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Abstract

Multivariate analysis is a very general and powerful technique for analysing Magnetoencephalography (MEG) data. An
outstanding problem however is how to make inferences that are consistent over a group of subjects as to whether there
are condition-specific differences in data features, and what are those features that maximise these differences. Here we
propose a solution based on Canonical Variates Analysis (CVA) model scoring at the subject level and random effects
Bayesian model selection at the group level. We apply this approach to beamformer reconstructed MEG data in source
space. CVA estimates those multivariate patterns of activation that correlate most highly with the experimental design; the
order of a CVA model is then determined by the number of significant canonical vectors. Random effects Bayesian model
comparison then provides machinery for inferring the optimal order over the group of subjects. Absence of a multivariate
dependence is indicated by the null model being the most likely. This approach can also be applied to CVA models with a
fixed number of canonical vectors but supplied with different feature sets. We illustrate the method by identifying feature
sets based on variable-dimension MEG power spectra in the primary visual cortex and fusiform gyrus that are maximally
discriminative of data epochs before versus after visual stimulation.
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Introduction

Multivariate analysis of Magnetoencephalography (MEG) data

is a powerful technique which considers the relationship between

multiple data features and multiple experimental conditions.

Previously this approach has been used to study oscillatory

representations of stimuli; such as visual stimuli at the time of

perception [1,2] or the replay of oscillatory patterns during

memory tasks [3,4]. A major problem with such multivariate

analyses is the identification of discriminative data features from a

high dimensional measurement space. In the above studies, the set

of discriminatory features were allowed to vary from subject to

subject. This between-subject variability, however, makes it

difficult to interpret experimental findings in terms of a consistent

set of underlying cognitive processes.

In this paper we present a principled approach to systematically

select the most discriminatory and minimally complex feature set

that is consistent over subjects ie. at the ‘group level’. This analysis

also enables systematic inference on the dimensions of these feature-

spaces. For example, if there is no dependence between data features

and experimental condition the inferred dimension will be zero.

Our framework is based on Canonical Variates Analysis (CVA).

CVA models multivariate dependencies between a set of class

labels and data features. The order of the CVA model is then

based on the number of significant canonical vectors, as

determined by the Bayesian Information Criterion (BIC) [5,6].

Absence of a multivariate dependence (or no significant decod-

ability) is indicated by the zeroth order model (null model or

model 0) being the most likely. Here we apply CVA to

beamformer reconstructed MEG data in source space [7].

Nevertheless, in principle, it could be applied to data in sensor

space or to data after various transformations, including the use of

principal or independent component analysis [8]. (We return to

this latter issue in the discussion.)

The model ranking approach allows us to test, at the group

level, both whether there is a multivariate dependence between

data features and experimental condition, and if there is, to find

which feature sets maximise the strength of this dependence.

To test whether these multivariate dependencies are consistent

over a group of subjects, we use random effects Bayesian model

selection [9], based on the BIC values. We illustrate this method to

determine the spectral resolution (number of frequency bands) that

maximizes decodability of data features into the experimental

conditions. We used MEG power spectra at each voxel in source

space, within the regions of interest (ROIs), the primary visual

cortex (V1) and fusiform gyrus (FFG), and the experimental

conditions indicating whether the data were from a pre- or post-

stimulus epoch of a simple visual processing paradigm.

Materials and Methods

Methods
This section describes the data processing pipeline we propose.

This comprises five steps

1. MEG Source Reconstruction, This step is optional, as

MEG data can also be analysed in sensor space or, for

example, projected onto principal or independent component
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spaces. In this paper the features of the MEG signal we use are

power spectra. More generally, these can be any function of the

MEG data, such as phase and/or amplitude or more exotic

nonlinear measures.

2. Canonical Variates Analysis, Here we apply a CVA model

at each point in source space as our goal is brain mapping. The

maps indicate which areas show consistent relationships

between multivariate data features and experimental condition.

3. Bayes factors, The order of a CVA model is determined by

the number of canonical vectors. This step computes the

evidence of a model with m canonical vectors in relation to the

evidence of a model with zero canonical vectors. The ratio of

these evidences is known as a Bayes factor.

4. Feature Set Selection, The optimal model will depend not

only on the number of canonical vectors but also on the

features to which these vectors map. In this paper we compare

models with single canonical vectors but with a different

fractionation of the MEG power spectrum.

5. Random Effects Bayesian Model Selection (RFX-
BMS), The previous steps are applied to data from multiple

subjects to produce Bayes factor maps for each subject and

model comparison. This allows for single alternative models to

be compared with a null model, or for any number of models to

be simultaneously compared with each other. This final step

computes the frequency with which models are used in the

population from which the subjects are drawn.

The following subsections describe each of the above steps in

more detail.

MEG Source Reconstruction. We source reconstructed data

for each subject using the SPM8 implementation of the Linearly

Constrained Minimum Variance (LCMV) beamformer [10–12]. The

software for source reconstruction, and computation of Bayes factors

for CVA models is available in the SPM Beamforming toolbox

(http://code.google.com/p/spm-beamforming-toolbox/). This pro-

duces a log Bayes factor image for each subject and model. The

software for implementing Random effects Bayesian model selection

is available in the latest release of SPM [13] (http://www.fil.ion.ucl.

ac.uk/spm/software/). This takes the log Bayes factor images for all

subjects and produces expected frequency maps (*_xpm.img) and,

optionally, exceedance probability maps (*_epm.img).

The forward model used in source reconstruction was defined

using an inverse normalized canonical head-shape brain for all

subjects [14]. At each source location we selected the orientation

that maximises projected power [12] which gives a single weight

vector for each source location. Briefly, the weights for location s
were given by

ws~(LsC
{1LT

s ){1LsC
{1 ð1Þ

where Ls[R1|m is the lead field matrix for m channels at source

location s and C[Rm|m is the sensor covariance matrix. This

corresponds to an LCMV beamformer with zero for the

regularisation parameter [11]. Accordingly, the source level

estimate of activity for trial n at location s is given by

y~wsBn ð2Þ

where Bn[Rm|p comprises p complex valued Fourier coefficients

describing the signal at m MEG sensors on trial n[1,:::,N. In the

next section we go on to look at multivariate dependence between

the experimental design and the spectral features and this source

level estimate across the brain.

Canonical Variates Analysis. CVA is a method for

detecting dependencies between a set of variables X[RN|q, and

a set of variables Y[RN|v. The aim of CVA is to find the linear

projections of X and Y with maximal correlation. Given zx~XUx

and zy~YUy, we can compute the canonical correlation

r~
EzT

x zyE2

EzT
x zxEEzT

y zyE
: ð3Þ

The projections Ux and Uy which maximise this correlation are

known as the canonical vectors and the resulting zx and zy are the

canonical variates. If S~(
SXXSXY

SYXSYY
) is the sample covariance

matrix and VY and VX are the left and right singular vectors of

S
1=2
XXSXYS

1=2
YY in decreasing order, then the canonical vectors can

be computed as UY ~S
{1=2
YY VY and UX ~S

{1=2
XX VX [15]. There

are i~1::h pairs of canonical vectors where h~min q,v. The

canonical correlations ri for i~1::h are used to compute Bayes

factors, as described in the following section.

Bayes Factors. We first introduce some terminology. The

dimension of a CVA model is given by the number of significantly

non-zero canonical vectors. If there exists a linear multivariate

dependence between X and Y then the dimension of the

corresponding CVA model is non-zero. Thus one can test for

linear multivariate dependence by estimating CVA model

dimension.

A standard approach from classical inference here is Bartlett’s

test for dimensionality [15]. However, to our knowledge, there is

no simple way to carry over these results to the group level. We

therefore prefer a Bayesian method, as this integrates seamlessly

with established methods for group level inference (see final

subsection).

These Bayesian methods first compute the evidence for a model,

p(Y Dm), with m canonical vectors. Various methods exist for

computing the Bayesian model evidence for a CVA model. These

include the Bayesian Information Criterion (BIC) [5,6] and

variational approximations [16]. This paper uses a BIC approx-

imation which we now derive.

If there is no relation between dependent variable (or ‘data’) Y

and independent variable X , then the log-likelihood of the data is

log p(Y )~{
N

2
logDSYY D ð4Þ

where SYY is the data covariance. If there is a relation between X

and Y then the log-likelihood can be calculated as follows. The

maximum likelihood coefficients are bML~(X T X ){1X T Y and

the log-likelihood is

log p(Y DbML)~{
N

2
logDSY DX D ð5Þ

where SY DX ~SYY {ST
XYS

{1
XXSXY , SXY is the covariance be-

tween X and Y , and SXX is the covariance of X . The log-

likelihood ratio, L, is therefore

L~log
p(Y DbML)

p(Y )

~
N

2
logDS{1

Y DXSYY D:

ð6Þ

Population Level Inference for MVA of MEG Data
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If si is the ith eigenvalue of S{1
Y DXSYY we can write

L~
N

2

Xh

i~1

log si ð7Þ

where h~min(q,v). This is also known as Wilk’s Lambda [15].

We also define the quantity

Lj,t~
N

2

Xt

i~j

log si ð8Þ

so L1,t is the log-likelihood ratio for a CVA model with t canonical

variates. The quantity Lj,t is used to compute the BIC and can also

be expressed in other forms. We next show how it is computed in

our implementation, and finally show how it is related to canonical

correlations.

A second expression for Lj,t can be derived as follows. Let

SYY ~SŶYŶY zSY DX , where SŶYŶY is the covariance explained by the

model and SY DX is the covariance not explained by the model.

Then if li are eigenvalues of S{1
Y DXSŶYŶY then the above relationship

can be used to show that si~liz1 (see Appendix B of [17]).

Hence an alternative expression for Wilk’s Lambda is

L~
N

2

Xh

i~1

log(1zli) ð9Þ

This expression is used in the current paper and has been

implemented in the SPM software [17]. Accordingly, SŶYŶY can be

formed directly from model predictions

ŶY~XbML

SŶYŶY ~ŶY T ŶY
ð10Þ

and SY DX from the residuals

R~Y{ŶY

SY DX ~RT R:
ð11Þ

The ith canonical correlation can be expressed as ri~
ffiffiffiffiffiffiffiffi

li

liz1

q
.

Hence, a third equivalent form for the log likelihood ratio is

L~{
N

2

Xh

i~1

log(1{r2
i ): ð12Þ

In summary, we can write

Lj,t~
N

2

Xt

i~j

log si

~
N

2

Xt

i~j

log(1zli)

~{
N

2

Xt

i~j

log(1{r2
i ):

ð13Þ

This last expression appears in [5,6].

The log evidence for a model with no parameters (null model) is

simply the log likelihood of the data, L0~log p(Y ). The log

evidence for model m with parameters b is given by

Lm~log
Ð

p(Y Db)p(b)db. This can be approximated by the

Bayesian Information Criterion (BIC) as

BIC~log p(Y DbML){
k

2
log N ð14Þ

where k is the number of parameters in the model and bML are

the maximum likelihood parameters. A Bayes factor is the ratio of

model evidences. Here we define

BF (m)~
p(Y Dm)

p(Y )
ð15Þ

Log Bayes factors can therefore be approximated as differences in

the BIC scores. Under BIC, the log Bayes factor for a CVA model

of dimension m versus a model with dimension zero (null model) is

given as

LogBF (m)BIC~L1,m{
k

2
log N: ð16Þ

where

L1,m~{
N

2

Xm

i~1

log(1{r2
i ): ð17Þ

and N is the number of data points and ri are the canonical

correlations at each dimension i. This expression has been used in

previous studies [5,6] and is derived from equation 13. The

estimated model order is the one which has the largest LogBF.

Negative values of LogBF (m) express evidence in favour of the

null model. Intuitively, better CVA models will have stronger

canonical correlations (ri) and fewer parameters (k).

Feature Set Selection. It is also possible to compute Bayes

factors for models with the same number of canonical vectors but

supplied with different feature sets. Bayesian model comparison

here allows the models to vary but the data must stay the same.

Feature set selection therefore requires that we set up CVA models

such that Y is a design matrix encoding experimental conditions

and X are independent variables comprising the neuroimaging

data features (in other words we switch the traditional roles of

these variables (X and Y) to make it clear that we are searching for

optimal data features for a fixed experimental design). In this

paper these features are d-dimensional power spectra. We then

compute LogBF(d) images where each is the log Bayes Factor for

a model with a single canonical vector and d-dimensional features

X , versus a model with zero canonical vectors. We can then use

the same Bayes factor images to compare different feature

dimensions. For example, for pairwise comparisons

BF (d1,d2)~
p(Y Dd1)

p(Y Dd2)

~
p(Y Dd1)

p(Y )

p(Y )

p(Y Dd2)

ð18Þ

Hence

LogBF(d1,d2)~LogBF (d1){LogBF (d2) ð19Þ

Population Level Inference for MVA of MEG Data
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We can also implement multi-way comparisons as described in the

next section.

Random effects Bayesian model selection. Random

effects Bayesian model selection (RFX-BMS) [9] views the

assignment of models to subjects as a random process in which

each subject is assigned to model i with probability fi. Here fi is the

frequency with which model i is used in the population from which

the subjects were drawn. The Bayesian algorithm for estimating

model frequencies fi from the table of log model evidence values

[9] uses a Dirichlet prior

p(f )~Dir(f ; a0) ð20Þ

with ‘count parameters’ a0
m~1. These parameters can be thought

of as corresponding to the assumption of having previously

observed one instance of each model type. These parameters

produce a flat prior. The posterior is approximated to also be a

Dirichlet

p(f D ~YY )~Dir(f ; a) ð21Þ

where ~YY indicates data from all subjects. The count parameters

am, are initialised as a0
m, and then updated iteratively as follows

unm~exp log p(ynDm)zy(am){
X

m

y(am)

" #

gnm~
unmP
m’ unm’

am~a0
mz

X
n

gnm

ð22Þ

where y() is the digamma function [18]. Here log p(ynDm) is the

entry in the log evidence table from the nth subject (row) and mth

model (column). The quantity gnm is the posterior probability that

subject n used the mth model. This is ‘posterior’ as in after seeing

the model evidence table and, implicitly, the data from all subjects
~YY .

This algorithm can also be applied to a table of log Bayes factor

values, as long as the Bayes factors have all been computed with

respect to the same common model. In this paper, the common

model is the null CVA model with zero canonical variates.

The goal of RFX-BMS is to estimate fi using a table of model

evidence scores, or Bayes factors with respect to a common model,

from S subjects and K models. Intuitively, if the scores favour

model i in 9 out of 10 subjects, then fi will be estimated to be about

0.9. However, the estimate of fi is also influenced by the degree to

which models are favoured. For example, if for the 10th subject

the score is greatly in favour of a different model then the estimate

of fi will be commensurately reduced. Given data Y (in practice, a

table of logBF values), a posterior distribution, p(fi DY ), can be

estimated using the algorithm described in [9]. The mean of this

distribution, vfi DYw provides an estimate of the model

frequencies. This is also referred to as the ‘expected frequency’.

It is also possible to compute the probability that one model

frequency exceeds another. For example, when comparing just

two models we can compute w1~p(f1wf2DY ). This is known as

the exceedance probability for model 1 over model 2. Figure 1

illustrates the concept of an exceedance probability. If one has

maps of model evidence over anatomical space, and for multiple

subjects, it is possible to produce maps of expected frequencies or

exceedance probabilities. In previous work [19], for example,

Exceedance Probability Maps (EPMs) were plotted for univariate

General Linear Models fitted to functional MRI data. In this

paper we plot expected frequency maps for CVA models in MEG

source space.

Experimental Data
Participants and Experiment. 10 healthy young adults (6

female; on average 23 years old (SD~2)) participated in an

episodic memory study. All participants gave written informed

consent to participate and the study was approved by the

University College London Research Ethics Committee for

human-based research. All participants were financially compen-

sated for their participation. The overall goal of this study was to

examine the neural correlates of visual memory. Here, we used the

data from a small part of this study in which subjects were

presented with images of faces. These images were grey scaled and

normalized to a mean grey value of 127 and SD of 75, of

dimensions 300|300 pixels, and shown upon a grey background

(grey value of 127) subtending approximately 6 degrees of

horizontal and vertical visual angle.

MEG recordings. MEG data were recorded with a 274

channel CTF Omega whole-head gradiometer system (VSM

MedTech, Coquitlam, BC, Canada) with a 600 Hz sampling rate.

Figure 1. This graphic demonstrates random effects model
selection for the case of comparing two models. These models
have frequencies f1 and f2 . These frequencies refer to the population
from which the subjects were drawn. The figure plots the posterior
probability of f1 . The mean of this density is vf1DYw~0:75, indicating
that 75% subjects use model 1. For two models, the exceedance
probability p(f1wf2DY )~p(f1w0:5DY ) is given by the posterior mass in
excess of f1~0:5. Here, the exceedence probability is 0.915.
doi:10.1371/journal.pone.0071305.g001

Table 1. Definition of feature space.

d Frequencies(Hz)

1 3–90

3 3–10, 10–30, 30–90

5 3–8, 8–12, 12–30, 30–50, 50–90

7 3–5, 5–8, 8–12, 12–20, 20–30, 30–50, 50–90

9 3–5, 5–8, 8–10, 10–12, 12–20, 20–30, 30–40, 40–50, 50–90

11 3–5, 5–8, 8–10, 10–12, 12–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–90

This describes the fractionation of the power spectrum into d separate bands,
d~1,3,5,7,9 and 11.
doi:10.1371/journal.pone.0071305.t001

Population Level Inference for MVA of MEG Data
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Head position inside the system was acquired via head localizer

coils attached to the nasion and 1 cm anterior to the left and right

pre-auricular points. Participants were seated upright and the

stimuli were back-projected onto a screen approximately 1 m in

front of them.

Data Analysis
At each point in source space we generated a d-dimensional

feature vector of power in d frequency bands. Here we used 6

different features. The frequency bands are as defined in Table 1.

The average power in the frequency band was computed

separately across 1 second before (21000 to 0) and 1 second after

(0 to 1000 ms) onset of visual stimulus epochs.

We analysed data in two regions of interest, V1 and FFG,

defined using the MNI grey matter masks shown in Figure 2A. We

excluded any voxels which overlapped in the low-resolution source

localization grid space (10 millimetres resolution). The FFG mask

included 1600 voxels and the V1 mask included 574 voxels.

In this paper, our Y variable contains class labels with a scalar

z1 indicating post-stimulus, and a {1 indicating pre-stimulus.

We have v~1. Therefore our CVA model has at most a single

canonical component, h~1. Our X variable contains the d-

dimensional power spectra. Thus, the number of parameters in the

CVA model is k~dz1.

The matrix Y was prepared in the following way. Let each j
index Fourier bins within one of the pre-defined spectral bands

ranging from Flower to Fupper frequency. Then at each source

location s the activity at trial n is formulated as

yn~
PFupper

j~Flower (wsBnj)(wsBnj)
� based on equation 2, where �

signifies the complex conjugate. In order to give equal weighting to

all frequency bands (some of which have markedly less power) for

each band we removed the mean value (across all conditions) and

normalized the variance (in power) to unity.

For each subject we computed the logBF (d) maps for

d~1,3,5,7,9 and 11. Each logBF (d) map is the log-evidence for

a model with a single canonical vector, and d signal features,

minus the log-evidence of the null model (no canonical vectors).

Results

We studied 3–90 Hz oscillatory activity in pre- and post- visual

stimulus presentation (an unfamiliar face) in source space,

specifically in the primary visual cortex (V1) and fusiform gyrus

(FFG). The aim of our analysis was to decode the differences in pre

versus post stimulus activity, based on different feature sets (see

Table 1 in the Methods and Material section). We hypothesised

that there will be differences elicited by onset of the stimuli in the

regions of interest. These regions were defined using the

Figure 2. Regional Activity. (A) the MNI mask for region of interest: grey matter in the primary visual cortex (V1) and fusiform gyrus (FFG), the view
is from [20 290 220]mm. (B) The power spectrum for pre- and post- stimulus activity across 11 frequency bands for an individual participant. The top
plot is the signal from a V1 voxel, [10 290 0]mm (Talairach coordinates), and the bottom plot is the signal from a FFG voxel, [20 290 220]mm.
doi:10.1371/journal.pone.0071305.g002

Table 2. Pairwise model comparisons versus the null.

ROI Model 1 Model 3 Model 5 Model 7 Model 9 Model 11

FFG (1600 voxels) 64 (4.0%) 615 (38.4%) 438 (27.3%) 239 (14.9%) 148 (9.2%) 103 (6.4%)

V1 (574 voxels) 32 (5.5%) 510 (88.8%) 466 (81.1%) 362 (63.0%) 205 (35.7%) 58 (10.1%)

Total (and percentage) of voxels with posterior expected frequencies vfi DYw greater than 0.9. These are voxels where higher (than zeroth) order models are favoured
in more than 90% of the population.
doi:10.1371/journal.pone.0071305.t002

Population Level Inference for MVA of MEG Data
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anatomical masks based on MNI brain (Figure 2A). In the first

step, the MEG data for each individual participant was source

localized and the features were defined as average power within

the specified frequency bands. Figure 2B illustrates the average

power across the 11 frequency bands (Model 11) in selected voxels

from V1 and FFG. In the next step we studied which feature space

best decoded the signals in each ROI based on the experimental

design.

Firstly, we separately compared each of the models d~1,3,5,7,9
and 11 to the null model. Table 2 summarizes the results of these

pairwise comparisons for each ROI. We compute the percentage

of voxels with posterior expected frequencies greater than 0.9. For

V1, the clearest result is that model 3 is better than the null in

88.8% voxels. For FFG, the findings are less clear cut, with both

models 3 and 5 being better than the null in 38.4% and 27.3%

voxels, respectively. These findings imply that the null model is

better than the alternative models at a large proportion of voxels in

FFG. We investigated this further with a set of multi-way model

comparisons.

For the multi-way comparisons we first created a model-

comparison map with voxels colored to show which model has the

highest frequency vfi DYw in the population. Figure 3 shows the

results. Note that models 1, 7, 9 and 11 do not have the highest

frequency at any voxel. The figure shows that model 3 is favoured

in posterior FFG whereas the null model is favoured in anterior

FFG. We can therefore infer that, in FFG, stimulus-induced

changes in power spectra are restricted to posterior regions.

We also report summary statistics collapsed across all voxels in

each region. Table 3, for example, shows the percentage of voxels

in which the different models are favoured. For FFG, the null

model is favoured in half of the voxels and, as we have seen in

Figure 3, these voxels are in the anterior region. For V1 model 3 is

favoured in 90.8% voxels.

A subtlety with random effects model selection is that the

expected frequencies depend on the models in the comparison set.

For example, in a pairwise (two-way) comparison model 3 beats

model 0 at 510 voxels (see Table 2). Whereas in a multi-way

comparison model 3 wins at 521 voxels (Table 3). The 11 extra

voxels reflect spectral differences that were previously attributed to

model 0, but given a wider comparison set are attributed to model

5. This is analogous to voting in elections where the addition of an

extra option can ‘split the vote’ [20].

Finally, we report expected model frequencies averaged over all

voxels in each ROI. This is shown in Figure 4. Models 3 and 5 are,

on average, the most frequently selected in V1, and models 0 and

3 are the most frequently selected in FFG.

Discussion

Here we proposed a solution to the problem of group-level

inference from multivariate modelling of MEG data. The

combination of scoring CVA models using BIC and assessing

consistency across a group using Bayesian random effects model

inference provides a principled solution. We applied this approach

to source space power spectra in regions of interest to decode pre-

versus post-stimulus epochs, using various feature sets (models).

These feature sets differed in the degree to which the power

spectra were fractionated (number of frequency bands). We were

able to show that although all features sets provided some degree

of discrimination between experimental conditions; the optimal

Figure 3. Multi-way model comparison maps. The maps show voxels where pre- versus post-stimulus activity is best discriminated by each
model, for V1 (left) and FFG (right). (A) V1 view from [2 296 25]mm (B) FFG view from [36 247 219]mm (Talairach coordinates). Models 1, 7, 9 and 11
were not best at any voxel. Note that the null model is best for anterior FFG, but model 3 is best for posterior FFG.
doi:10.1371/journal.pone.0071305.g003

Table 3. Multi-way between model comparison.

ROI Model 0 Model 1 Model 3 Model 5 Model 7 Model 9 Model 11

FFG (1600 voxels) 812 (50.7%) 0 769 (48.1%) 19 (1.2%) 0 0 0

V1 (574 voxels) 1 (0.1%) 0 521 (90.8%) 52 (9.1%) 0 0 0

Total (and percentage) of voxels where model i is the most favoured model (ie. has the largest posterior expected frequency vfi DYw).
doi:10.1371/journal.pone.0071305.t003
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feature set in general consisted of three approximately classical

bands (3–10, 10–30, 30–90 Hz). Although our features sets were

selected simply to illustrate the new approach, it is clear that the

multivariate models outperformed univariate models even for this

simple decoding task.

An optimal statistical model provides a balance between model

fit and model complexity [21] and this general principle naturally

applies to the CVA models we have employed. In this paper model

complexity is assessed by the number of model parameters (see

equation 16 where k is the number of parameters). Thus, the

univariate model (model 1) has low complexity (k~1) but is

suboptimal at most voxels because it has a poor model fit (it has a

low correlation with the experimental design). Conversely, model

11 has a good model fit but is suboptimal because it has a large

complexity (k~11); the improvement in the canonical correlation

is not justified by the larger number of parameters.

Our data analyses focussed on inferring the optimal feature

dimension across various exemplar feature sets. But there are

also other ways in which random effects Bayesian model

selection can be used for finding the optimal feature set. These

include, for instance, fixing the number of features, but

changing the feature set (eg. by breaking up spectra in a

different way, or using phase/amplitude or more exotic

nonlinear features). In our study the multivariate features were

power spectra at single source voxels in regions of interest. But

one could also apply the approach to data from local regions of

voxels as in ‘searchlight’ approaches [22].

A perhaps subtle aspect of the RFX-BMS approach is that it is

concerned only as to whether, for example, more subjects use

model A than model B. This does not require that the parameters

of the winning model are consistent over that group. For example,

our model comparisons generally showed multiple voxels in which

post-stimulus activity was better discriminated from pre-stimulus

activity when the spectrum was described using a triplet (power in

low, medium and high frequencies) rather than a scalar (power

across all frequencies). This does not necessarily mean that the

pattern of frequency responses was consistent over subjects. For

example, half the subjects may have increases in low frequency

power post-stimulus, and the other half decreases. One way to

directly test for this scenario using the same scheme would be to

see if a model using a fixed canonical vector over subjects

(essentially a univariate test with data projected onto a single

canonical vector) has more evidence than a model in which the

canonical vector is allowed to vary (as here). Similar model

comparison approaches could be used to test for differences (e.g. in

the feature set) between different study groups, such as a patient

group and a control group.

A large amount of neuroimaging research implements multi-

variate analysis using pattern recognition approaches based on

artificial neural networks or support vector machines. A further

benefit of the approach described in this paper is that model

optimality is assessed using Bayes Factors, whereas the optimality

of most pattern recognition approaches is assessed using cross

validation [23]. Our approach is therefore more computationally

efficient. For example, in the case that the assessment of model

optimality is based on 10 fold cross-validation, our approach is 10

times faster.

We have applied our approach to beamformer reconstructed

MEG data in source space. As noted in the introduction, it could

also be applied to data in sensor space or data projected onto

independent components [8]. As one of our goals has been to find

data features that are consistent across a group of subjects, it would

therefore also be necessary to use independent components that

are consistent across the group. Fortunately, there are already

established methods for doing this based on group-wise signifi-

cance testing [24] or clustering [25].

This paper was based on MEG data; however, the combination

of scoring CVA models and random effects model inference is not

limited to MEG data and can be applied to any neuroimaging

modality. In fMRI, for example, CVA can be applied to fMRI

time series from a region of interest [26]. That said, the main

advantage we see of this approach is that it provides principled

population level inference on optimal feature space and dimension

which could be particularly useful for data-rich neuroimaging

techniques (like M/EEG).
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