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Abstract

Pathogenicity differences among laboratory isolates of the dominant clonal North American and European lineages of
Toxoplasma gondii are largely controlled by polymorphisms and expression differences in rhoptry secretory proteins (ROPs).
However, the extent to which such differences control virulence in natural isolates of T. gondii, including those from more
diverse genetic backgrounds, is uncertain. We elucidated the evolutionary history and functional consequences of
diversification in the serine/threonine kinase ROP18, a major virulence determinant in the mouse model. We characterized
the extent of sequence polymorphism and the evolutionary forces acting on ROP18 and several antigen-encoding genes
within a large collection of natural isolates, comparing them to housekeeping genes and introns. Surprisingly, despite
substantial genetic diversity between lineages, we identified just three principal alleles of ROP18, which had very ancient
ancestry compared to other sampled loci. Expression and allelic differences between these three alleles of ROP18 accounted
for much of the variation in acute mouse virulence among natural isolates. While the avirulent type III allele was the most
ancient, intermediate virulent (type II) and highly virulent (type I) lineages predominated and showed evidence of strong
selective pressure. Out-group comparison indicated that historical loss of an upstream regulatory element increased ROP18
expression, exposing it to newfound diversifying selection, resulting in greatly enhanced virulence in the mouse model and
expansion of new lineages. Population sweeps are evident in many genomes, yet their causes and evolutionary histories are
rarely known. Our results establish that up-regulation of expression and selection at ROP18 in T. gondii has resulted in three
distinct alleles with widely different levels of acute virulence in the mouse model. Preservation of all three alleles in the wild
indicates they are likely adaptations for different niches. Our findings demonstrate that sweeping changes in population
structure can result from alterations in a single gene.
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Introduction

Toxoplasma gondii provides a valuable model for studying the

evolution of pathogens because it is widespread and infects

virtually all warm-blooded vertebrates, including companion and

agricultural animals. This remarkably successful parasite is easily

acquired by ingesting either oocysts (excreted by cats) or tissue

cysts (in undercooked meat) [1]. These different modes of

transmission allow efficient spread via water or food borne

ingestion and result in very high prevalence rates of chronic

infection in animals and humans [1]. Despite the presence of a

sexual cycle, which occurs only in cats, the population structure

can be remarkably clonal, with just three highly similar lineages

predominating in North America and Europe [2–4]. These

lineages were previously referred to as types I, II, and III (or

groups 1, 2, and 3) and are referred to here as ‘‘the clonal

lineages’’. Estimates of the common ancestry of these clonal

lineages indicates that a dramatic genetic sweep lead to the

successful expansion of these lineages during the past ,10,000

years [5]. In contrast, distinct strains from South America are

more genetically variable, reflecting both asexual and sexual

propagation. Phylogenetic and population genetic analyses

indicate that northern and southern strains diversified during

geographic separation over the past several million years [6,7].

The three clonal lineages in the North share a monomorphic

version of chromosome Ia, which appears to have arisen

coincident with their origin, and which has more recently

penetrated into the South [7,8].

Comparison of interstrain polymorphisms suggests the clonal

lineages originated from only a few genetic crosses between highly

related parents (1–2% divergence), engendering an unusual

pattern of biallelism at most loci [9]. Within these otherwise

highly homogeneous genomes, a small number of polymorphic

genes encode variable surface antigens (SAGs) and antigenic

proteins secreted from rhoptries (ROP) or dense granules (GRA)

[10–13]. Despite their genetic similarities, the northern clonal
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lineages differ markedly in their virulence to outbred laboratory

mice: type I strains are acutely virulent with an estimated 100%

lethal dose (LD100) of a single organism, while types II and III are

relatively nonvirulent (LD50.105) [14]. Mice are a natural host for

T. gondii, and the laboratory mouse provides an excellent model for

establishing differences in pathogenesis between parasite strains.

Type I strain show faster rates of replications in vitro [15],

enhanced migration in vitro and in vivo [16], and reach higher tissue

burdens [17] in laboratory mice. While acute mortality exhibited

in mice may not be directly extrapolated to other hosts, such

experimental models can identify candidate factors that may

influence the outcome of infection in other hosts, potentially

affecting transmission and disease.

Various factors are likely to influence the outcome of human

infection, including the genotype of the parasite. However,

because human-to-human transmission plays little role in the

evolution of T. gondii, any contribution of parasite genotype to

pathogenesis is an indirect consequence of adaptation in other

hosts. The vast majority of human cases of toxoplasmosis that have

been described in North America and Europe belong to the type II

genotype [4,18]. Type II strains often cause mild infection in

healthy individuals, and yet can very severe congenital infection

and acute severe toxoplasmic encephalitis in AIDS patients. While

relatively uncommon in the wild, type I strains have been

associated with several small cohorts of human congenital

toxoplasmosis and opportunistic infection in AIDS patients

[19,20], suggesting type I strains may be more likely to cause

disease in permissive hosts. In other regions of the world,

genetically more diverse strains have been associated with severe

infection. For example, atypical genotypes of T. gondii predominate

in French Guyana where severe infections have been described in

otherwise healthy adults [21,22]. Divergent genotypes of T. gondii

have also been associated with severe ocular toxoplasmosis in

southern Brazil [23] and in the United States [24]. Notably, strains

from both of these South American regions are acutely virulent in

the mouse model, similar to the type I lineage.

The marked phenotypic differences expressed in the murine

model have been utilized to explore the contribution of parasite

genotype to pathogenesis. Excellent forward and reverse genetic

systems have recently supported genome-wide analyses of the factors

that control phenotypic differences between the clonal lineages.

Independent screens have converged on secretory proteins,

discharged from apical organelles called rhoptries, as key modulators

of both host gene transcription [25] and of acute virulence in the

mouse model [26,27]. During host cell invasion, the parasite

discharges the contents of rhoptries into the host cell, thereby

delivering a variety of kinases, phosphatases, and other potential

effectors directly into the host cell [28,29]. Genetic mapping studies

have shown that the primary determinant of acute mouse virulence

in type I strains of T. gondii is a polymorphic rhoptry kinase known as

ROP18, which relies on serine/threonine (S/T) kinase activity to

promote growth [30], and enhance virulence in the mouse model

[27]. ROP18 and other polymorphic ROPs have been implicated in

the more subtle differences in pathogenicity that occur between types

II and III strains in the mouse model [25,26]. Despite these

advances, the phenotypic consequences of variation in ROP18 in

genetically diverse, natural isolates of T. gondii remain uncertain.

Here, we examined the contribution of genetic variation at ROP18

to the natural variation in mouse virulence and the population

structure of T. gondii.

Results/Discussion

ROP18 Is among the Most Divergent Genes in T. gondii
The clonal lineages of T. gondii are 98% identical at most loci,

reflecting the close similarity of parental lineages that gave rise to

them [9]. Within lineage polymorphism is significantly lower, on

the order of 1 change in 10,000 base pairs (bp), consistent with the

very recent ancestry of the three clonal lineages [5]. In comparing

inter-lineage diversity, certain genes exhibit more polymorphism

and hence might underlie phenotypic variation between strain

types. We compared the diversity of genes encoding polymorphic

surface and secretory antigens (i.e. SAGs, ROPs, GRAs) with ROP18

and other putative virulence factors identified by previous genetic

mapping studies [25–27]. For comparison, we included several

housekeeping genes and introns, previously used for phylogenetic

studies [7]. Polymorphism was characterized in a total of 32

separate loci using the recently completed genome sequences from

archetypal strains of the type I, II and III (Table S1). Four of the

five most variable genes identified belonged to the ROP family,

with ROP18 being the most diverse (Figure 1A). Interestingly,

three of these belong to the ROP2 family of proteins that contain a

serine threonine kinase domain [31]. While most are predicted to

be catalytically inactive, ROP18 retains activity [30] and this is

required for its virulence enhancing potential [27]. Although

variable, most of the ROPs showed little evidence of positive

selection (based on the proportion of nonsynonymous (pNS)/

synonymous (pS) substitutions) regardless of whether they are

predicted to be pseudokinases (i.e. ROP2, ROP5) or active

members of this family (i.e. ROP16, ROP17). In contrast, strong

evidence of positive selection was identified for ROP18 and several

polymorphic dense granule (GRA) antigens (i.e. GRA3, GRA6,

GRA7) [10,12,13] (Figure 1B). While most genes conformed to the

expected biallelic pattern of inheritance [9], three atypically

divergent alleles were found at ROP18 (Figure 1C). ROP18 is thus

distinguished by uncommonly abundant polymorphism, which

may be at least partially attributed to strong, positive selection.

Only Three Common ROP18 Alleles Account for Its
Exceptional Genetic Diversity

Previous studies have shown that ROP18 plays a prominent role in

mediating virulence differences between laboratory isolates of clonal

Author Summary

The determinants of virulence are rarely defined for
eukaryotic parasites such as T. gondii, a widespread
parasite of mammals that also infects humans, sometimes
with serious consequences. Recent laboratory studies have
established that variation in a single secreted protein, a
serine/threonine kinase known as ROPO18, controls
whether or not mice survive infection. Here, we establish
the extent and nature of variation in ROP18 among a
collection of parasite strains from geographically diverse
regions. Compared to other genes, ROP18 showed
extremely high levels of diversification and changes in
expression level, which correlated with severity of infection
in mice. Comparison with an out-group demonstrated that
changes in the upstream region that regulates expression
of ROP18 led to an historical increase in the expression and
exposed the protein to diversifying selective pressure.
Surprisingly, only three atypically distinct protein variants
exist despite marked genetic divergence elsewhere in the
genome. These three forms of ROP18 are likely adaptations
for different niches in nature, and they confer markedly
different virulence to mice. The widespread distribution of
a single mouse-virulent allele among geographically and
genetically disparate parasites may have consequences for
transmission and disease in other hosts, including humans.

Population Strucure and Virulence of T. gondii
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lineages of T. gondii [26,27], yet its role in the pathogenesis of natural

isolates remains unknown. To compare the genetic diversity of

ROP18 in T. gondii, we characterized 25 representative isolates

representing the 11 previously defined haplogroups, sampled from

animals and humans in North America, Europe, and South America

(Table S2). Genetic diversity in ROP18 was compared within eight

introns from five unlinked loci, two surface antigen genes (i.e. SAG1

and SAG2), the secreted protein GRA3, and two house keeping genes

(i.e. actin and b-tubulin). Phylogenetic analysis of the intron sequences

revealed 11 main haplogroups, which occupy particular geographic

ranges (Figure 2A), consistent with previous findings [7]. Although

individual gene tress reconstructed from the less variable SAG1 and

SAG2 sequences resolved fewer lineages, these were generally

concordant with the topology established from intron sequences

(Figure 2A). GRA3, which was one of the most highly polymorphic

genes identified in Figure 1, showed greater divergence than the

SAGs (Figure 2B). The several identified alleles of GRA3 did not

correlate with either geographic distribution or virulence in murine

infections (Figure 2B).

The extent and distribution of variation evident in ROP18 alleles

contrasts sharply with the patterns seen in other genes. Firstly, only

three major lineages of ROP18 are evident, each typifying one of

the three clonal lineages that predominate in North America and

Europe (designated as ROP18I*, ROP18II*, and ROP18III* alleles)

(Figure 2C). Secondly, diversity in ROP18 is an order of magnitude

greater than that of SAG1 and SAG2, which themselves may

experience diversifying selection [11]. Finally, the vast majority of

South American isolates share the type I* allele characteristic of

the highly virulent North American lineage. In total, members of 8

different haplogroups were found to express ROP18I* alleles.

Collectively, these findings reveal that the history of ROP18 is very

different from that of the rest of the genome, resulting in the

survival of only three, highly divergent allelic types.

Polymorphism in ROP18 Is Asymmetrically Distributed
Divergence between the clonal lineages extends for approxi-

mately 30 kilobase pairs (kb) surrounding ROP18, the peak

divergence occurring in the coding sequence (Figure S1). To better

Figure 1. Diversity among T. gondii genes varies by category of coding function. A) Sequence diversity of genes and intronic sequences
between representatives of type I (GT1), type II (ME49) and type III (VEG) strains of T. gondii. Loci listed at the bottom in rank order, annotations in
Table S1. B) Ratio of pNS/pS as an indication of positive selection. Pairwise comparisons of sequences between strains as indicated. C) Neighbor
joining trees reconstructed from variation in the five most divergent genes. Scale = substitutions per site.
doi:10.1371/journal.pgen.1000404.g001

Population Strucure and Virulence of T. gondii
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understand whether alleles of ROP18 have experienced atypical

evolutionary pressures, we classified the extent of synonymous (S)

vs. nonsynonymous (NS) mutations at this and several other genes,

including housekeeping genes (i.e. actin and b-tubulin), the surface

antigens (i.e. SAG1, SAG2), and GRA3. This comparison was based

not only on the clonal lineages, but on all strains that were

grouped by their ROP18 alleles into major types as defined in

Figure 2B. Both S and NS substitutions were much more frequent

Figure 2. Phylogenetic analysis reveals ROP18 is highly divergent relative to other loci. A) Combined analysis of 8 introns from 25 strains
defines 11 major haplogroups of T. gondii that show strong geographic segregation. Separate gene trees for the antigens SAG1 and SAG2 show
overall lower diversity of alleles but approximate the same level of divergence seen in the combined intron tree. B) The highly polymorphic gene
GRA3 shows deeper branching of multiple major alleles, which are not associated with geographic region or virulence. C) In contrast the much higher
genetic divergence of ROP18 is partitioned into only three major alleles (denoted by I*, II*, and III*). Neighbor-joining analysis with 1000 bootstraps
(values shown at major nodes). Color-coded by continent of origin: North America-Europe (blue), South America (red), widespread (denoted as Pan,
black).
doi:10.1371/journal.pgen.1000404.g002

Population Strucure and Virulence of T. gondii
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in ROP18 than in surface antigens (SAGs), GRA3 or housekeeping

genes (Figure 3A). Such mutations were distributed throughout the

ROP18 gene and were not due to changes in the usage of

nucleotides or codons (data not shown). The ratio of pNS/pS

substitutions, which indirectly measures the selective advantage of

mutations incurring amino acid substitutions, was greater in

ROP18 (,2.5 average pairwise comparison for I* vs. II*, I* vs.

III*, and II* vs. III*)) than in SAG1 (,1.29 average pairwise

comparison). This was especially evident when comparing

ROP18I* and ROP18II* (3.54) while a higher proportion of S

changes in ROP18III* resulted in lower ratios (average value of

pNS/pS = 1.32 for ROP18III* vs. ROP18I* and ROP18III* vs.

ROP18II*, (Table S3)). Phylogenic trees drawn based on S vs. NS

differences illustrate the marked deficiency of synonymous changes

differentiating ROP18I* and ROP18II* from each other

(Figure 3B). These data imply markedly different selective

pressures have shaped the divergence among these three ROP18

alleles over time.

Deep divergence also characterizes other members of the ROP2

family, which contains a number of predicted pseudokinases of

unknown function [31]. Although the ancestry described here for

ROP18 may reflect that of the ROP2 family more generally,

ROP18 is notable among this group for showing evidence of

strong diversifying selection. ROP18 is also the only member of

this group known to be catalytically active and directly implicated

in virulence, hence it is reasonable to assume that selection on this

locus had important functional consequences.

ROP18I* Alleles Confer Acute Virulence in the Murine
Model

Previous studies have shown that ROP18 is under expressed in

the type III lineage, providing a suitable background for testing

Figure 3. Polymorphism of ROP18 between major alleles. A) Cumulative nonsynonymous (NS) and synonymous (S) polymorphisms in ROP18
are significantly higher than surface antigens, GRA3, or housekeeping genes. B) Phylogenetic analysis of ROP18 analyzed separately for
nonsynonymous changes (left) and synonymous changes (right) reveals a strongly asymmetric pattern. The major difference between types I* and II*
is due to nonsynonymous changes. Scales = substitutions/site.
doi:10.1371/journal.pgen.1000404.g003
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gain-of-function by transgenic expression [27]. Expression of the

type I allele of ROP18 in the type III background reconstitutes the

acutely virulent phenotype characteristic of the type I clonal

lineage [27]. While additional ROP18I* alleles share similarities

with the virulent allele from the clonal type I tested previously

(corresponding to group I*a) [27], they also differ significantly

from one another, , presumably due to genetic drift (Figure 4A).

Hence, we undertook a similar reverse genetic analysis with the

newly identified subtypes of ROP18I* in order to determine if they

were also capable of conferring acute virulence or if they had lost

this trait due to mutation. We chose three representative isolates

for this analysis from different branches of the ROP18I* tree that

have not been previously analyzed; including RUB (ROP18I*b),

MAS (ROP18I*c) and CAST. These strains are all acutely virulent

in mice (Table S2). We established three separate transgenic lines

from each of the parasite isolates, using standard methods for

epitope tagging and isolation of stable lines, as described

previously [27]. Expression and localization to the rhoptries was

confirmed by immunofluoresence staining of the Ty-epitope tag in

reference to the endogenous rhoptry protein ROP1 (Figure 4B).

Expression levels comparable to the previously derived transgenic

line expressing ROP18Ia* (V1 clone, described previously [27])

were confirmed by western blotting (Figure 4C). Challenging adult

outbred mice with these transgenic parasites confirmed that the

new alleles of ROP18I* conferred acute virulence. Mice died

within 15–20 days, even when inoculated with few parasites (i.e. 10

tachyzoites) (Figure 4D). Collectively, these data indicate that the

majority of haplogroups of T. gondii express ROP18I* alleles, and

that these different variants all confer acute virulence in the mouse

model.

This finding is significant because it indicates that amino acid

substitutions conferring increased virulence have become fixed in a

lineage of ROP18I*, which is expressed by a wide range of isolates.

The widespread distribution of ROP18I* alleles indicates that this

gene and the traits it controls, confers a selective advantages in

certain settings.

Differences in the Expression of ROP18 Largely Explain
Differences in Murine Virulence

Previous genetic crosses between laboratory strains of clonal

types I and III, attributed most of the variance in virulence to

expression differences in ROP18 [26,27]. This difference in

expression has been ascribed to an additional DNA segment

upstream of the ROP18 gene in the type III lineage that alters

transcription [32]. To examine the contribution of ROP18

expression to the variation in virulence among natural isolates,

we examined the surrounding genomic regions and tested

expression by real-time quantitative PCR (qPCR). Substantial

differences in the upstream regions of ROP18 were evident when

the three clonal lineages were compared (Figure 5A). Direct DNA

Figure 4. Newly discovered ROP18I* alleles confer acute virulence. A) Phylogenic analysis of the ROP18I* alleles reveals three major groups
(denoted I*a, I*b, and I*c) plus a single node for strain CAST. Tree depicts the same data as in Figure 1B, plotted with an expanded scale. B) Expression
of RPO18I* alleles in transgenic lines and colocalization with ROP1 in the rhoptries was confirmed by immunofluorescence staining. ROP18I* alleles
were tagged with Ty (green) and visualized using mAb BB2. Endogenous control detected with rabbit anti-ROP1 (red). Representative clones are
shown for each allele subtype of ROP18I*. Scale bar = 5 microns. C) Three separate transgenic lines from representative strains as shown, expressed
ROP18I* alleles at comparable levels to the previously described ROP18Ia V1 clone (+control) [27]; vector only control (2control). ROP18 was detected
with mAb to the Ty-tag, rabbit anti-actin provided as loading control. D) Mouse survival assays demonstrating that expression of ROP18I* alleles in
the type III background resulted in increased mortality. Cumulative mortality following challenge with 10, 100, and 1,000 parasites for each of three
clones is plotted as a single line per clone (CL). Control is transgenic type III strain containing only the Ble vector.
doi:10.1371/journal.pgen.1000404.g004
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sequencing revealed that Types I and II were highly similar, aside

from the tandem duplication of three copies of a 44 bp block in

type II, while this region only occurs once in type I (Figure 5A). In

contrast, the type III lineage contains a ,2 kb segment of DNA

upstream of the ROP18 gene that was not present in types I or II

(Figure 5A). There is no similarity of this upstream segment (UPS)

to other regions of the genome nor is there any homologous

sequence in NCBI (data not shown). Using specific PCR primers

that distinguished the upstream region of types I and II (primers

A/B) from type III (primers C/D), we demonstrated that they

amplified mutually exclusive fragments from genomic DNAs

derived from a set of representative clonal isolates (Figure 5B,C).

This analysis confirmed that the UPS is unique to the type III

lineage (Figure 5B). Further analysis of a wider collection of strains

from other haplogroups identified the UPS only in members of

type III (group 3), group 9, and a single member of group 4 (i.e.

CASTELLS). All other strains lacked the UPS (Figure 5C).

Sequencing the coding regions of ROP18 III* alleles confirmed

that these were always flanked by the UPS, which was invariably

lacking in ROP18 I* and ROP18II* alleles (data not shown).

We also tested all of the above strains for acute virulence in the

mouse model described previously [27], and evaluated expression

based on qPCR. Strains containing the UPS expressed low levels

of ROP18 and were nonvirulent in outbred mice, whereas the

opposite was true of parasites lacking the UPS (Figure 5D). In

total, 17/18 type I* strains were acutely virulent while 6 of 8 type

III* were avirulent (Table S2). Rare exceptions to this pattern (i.e.

BOF for type I*; P89 and CASTELLS for type III*) were not due

to differences in either the coding or the upstream regions of

ROP18 (sequencing data not shown), and presumably arise from

other genetic differences. For example, BOF contains a type I*

allele, lacks the UPS, and shows high expression of ROP18, yet is

avirulent in the mouse model, presumably due to a defect in some

other pathway needed for efficient infection. Importantly, this

strain was isolated from an AIDS patient, suggesting it may only

be pathogenic in immunocompromised hosts (Table S2). Con-

versely, P89 and CASTELLS contain a type III allele and the

corresponding UPS, consistent with their low expression of

ROP18, yet they both show high levels of virulence. Presumably

this is the result of another favorable combination of genes that

enhance pathogenicity, as these strains are not conventional

members of the type III clonal lineage, but rather divergent

isolates. Importantly, the variation in expression level among type

I or type III strains differed by more than an order of magnitude,

without altering their respective phenotypes (Figure 5D). Whereas

virulence in ROP18I* and ROP18III* expressing strains tended to

be all or none, virulence among ROP18II* expressing strains

increased with the expression level (Figure 5D). Among strains

expressing type II* alleles, expression level and mortality were

highly correlated (r = 0.68) as shown by linear regression analysis

(line in Figure 5D). Consistent with this, previous reports indicate

that over-expression of the type II allele in the type III background

leads to a dramatic increase in virulence [26]. The low level of

expression of ROP18III* may be finely tuned to the genotype as a

whole, since it has thus far not been possible to over-express the

type III allele or to disrupt ROP18 by homologous recombination

(data not shown). Overall, the combination of allele and expression

level of ROP18 correlates with acute virulence in 30 of 33 strains

included here. Hence, differences in acute virulence among these

isolates can be largely explained by the allele of ROP18 and the

extent of its expression.

DNA Rearrangements Were Associated with
Upregulation of ROP18 Expression

The striking increase in ROP18 expression in the absence of the

UPS, previously established for laboratory strains [32], also

characterizes our broader sample of natural isolates. Two

scenarios could explain how such difference came to be: 1) the

UPS was inserted in the ancestor that gave rise to group 3 (type III)

and group 9, or 2) the UPS was deleted from (or rearranged in) the

common ancestor to the ROP18I* and ROP18II* alleles. To test

these two models, we used an out-group comparison to infer the

ancestral condition of this genomic region, employing the

homologous sequence from the animal pathogen Neospora caninum

[33]. Previous estimates based on small subunit RNA and the

internal transcribed spacer (ITS) region of the ribosomal RNA

indicate T. gondii shared a common ancestor with N. caninum ,10

million years ago [5]. A syntenic block encompassing ROP18, and

the two genes flanking it, was identified in N. caninum (available

whole genome sequence assembly generated by The Wellcome

Trust Sanger Institute (http://www.sanger.ac.uk/sequencing/

Neospora/caninum/), allowing comparison to T. gondii (Figure 6).

Like ROP18III*, the ROP18 gene in N. caninum included a UPS

region not present in either ROP18I* or ROP18II* (Figure 6).

Clustal analyses revealed that N. caninum was ,54% identical to

ROP18III* in this upstream region, and ,68% identical in the

coding region. Thus, the UPS region, evidently present in the

common ancestor of all T. gondii, was lost by deletion or

rearrangement in the ancestor to the more recently derived

ROP18I* and ROP18II* alleles.

ROP18 Shows a Biphasic Ancestry Associated with
Expansion of Virulence

The high degree of divergence among allelic lineages of ROP18

suggests it has either undergone faster change or evolved over a

longer period of time, relative to most regions of the genome. To

differentiate among these alternative explanations, we compared the

extent intra-lineage variation in ROP18 to that present in several

surface antigen genes in 17 representative members of the clonal

lineages. ROP18 did not contain more polymorphism than did other

genes or introns, suggesting no elevation in its rate of molecular

evolution (Table S4). Indeed, as previously derived from putatively

neutral loci such as introns [5], the scarcity of unique polymorphisms

in ROP18 within each of the three clonal types is consistent with the

model that they originated within the last ,10,000 years (Table S4).

Because ROP18 has not been changing at an especially rapid rate,

our data instead suggest that the principal alleles have been

maintained for an especially long period of time.

Figure 5. Expression levels of ROP18 correlate with acute virulence. A) Schematic of ROP18 coding and upstream regions based on sequence
analysis of the three clonal lineages. A ,2 kb upstream segment (UPS) shown in black (not to scale) is unique to the type III genotype. Type I and II
are similar, although Type II contains three tandem repeats of a 44 bp region that is only found once in type I. B) PCR analysis from genomic DNA of
clonal isolates (group) demonstrating only type III strains (group 3) contain the UPS region (primers C/D). C) Differential amplification of the upstream
regions from a variety of strains reveals that most strains lack the UPS (positive with primers A/B) and resemble types I and II, while the UPS is limited
to types 3, 9 and CASTELLS. D) Acute mortality in outbred mice (% cumulative mortality) is correlated with allele-type and level of expression of
ROP18 as determined by qPCR. Strains include those in Table S2 where mortality data is available. Correlation of expression level in type II* stains is
plotted as a linear regression, r = 0.68.
doi:10.1371/journal.pgen.1000404.g005
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Figure 6. Evolutionary history of the upstream region in T. gondii compared to the out-group N. caninum. Pairwise sequence
comparisons of genomic sequences between T. gondii strains and N. caninum showed the region surrounding ROP18 is highly syntenic with
preservation of gene order and intergenic regions in N. caninum. The upstream region (UPS) of type III ROP18 (VEG) is found in N. caninum but is
absent in type I (GT1) and type II (ME49), indicating that it was retained by type III* but lost in the ancestor to types I* and II*. The small region of
dissimilarity between type I (GT1) and type II (ME49) corresponds to a slight difference in the rearrangements that presumably occurred in these
lineages as shown in Figure 5A. X-axis is length in bp. Y-axis indicates the similarity values between two strains.
doi:10.1371/journal.pgen.1000404.g006
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Network analysis of the ROP18 genes from the complete set of

strains confirmed that the sequences cluster as three discrete nodes

(Figure 7A). To estimate when the major ROP18 alleles began

diverging, we employed a model based on the accumulation of

synonymous mutations and estimated the time since a common

ancestry based on several assumptions for an average neutral

mutation rate. These analyses revealed that the ROP18 III* allele

shared a common ancestor ,10 million years ago, while ROP18I*

and ROP18II* diverged ,1 million years ago (Figure 7A, Table

S5). Although these age estimates are based on synonymous sites

that are not expected to be under direct selection, it is still possible

that diversifying selection acting on nearby nonsynonymous sites

could have inflated the coalescence estimate. Despite uncertainty

about the absolute ages of these alleles, two periods diversification

are nonetheless evident. Over a relatively long initial period,

primarily neutral substitutions accumulated between ROP18 III*

and the common ancestor of ROP18I* and ROP18II*. A later

period of diversifying selection drove expansion of ROP18I* and

ROP18II* to differ markedly in their amino acid composition

(pNS/pS ratio = 4.66) (Figure 7A, Table S3). The majority of

extant haplogroups (8 of 11 studied here) are typified by ROP18I*,

demonstrating that this allele has successfully expanded since its

relatively recent origin.

A Model for Evolution of Virulence by Alterations at a
Single Locus

Our data are consistent with a model that the common ancestor

of the more closely related ROP18I* and ROP18II* alleles lost the

expression-suppressing UPS that occurs in ROP18III* and in the

out-group homologue, ROP18Nc-1 (Figure 7B). The resulting

DNA deletion or rearrangement lead to upregulation of ROP18

expression in ROP18I* and ROP18II* alleles. Subsequent

expansion of these alleles substantially shaped the population

structure of T. gondii. The highly virulent ROP18I* allele

predominates among known haplogroups, especially those in

South America, whereas the type II* allele (conferring interme-

diate virulence) typifies most human and animal infections in

North America and Europe. Each of the three highly divergent

Figure 7. Evolutionary history of ROP18: changes in expression levels of ROP18 correlate with acute virulence. A) Network analysis of
ROP18 reveals two different periods of evolution. A long period of nearly neutral evolution differentiated type III* from the ancestor of types I* and II*.
More recently, the types I* and II* diverged under a period of strong selection. Acute virulence is associated with the successful expansion of the type
I* alleles. Table includes proportion of nonsynonymous (pNS)/synonymous (pS) substitutions for ROP18 (see also Table S3 for additional ratios). Age
estimates are based on synonymous changes in ROP18 from the data in Table S5. B) Out-group rooting using the ROP18 homologue in Neospora
caninum confirms that the type III* lineage has undergone a longer period of independent evolution than have types I* and II*, which shared a more
recent common ancestor. Neighbor joining analysis based on the coding regions of ROP18. Bootstrap values based on 1000 replicates. Color bars in
the ROP18 models for each strain type denote the positions of allele-specific SNPs.
doi:10.1371/journal.pgen.1000404.g007
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alleles of ROP18, conferring markedly different virulence levels in

laboratory mice, have been maintained over long periods of time,

suggesting that they confer selective advantages in particular

environmental circumstances.

Strains harboring ROP18I* have clearly enjoyed recent

evolutionary success, as they characterize 8 of 11 haplogroups

studied here, including a number of recently derived subgroups

that appear to be expanding. However, it is doubtful that the acute

virulence as expressed in the laboratory mouse model would be

adaptive in natural hosts. Laboratory mice, while a convenient

model, are likely more susceptible than many species that are

natural hosts of T. gondii. For example, other rodents (Peromyscus

spp., Rattus spp.) survive infections with type I strains of T. gondii

and develop chronic infection [34,35], promoting eventual

transmission to other hosts. Thus, a reasonable hypothesis is that

while ROP18I* leads to mortality in especially vulnerable hosts,

such as the laboratory mouse, it instead facilitates the establish-

ment of infection in resistant hosts, thus enhancing transmission.

By contrast, type II strains are intermediate in virulence in

laboratory mice, express a proclivity for developing into tissue cysts

[36], and modulate host immune responses [25,37,38]. Collec-

tively, such adaptations may promote the establishment of chronic

infection (although this genotype has also been associated with

immunopathology in several models [39,40]). Clearly enhanced

pathogenicity is not always advantageous to parasite fitness.

Adaptation to an alternative niche may explain the long-term

persistence of lineages expressing ROP18III*. While the ROP18III*

allele is expressed at very low levels, it is not a pseudogene and

despite its very high divergence, it preserves all of the essential

residues in the S/T kinase domain necessary for activity (data not

shown). This suggests that low levels of expression may be an

adaptation for infection in some particular hosts, potentially those

that are highly susceptible to infection. Defining the precise

advantages of each of these alleles will require further studies of the

transmission between natural hosts and a better understanding of

the population genetic structure in the wild.

Mathematical modeling studies predict that pathogens may evolve

greater virulence provided that doing so does not reduce their

potential for transmission [41]. A clear relationship between

enhanced growth, transmission, and virulence has previously been

demonstrated in other pathogens, including malaria [42]. Typically

the underlying molecular mechanisms for such adaptations are not

known. Our findings indicate that changes in the expression of a

single gene, that has undergone strong diversifying selection, has

markedly increased virulence as monitored in laboratory mice.

Understating pathogenic determinants of T. gondii in model systems,

will facilitate future studies to more precisely evaluate the

contribution of parasite genotype and specific genes, to transmission

in natural hosts and potentially for human disease.

Materials and Methods

Comparison of T. gondii Gene Diversity
Sequences of 32 loci from representative genomes of clonal

lineages type I, II and III, were downloaded from the T. gondii

genome database (www.toxodb.org). These 32 loci include surface

antigens, secretory proteins such as rhoptries, and dense granules,

as well as housekeeping genes and introns that are presumed not to

be undergoing positive (diversifying) selection (Gene ids given in

Table S1). Clustal X/W [43] was used to align the sequences to

calculate the percentage diversity, expressed as changes per

100 bp. The proportion of synonymous and nonsynonymous

changes in coding regions were calculated using the Synonymous

Nonsynonymous Analysis Program (SNAP) [44]. Neighbor-

Joining phylogenetic trees were constructed using Molecular

Evolutionary Genetic Analysis (MEGA) Version 3.1 [45].

Sequencing and Phylogenetic Analysis of T. gondii Strains
Twenty five strains representing the 11 previously described

haplogroups of T. gondii found in North America, Europe and South

America were chosen for analysis [7]. These isolates were selected

from more than 300 that have been previously genotyped based on

the following criteria: known source (host and geography), passage

history, mutlilocus genotyping and assignment to haplogroups,

phenotypic data in animals. Parasites were propagated as

tachyzoites in monolayers of human foreskin fibroblasts (HFF) [5]

and lysates were made for PCR-based sequencing [7]. The

frequency of single nucleotide polymorphisms (SNPs) were

determined by sequencing three classes of loci: 1) noncoding

regions consisting of 8 introns from 5 unlinked loci, 2) the

housekeeping genes b-TUB and TgActin and 3) the surface antigen

genes SAG1 and SAG2 in addition to coding regions of ROP18 (Gene

ids given in Table S1). Sequencing was conducted on PCR

amplified templates from each strain using BigDye cycle sequencing

(Applied Biosystems, Foster City, CA). Sequences were aligned with

Clustal X/W [43] and phylogenetic trees were derived using

Neighbor-Joining in Molecular Evolutionary Genetics Analysis

(MEGA), Version 3.1 [45]. P-distances were calculated for sequence

pairs after removal of insertions and deletions in 1000 bootstrap

replicates. Consensus trees were drawn with an arbitrary root and a

scale length of 0.0005 substitutions/site.

Cumulative Values of Synonymous and Nonsynonymous
Changes

Coding sequences were analyzed for cumulative values of

polymorphisms using the Synonymous Nonsynonymous Analysis

Program (SNAP) [44], based on the method of Nei and Gojobori

1986 [46] for conducting all pairwise comparisons of sequences in

an alignment, and incorporating a statistic developed by Ota and

Nei 1994 [47]. Ambiguous codons and insertions were excluded.

Phylograms of ROP18 based only on either synonymous or

nonsynonymous substitutions were performed using maximum

likelihood analysis in HyPhy [48] to infer rates of heterogeneity

and positive selection. These analyses were conducted assuming

the codon frequency matrix MG94xHKY85_3x4 and using

default setting for other values.

Cloning of ROP18 Alleles
The ROP18 gene was PCR amplified from genomic DNA of the

T. gondii strains RUB [21], CAST (ATCC# 50868) and MAS

(ATCC# 50870) and epitpoe tagged at the C-terminus using the

Ty-epitope tag, detected by mAb BB2 [49]. Plasmids expressing

C-terminal Ty-tagged ROP18 alleles were expressed under the

control of the TUB promoter in the pTUB-Ty vector described

previously [27]. The CTG strain (type III) was electroporated with

100 mg of pROP18I* plasmid DNAs and 10 mg of pSAG1/ble/

SAG1 in cytomix buffer, as described previously [50]. Clones were

isolated by single cell cloning in 96-well plates containing HFF

cells following two rounds of selection with phleomycin [50].

Individual clones were screened for expression of the Ty tag by

immunofluorescence and western blotting. A parallel transfection

containing only the backbone plasmid was used to isolate a control

transformant (denoted as CTG-Ble).

Expression Analyses of ROP18 Alleles
ROP18 was localized in transgenic parasites by immunofluore-

sence labeling using the mAb BB2 to the Ty tag [49] followed by
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secondary antibodies conjugated to Alexa 488 and counter

staining with rabbit anti-ROP1 followed by secondary antibodies

conjugated to Alexa 594, as described previously [27]. Slides were

washed in PBS and mounted in Vectashield with 49,6-diamidino-

2-phenylindole (DAPI) (Vector Laboratories, Inc, Burlingame,

CA), examined with a Zeiss Axioscope (Carl Zeiss Inc, Thorn-

wood, NY), and images were acquired with an AxioCam CCD

(Zeiss) camera using Axiovision software v4.0 (Zeiss) and processed

using Photoshop v7.0.

Proteins were resolved on 10% polyacrylamide gels using

Laemmeli running buffer, transferred onto a nitrocellulose

membrane by semi-dry electrotransfer and blocked in PBS

containing 5% nonfat dry milk, 5% goat serum and 0.05%

Tween 20. Blots were incubated for 1 hr at room temperature

with mAb BB2 anti-Ty antibody (1:1000) and M03792 rabbit

antibody against actin (1:2000) as a loading control. After washing,

the membrane was incubated for 1 hr at room temperature with

goat anti-mouse IgG and goat anti-rabbit IgG conjugated to

horseradish peroxidase (HRP) (1:10,000) (Jackson ImmunoRe-

search Laboratories, Inc., West Grove, PA). The membrane was

washed for 30 min and the antibody complexes were revealed by

chemiluminescence using enhanced chemiluminescence (ECL

SuperSignal; Pierce Biotechnology, Rockford, IL).

Mouse Virulence Assays
Animals were maintained in an AAALAC-approved facility and

experiments were done under approval from the Washington

University Animal Care Committee.

Acute virulence was monitored by determining cumulative

mortality after i.p. injections of 10, 100, or 1000 tachyzoites into

groups of 5 outbred CD1 mice/dose, as defined previously [27].

Animals were monitored for 30 days and any surviving animals

were serologically tested by Western blot against whole tachyzoite

lysate from the RH strain at 1:1000 dilution of serum and 1:10,000

dilution of goat anti-mouse IgG HRP (Jackson ImmunoResearch

Laboratories, Inc., West Grove, PA). Signals were detected by

ECL using SuperSignal (Pierce Biotechnology, Rockford, IL).

Samples were compared to uninfected and chronically infected

mice. Cumulative mortality was defined as the number of deaths/

number of animals infected (those that died or were seropositive)

and plotted as a single line for all doses combined for each

transgenic clone.

PCR-Based Analysis of the Upstream Region of ROP18
DNA lysates were prepared from freshly egressed parasites, as

described previously [7]. To identify the presence of the insert

upstream of ROP18 in T. gondii strains, the target DNA sequence

was amplified by PCR in a PTC-100 Thermal Cycler, (M.J

Research, Reno, NA) using primer pairs specific for detecting the

presence (Insert ROP18-F 59 - CACAGCATGAGC TTAA-

GAGTTG -39 (Primer C) and Insert ROP18-R 59 - CACCG-

CAAGACAGGCTGTCTTC - 39 (Primer D)) or absence

(ROP18-F 59 - CTAGCCACGCTATGCACCTCT - 39 (Primer

A) and ROP18-R 59 - GCAAGTCACGCATAGTCTCATC -39

(Primer B)) of the insert. Each reaction was carried out in 25 ml of

volume containing 106 PCR buffer, 25 mM MgCl2, 2.5 mM

dNTPs, 50 mM each of the forward and reverse primers, 5 U/ml

of DNA Taq polymerase (Sigma) and 2 ml of DNA lysate of each

of the strains. The reaction mixture was first heated to 95uC for

5 min, followed by 35 cycles of 94uC for 30 sec, 56uC for 30 sec

and 72uC for 2 min. Upon completion, 5 ml of the PCR products

were examined by electrophoresis in 2% agarose gel containing

0.3 mg/ml ethidium bromide and visualized under UV light.

qPCR Analysis of ROP18 Expression
Total RNAs were isolated by TRIzol treatment (Invitrogen,

Carlsbad, CA) of freshly harvested parasites and RNA concentra-

tions determined by absorbance at 260 nm. RNAs (3 mg/ml) were

transcribed into cDNA using 50 mM oligo (dT)20 and 200 units of

SuperScipt III reverse transcriptase (RT) (Invitrogen, Carlsbad,

CA) in a volume of 20 ml following the manufacturer’s protocol.

For negative controls, water was added instead of RT. Real-time

quantitative PCR (qPCR) was performed using a SmartCycler

(Cepheid, Sunnyvale, CA) in a 25 ml reaction volume containing

SYBR green Supermix (Clontech, Mountain View, CA). ROP18

was detected using the primers ROP18-579-F (59- TGA-

GAAGGCGGATTCTGGATG - 39) and ROP18-850-R (59 -

CCTTAACAGCCAACTCTTCATTCGTC - 39). Primers spe-

cific to T. gondii actin (TgACT1) TgACT-F (59 -

TCCCGTCTATCGTCGGAAAG - 39) and TgACT-R (59 -

CCATTCCGACCATGATACCC - 39) were used as reference

sample (internal control). Reaction mixtures containing 2 mL of

cDNA and gene-specific primers were subjected to 40 thermal

cycles (95uC for 15 sec and 60uC for 60 sec) of PCR amplification

with the SmartCycler. Three replicate reactions were performed

for each sample and values are reported as means. Threshold cycle

(CT) values were calculated for ROP18 using the SmartCycler

software (Cepheid). Differences in the levels of gene expression for

each of the strains were determined using the following formula.

The amount of target gene (ROP18), normalized to the

endogenous housekeeping gene (TgACT1), is given by 22DDCT,

where DDCT =DCT (sample)2DCT (housekeeping), and DCT is

the CT of the target gene subtracted from the CT of the

housekeeping gene, as described previously [51].

Network Analysis of ROP18
A phylogenetic network of ROP18 sequences was derived using

the median-joining algorithm [52] (with e= 0) as implemented in

NETWORK 4.1 (www.flexus_engineeing.com). ROP18 sequences

from 37 strains of T. gondii (Table S2 plus additional strains listed

in Table S4) were clustered using DNA Alignment v1.1.2.1 (www.

flexus_engineeing.com). Aligned sequences were used to construct

a network by combining the features of Kruskal’s algorithm for

finding minimum spanning trees that favors short connections and

Farris’s maximum-parsimony heuristic algorithm.

Estimates of Most Recent Common Ancestry (MRCA)
The rate of mutation in ROP18 was determined from a

collection of 18 clonal isolates (i.e. types I, II and III) (Table S4).

We only considered new mutations that arose since the common

origin of the clonal types, hence biallelic polymorphisms that

define the major allele types were excluded, as described

previously [5]. This rate of diversity was compared to the

occurrence of new polymorphisms in the antigen encoding genes

SAG1, SAG2 and a collection of introns used previously [5,7].

Polymorphism rates were used to independently calculate the

MRCA for the clonal lineages based on ROP18, antigens, and

introns, respectively. For estimating the common ancestry based

on coding sequences, we considered both 2-fold and 4-fold

degenerate codons whereas for estimating the ancestry based on

intron sequences, all nucleotide changes were calculated using the

4-fold rate (since these regions are noncoding all substitutions are

4-fold regenerate). This model makes the basic assumptions that

each lineage is evolving independently and that mutations are

accumulated randomly through time and that a Poisson

distribution estimates the frequency of such rare events.

We estimated the MRCA for different alleles of ROP18 using

the synonymous polymorphisms observed between strains of
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different lineages given in Table S5. We grouped the strains into

allele types in order to analyze the age of each ROP18 allele type

separately (i.e. I*, II*, and III*). Additionally we compared the alleles

pairwise to estimate their divergence. Since we were interested in

determining the common ancestry between alleles, we included all

synonymous mutations including those that define biallelic poly-

morphisms between the alleles, as described previously [5]. The

number of SNPs for the calculations was determined using equations

presented in Table S5. Briefly, to determine ancestral vs. derived

polymorphisms, we compared the T. gondii alleles to the coding

region of ROP18 from the N. caninum out-group. Alleles shared with

N. caninum were considered to represent the ancestral state. Where N.

caninum has diverged from T. gondii (no shared allele) we used a

majority rule (i.e. the ancestral allele was considered to the be the

allele shared by two strain types).

MRCA calculations were performed using the formula: t = S/

(maSnili+mbSnimi), where n is the number of lineages examined at

the ith locus, li and mi are the number of 4-fold and 2-fold

synonymous sites, S is the number of polymorphisms and ma and

mb are the neutral mutation rates. Two estimates of the neutral

mutation rate from the closely related parasite Plasmodium

falciparum were used for calculating the MRCA, as described

previously [53,54].

Analysis of ROP18 in Neospora caninum
BLAST analysis identified a sequence 68% identical to the

coding sequence of T. gondii ROP18 in the N. caninum genome

database (http://www.sanger.ac.uk/sequencing/Neospora/cani-

num/). The ROP18 coding and upstream flanking sequences from

the Nc-1 strain of N. caninum (ATCC# 50843) were confirmed by

manual sequencing as described above. ClustalX/W was used to

align the sequences using default settings. Phylogenetic compar-

isons were conducted on the coding regions of ROP18 under the

criterion of minimum evolution in PAUP*4.0b [55] and by using

the BioNeighbor-Joining algorithm. A consensus tree was drawn

according to bootstrap 50% majority rule with Nc-1 as the root.

Comparison of ROP18 and Flanking Regions from N.
caninum and T. gondii Strains

Genome sequence of N. caninum was obtained from The

Wellcome Trust Sanger Institute (http://www.sanger.ac.uk/

sequencing/Neospora/caninum/) by blasting the T. gondii ROP18

(ToxoDB gene id 20.m03896) and 2 flanking genes (20.m03897 and

20.m03895) (located on VIIa from1475116 to 1487487 bp) from

ToxoDB (www.toxodb.org) [56]. This identified a ,30 kb syntenic

region from N. caninum. Pairwise comparisons of T. gondii and N.

caninum sequences from this 40 kb region were carried out using

AlignX (a component of Vector NTI Suite 9.0.0) (InforMax,

Invitrogen Life Science Software, USA). Similarity values (in a 0–1

range) were assigned to each residue at a given alignment position in

each aligned sequence, depending on whether the residue was

identical, similar, weakly similar, or different.

Supporting Information

Figure S1 Distribution of SNPs surrounding ROP18. Elevated

levels of type III-specific single nucleotide polymorphisms (SNPs)

occur within a 30 kb region of ROP18. A) Screen capture of the

Genome browser view of ROP18 (20.03896) and flanking regions

from position 1449000 to 1489000 bp on chromosome VIIa

(http://www.toxodb.org/). Annotated genes are shown in colored

rectangles with corresponding gene ids. SNPs were identified by

NUCmer alignments of GT1 (type I) and VEG (type III) to ME49

(type II) whole genome sequences and corresponding predicted

coding regions. Red, green and blue color diamonds indicate the

type I, II, and III specific SNPs, respectively. B) Graphical

representation of type I (red), II (green), and III (blue) specific

SNPs (in 1 kb windows) present on 40 kb region surrounding the

ROP18 gene. Type III-specific SNPs are elevated throughout but

show a strong peak for ROP18.

Found at: doi:10.1371/journal.pgen.1000404.s001 (0.39 MB PDF)

Table S1 List of loci used for diversity comparison of T. gondii

strains.

Found at: doi:10.1371/journal.pgen.1000404.s002 (0.08 MB PDF)

Table S2 Strains used in this study.

Found at: doi:10.1371/journal.pgen.1000404.s003 (0.07 MB PDF)

Table S3 Comparison of pNS and pS ratios for ROP18 alleles.

Found at: doi:10.1371/journal.pgen.1000404.s004 (0.07 MB PDF)

Table S4 Substitution rates and estimates of most recent

common ancestor (MRCA) of the clonal lineages.

Found at: doi:10.1371/journal.pgen.1000404.s005 (0.08 MB PDF)

Table S5 Estimating the age of ROP18 based on synonymous

substitutions.

Found at: doi:10.1371/journal.pgen.1000404.s006 (0.08 MB PDF)
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