but both exhibit an asymptotic

decline that is consistent with a small, positive mean correlation

coefficient that remains approximately constant as diversity changes.

Specifically, Roscher et al. (2011) found that synchrony decreased

strongly with diversity, from a median of ~0.55 when n = 2 to ~0.1
when n = 60, which is similar to what would be expected for a

community with �q� 0:1 (cf. Fig. 2a, blue line). Similarly, Isbell et al.

(2009) found that synchrony decreased from ~0.6 to ~0.3 as diver-

sity increased from 2 to 8, consistent with �q� 0:2. Of course, given

that species are often added non-randomly along natural diversity

gradients, and the idiosyncratic nature of species’ responses to envi-

ronmental fluctuations, there are likely to be exceptions to any gen-

eral tendency for / to decrease monotonically with diversity. An

advantage of the framework in eqn 3 is that it makes no implicit

simplifying assumptions about community structure that impose a

particular functional form on this relationship.

The potential diversity-dependence of synchrony, along with

eqn 3, offers an explanation for why studies of the DSR find a vari-

ety of different relationships between population and community

variability. For instance, in a study of a natural diversity gradient

among patches of boreal forest habitat, DeClerck et al. (2006) found

that population variability increased with diversity, and between-spe-

cies correlation coefficients were positive and large. The large

correlation coefficients suggest that / exhibited relatively little

change with diversity in this system, because its value would have

been dominated by the second term in eqn 8, which is independent

of diversity. In this case, the DSR would be driven by how popula-

tion variability changes with diversity, and, indeed, that appears to

be precisely what happens: this study documented one of the very

few empirical examples of an inverse portfolio effect in the litera-

ture. Conversely, in the experimental grassland communities of

Roscher et al. (2011), synchrony was strongly diversity-dependent,

so a portfolio effect could be apparent in spite of the fact that

population variability increased with diversity.

Equation 7 extends the framework in eqn 3 to separate out the

contribution of overyielding to population variability, and shows

that overyielding and mean-variance scaling can have a broader

range of effects than has been assumed in the literature (Figs 3 and

4). For instance, many empirical studies that have found both port-

folio effects, and evidence of overyielding (i.e. x < 1), have invoked

the latter as a key mechanism driving the former (Valone & Hoff-

man 2003; Tilman et al. 2006; Isbell et al. 2009; Hector et al. 2010;

Roscher et al. 2011), based on early analytical work suggesting that

overyielding can induce a stabilising effect of diversity at the com-

munity level (Tilman 1999). Similarly, some empirical studies have
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reported b as a measure of the intensity of the DSR, with any value

of b > 1 being taken as evidence that the portfolio effect is operat-

ing (e.g. Steiner et al. 2005; Polley et al. 2007; Isbell et al. 2009;

Roscher et al. 2011), because simple analytical models have

suggested that diversity should stabilise communities when the

mean-variance scaling exponent b > 1, and destabilise them when

b < 1 (Tilman et al. 1998; Tilman 1999; Loreau 2010). However, the

derivation of these two conditions is sensitive to particular combi-

nations of simplifying assumptions (see Appendix S5 in Supplemen-

tary Information). In fact, eqn 7 shows that, in general, the key

determinants of the stabilising or destabilising effect of overyielding,

at both population and community levels, are whether mean species

abundance decreases (x > 0) or increases (x < 0) with diversity, and

on whether species-level variances scale more (b > 2) or less (b < 2)

than quadratically with the mean (Fig. 3).

The strength of the portfolio effect is widely believed to be

enhanced whenever evenness is greater, and this effect has been

reproduced in the few theoretical studies that have relaxed the even-

ness assumption (Doak et al. 1998; Loreau 2010). This makes intui-

tive sense: if a community is dominated by one species, then adding

rare species will produce only a small reduction in total community

variance, which will be dominated by the abundant species’ popula-

tion variability. However, eqns 3 and 7 show how evenness may

actually increase or decrease community stability, depending on its

combined effects on synchrony and population variability. This con-

text-dependence may help to explain why there is a lack of consis-

tency in empirical relationships between stability, evenness and

diversity (Steiner et al. 2005; Polley et al. 2007; van Ruijven &

Berendse 2007; Isbell et al. 2009; Grman et al. 2010; Mikkelson et al.

2011). For instance, several empirical studies have found that, when

averaged over all species in the community, b < 2 (i.e. larger popu-

lations are more stable: Bai et al. 2004; Leps 2004; Steiner et al.

2005; Polley et al. 2007; Roscher et al. 2011). This implies a stabilis-

ing effect of unevenness at the community level, although there is

some evidence that species-specific deviations from the mean-vari-

ance scaling relationship may play an additional role (Grman et al.

2010: see Future Directions, below).

In decomposing population variability into a mean-abundance

effect and a single-species variability effect, two assumptions were

made that are more restrictive than those used in the derivation of

our more general model unifying population and community vari-

ability: power-law scaling of the temporal mean and variance of

abundance, and a monotonic change in mean abundance with diver-

sity. As there is strong support for both such relationships in nat-

ure, and they are commonly examined in both theory and

experiments of the DSR, these additional assumptions may seem, at

first, to be relatively innocuous. However, their inclusion in eqn 7

implies the additional assumptions that the mean-variance scaling

exponent and the overyielding coefficient are the same for all spe-

cies in the community, and do not vary as functions of diversity. In

nature, the extent to which these assumptions are violated varies

between systems. For instance, Yang et al. (2011) found that a single

mean-variance scaling exponent explained > 90% of the variation in

temporal variances in alpine meadow communities (also see, e.g.

Isbell et al. 2009), but van Ruijven & Berendse (2007), also studying

herbaceous plants, found a nearly fourfold variation in the mean-

variance scaling exponent among species. If mean-variance scaling

exponents vary independently of species’ relative abundances and

responses to overyielding, then we would not expect the relation-

ships shown in Fig. 3 to be qualitatively affected, and this is consis-

tent with the results of preliminary simulations (not shown).

However, covariation between mean-variance scaling parameters

and species’ relative abundances could change the way weighted

average population variability changes with diversity. For instance, if

disproportionately abundant species have lower than average b, thengCV s
n will tend to be smaller than predicted by eqn 7, because more

stable species contribute disproportionately to the weighted average.

There is empirical evidence for such relationships. For instance,

Grman et al. (2010), examining residuals of an aggregate mean-vari-

ance scaling relationship, found evidence that disproportionately

abundant species had smaller mean-variance scaling exponents than

less abundant species.

Finally, although eqn 3 unifies population and community vari-

ability under a much broader range of conditions than previous

models, it does retain one assumption of nearly all DSR theory that

is likely to be violated to some degree, particularly in experimental

manipulations of diversity gradients: that the community is fluctuat-

ing around a stochastic equilibrium (‘stationarity’). Few DSR studies

explicitly address the stationarity assumption (see Tilman et al. 2006;

Grman et al. 2010 for exceptions). Nevertheless, in most experimen-

tal diversity manipulations, stationarity is likely to be violated, at

least to some degree. There are certainly some circumstances in

which estimates of the portfolio effect could be biased by non-

stationary dynamics. For example, if a competitively structured

community begins with all species abundances well below, or well

above, their equilibrium values, then most species will tend to

increase or decrease, respectively, and exhibit much more synchro-

nous dynamics, and higher species-level variances, than they would

exhibit at equilibrium. Conversely, an assemblage that begins with

some species well below, and others well above, their equilibrium

values, dynamics may appear initially highly asynchronous relative

to equilibrium, as over-abundant species persistently decline

and under-abundant species increase towards their respective

equilibria.

A comprehensive assessment of how these biases may influence

empirical estimates of DSRs in nature is not possible, as few studies

report evidence for or against underlying temporal trends in species

abundances. However, two findings from recent meta-analyses

suggest that experimental estimates of DSRs are unlikely to be

consistently biased, relative to DSRs on natural diversity gradients.

Firstly, one might expect shorter experiments to be more dominated

by transient dynamics, but there does not appear to be any relation-

ship between experiment duration and the effect of diversity on

either population or community variability. Secondly, there are no

significant differences in the mean effect sizes of DSR studies that

involve direct diversity manipulations, indirect manipulations or that

use natural diversity gradients (Campbell et al. 2011; also see Jiang

& Pu 2009). However, studies of the DSR on natural diversity gra-

dients do exhibit greater among-study variability than manipulative

studies (Campbell et al. 2011). Thus, natural diversity gradients

produce more instances in which portfolio effects do not occur

(e.g. Rodriguez & Hawkins 2000; DeClerck et al. 2006), but they

also produce instances of very strong portfolio effects (e.g.

McNaughton 1985; Mouillot et al. 2005; Romanuk et al. 2009). This

indicates that the non-random addition of species that occurs along

natural diversity gradients adds more complexity to the community-

level effects of diversity than may be apparent in experimental
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studies (Mittelbach et al. 2001; Huston & McBride 2002), and high-

lights the importance of having a framework for understanding

DSRs that is robust to idiosyncratic changes in species’ mean

abundances, variances and covariances with increasing diversity,

such as eqn 3.

CONCLUSIONS AND FUTURE DIRECTIONS

The framework developed here makes explicit the relationships

between several phenomena that previous theoretical and empirical

studies have found to have important effects on the diversity–stabil-
ity relationship, by relaxing several important simplifying assump-

tions that have been employed in various combinations in previous

study. It makes explicit how the DSR depends on how two quanti-

ties change with diversity: the weighted average species-level

variability (gCV s
n ), and community synchrony (/). Moreover, it clari-

fies how the strength of overyielding (x), and the slope of the

mean-variance scaling relationship (b), interact to influence popula-

tion and community variability. Both species-level variability and

synchrony depend on evenness, and, in most cases, are likely to

vary as a function of diversity. This synthesis reveals important

interactions between these different phenomena that influence the

strength, and even the direction, of the DSR.

Our framework also suggests several particularly promising areas

for further study. In particular, the synchrony index, / is the key

community property linking population and community variability.

Only three empirical studies to date have explicitly estimated this

quantity (Isbell et al. 2009; Roscher et al. 2011; Yang et al. 2011).

However, virtually all empirical studies of the DSR collect the data

necessary to estimate /, meaning that a re-examination of existing

data has the potential to rapidly flesh out our understanding of

how / changes with diversity in different types of assemblages.

Similarly, population-level variability is universally understood to

have a key influence on the DSR, but the way population variabil-

ity is measured is inconsistent. Some studies quantify population

variability separately by species; others compute (unweighted) aver-

ages across species at each diversity level; still others compute

means and variances separately for all species at all diversity levels,

and examine the aggregate relationship for systematic changes with

diversity. Indeed, this inconsistency has been identified as a key

barrier to our understanding of the relationship between popula-

tion and community variability (Campbell et al. 2011). Equation 3

reveals that the critical measure of population variability, at least

from the standpoint of the DSR, is a weighted average, gCV s
n .

To date, no empirical studies of the DSR have measured popula-

tion variability in this way (although most studies will have col-

lected the data necessary to do so), suggesting that a re-

examination of population variability and synchrony in empirical

studies of the DSR may offer fresh insights into diversity–stability
relationships in nature.

The development of portfolio effect theory by analysis of proper-

ties of the community covariance matrix (eqn 1b), or by analysis of

community-dynamic models, have often been seen as mutually

exclusive alternatives (Loreau 2010). However, statistical frameworks

such as that proposed here can provide a common language for the

interpretation and comparative analysis of studies of the DSR in

both empirical and model communities. Community-dynamic mod-

els produce long-run means and variances of population and com-

munity abundance, and thus their outputs can be interpreted within

the framework outlined here, just as empirical data can. Such

approaches can reveal how particular assumptions about population

dynamics and species interactions impose particular constraints on

the diversity-dependence of community synchrony (Loreau 2010),

and average population variability (Tilman 1999), as well as on the

particular components of species-level variability, such as the

nature of the mean-variance scaling relationship (e.g. Tilman 1999;

Kilpatrick & Ives 2003).
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