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Abstract Urinary excretion of calcium is the result of a
complex interplay between three organs—namely, the
gastrointestinal tract, bone, and kidney—which is finely
orchestrated by multiple hormones. Hypercalciuria is
believed to be a polygenic trait and is influenced signifi-
cantly by diet. This paper briefly reviews calcium handling
by the renal tubule in normal and in hereditary disorders as
it relates to the pathophysiology of hypercalciuria. The
effects of dietary sodium, potassium, protein, calcium, and
phosphate on calcium excretion, and the association of
hypercalciuria with bone homeostasis is discussed, leading
to recommendations on means to address excessive urinary
calcium excretion.
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Introduction

Albright et al. [1] first introduced the term idiopathic
hypercalciuria to describe patients with recurrent urolithia-
sis who had elevated urinary calcium excretion without
concomitant hypercalcemia. The etiology of hypercalciuria
is complex given that urinary excretion of calcium is the
end result of an interplay between three organs—namely,
the gastrointestinal tract, bone, and kidney—which is
further orchestrated by hormones, such as 1,25-dihydroxy-
vitamin D3 (1,25-(OH)2D3), parathyroid hormone (PTH),

calcitonin, fibroblast growth factor (FGF-23), etc. Often, a
primary defect in one organ induces compensatory mech-
anisms in the remaining two organs, such as increased
absorption of calcium in the gut secondary to a primary
renal loss. Hypercalciuria can be either idiopathic or
secondary. In this review, idiopathic hypercalciuria and
the recent developments in hereditary renal tubular disor-
ders associated with hypercalciuria is discussed, providing
an insight into the pathophysiology of hypercalciuria. The
role of diet in hypercalciuria and the clinical relationship of
hypercalciuria with urolithiasis and bone mineral density
(BMD) is also discussed.

Genetics of hypercalciuria

Hypercalciuria is the most common metabolic abnormality
detected in children with stones, causing mostly the
formation of calcium oxalate stones and to a lesser extent
calcium phosphate stones or a mixture of the two [2–4].
The reported incidence for urolithiasis in Icelandic children
is 6.3/100,000 children <16 years of age [2]. In adults,
Curhan et al. [5] reported 14–27% hypercalciuria in a
cohort of control population identified from the three large
studies: Nurses’ Health Study I (NHS I), NHS II, and
Health Professional Follow-up Study, whereas it was 25–
38% in stone formers in the same cohort. Coe et al. [6]
assessed that 5% of American women and 12% of men will
develop a kidney stone at some time in their life. A positive
family history appears to be the single most important risk
factor after controlling for known dietary factors [7]. In
children with hypercalciuria, the prevalence of urolithiasis
in the family is 69% [8]. Reed et al. [9] mapped a defect in
three families with severe absorptive hypercalciuria to
1q23.3-q24, and they subsequently sequenced a putative
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gene (homologous to rat soluble adenylate cyclase gene).
They identified 18 base substitutions in the putative gene,
four of which increased the relative risk of absorptive
hypercalciuria by 2.2- to 3.5-fold [10]. Vezzoli et al. [11]
found single nucleotide polymorphism Arg990Gly in the
calcium-sensing receptor (CASR) gene to account for 4.1%
of total variance in calcium excretion and 12.6% of total
variance in calcium excretion if independent variables of
sodium excretion, body weight, serum creatinine, and
enteral absorption of strontium were added to the multiple
regression model. Imamura et al. [12] and Giuffre et al. [13]
described three unrelated children with hypercalciuria who
have 4q33-qter and 4q31.3-qter deletion, respectively,
which raises the potential for a putative gene for hyper-
calciuria in that region. At this point, hypercalciuric trait is
suspected to be polygenic and requires the interaction of
genetic and/or environmental factors [14, 15]. A familial
clustering of idiopathic calcium nephrolithiasis is frequently
observed, most often compatible with an autosomal
dominant transmission, but the quantitative genetics of
urine calcium excretion has not been established. Loredo-
Osti et al. [16] believe that either a mixed codominant/
polygenic model or a single-gene codominant model best
determines the estimated inheritable attribute for idiopathic
hypercalciuria, and thus it should be feasible to genetically
map the quantitative trait locus for idiopathic hypercalciuria.

Physiology of calcium absorption and its implication
in diseases

Calcium exists in three distinct pools in the body, where it
is tightly regulated. The largest pool is that in the skeleton
in the molar range, followed by the extracellular calcium
pool in the millimolar range, and the third is in the
intracellular space, which contains no more than 1 μm of
calcium in an adult.

Calcium absorption in the gastrointestinal tract

Calcium absorption in the gastrointestinal tract is a sum of
two transport processes: a saturable transcellular absorption
that is physiologically regulated by vitamin D, and a
nonsaturable paracellular absorption that is dependent on
the calcium concentration within the lumen, which in turn
depends on dietary calcium load. The nonsaturable para-
cellular pathway is thought to predominate when the diet is
replete in calcium, whereas the saturable vitamin-D-
dependent transcellular pathway becomes critical when the
dietary calcium is limited.

The active transcellular absorption is mediated by
epithelial transient receptor potential (TRP) calcium chan-

nels TRPV5 (epithelial calcium channel: ECaCl) and
TRPV6 (CaT1 or ECaC2), which are under the regulation
of 1,25-(OH)2D3 [17, 18]. TRPV5 and TRPV6 calcium
channels are transmembrane proteins that belong to the
superfamily of TRP channels. TRPV5 and TRPV6 have
been mapped to chromosomes 7q35 and 7q33-34, respec-
tively, and are believed to be products of evolutionary local
gene duplication [19, 20]. TRPV5 and TRPV6 are coex-
pressed in the intestine and kidney; however, TRPV6 is
more abundant and is believed to be the major calcium
channel in the intestine [21–23]. TRPV6 is expressed from
the esophagus down to the jejunum, whereas TRPV5 is
restricted to the duodenum and jejunum. In contrast,
TRPV5 is abundantly expressed in the renal distal
convoluted duct and connecting tubule, whereas limited
expression of TRPV6 is observed in the distal convoluted
tubule (DCT), connecting tubule, and collecting duct [22,
23]. In the intestine, TRPV6 is present in a thin layer along
the apical membrane of the duodenal villus tip and
colocalizes with calbindin-D(9K) and plasma membrane
Ca(2+)-ATPase (PMCA), all involved in calcium transport.

Calcium absorption in the kidney

Only filterable calcium, i.e., non-albumin-bound calcium, is
filtered in the glomerulus to the urinary space. The calcium
in the glomerular ultrafiltrate is then handled throughout the
renal tubule to maintain calcium homeostasis. The retrieval
of ∼70% calcium occurs in the proximal tubule and ∼20%
in the thick ascending loop of Henle (TALH), predomi-
nantly by a paracellular mechanism. The calcium absorp-
tion in the proximal tubule occurs mainly from the solvent
drag that occurs from salt and water absorption, whereas in
the TALH, the paracellular calcium absorption is driven by
the lumen-positive potential generated by the sodium
absorption from the Na+ - K+-2C1− cotransporter
(NKCC2), renal outer-medullary potassium channel
(ROMK), and chloride channel (Figs. 1 and 2) [24]. Thus,
calcium absorption in the renal tubule is at the mercy of
sodium absorption, which is crucially important in the
dietary management of hypercalciuria.

The fine tuning of the remaining ∼10% calcium occurs
in the DCT, connecting tubule, and initial portion of the
cortical collecting duct through an active transcellular
pathway (Fig. 3) [25–27]. The molecular nature of the
apical epithelial calcium channel TRPV5 was first eluci-
dated by expression cloning and using primary cultures of
rabbit connecting tubule [17]. TRPV5 has been identified
immunohistochemically in DCT and connecting tubule [22,
23]. TRPV5 colocalizes with calbindin-D(28K), Na(+)-Ca
(2+) exchanger (NCX), and PMCA. Calbindin- D(28K)
acts as the principal calcium shuttle from the apical to the
basolateral surface [22, 23, 26]. The subsequent basolateral
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calcium transport occurs via both the plasma membrane
NCX and PMCA, which are estimated to transport 70% and
30% of calcium, respectively [28, 29]. The calcium
transport in the distal tubule is regulated by PTH and
1,25-(OH)2D3 [28, 29]. Hoenderop et al. [30] demonstrated
that mice lacking TRPV5 displayed diminished active
calcium absorption despite enhanced vitamin D levels,
causing severe hypercalciuria and significant disturbances
in bone structure, including reduced trabecular and cortical
bone thickness.

Proximal tubule in hypercalciuria

The majority (∼70%) of calcium absorption occurs in the
proximal tubule in an isosmotic process mainly from the
solvent drag that occurs from salt and water absorption [26,
27]. The proximal tubule is critical for bulk absorption of
sodium, chloride, phosphate, amino acids, glucose, etc.,
where the calcium absorption is taking place in an
energetically passive mode, and thus a dysfunction as in
Fanconi syndrome will result in variable hypercalciuria.
Hypercalciuria has been observed in disorders affecting the
proximal tubule, such as Lowe syndrome, Wilson’s disease,
Tyrosinemia type 1, and glycogen storage disease type 1a.
Dent’s disease and hereditary hypophosphatemic rickets

with hypercalciuria where new genetic information has
become available will be discussed in more detail.

Dent’s disease Dent’s disease is now an accepted name for a
group of hereditary tubular disorders, including X-linked
recessive nephrolithiasis with renal failure, X-linked recessive
hypophosphatemic rickets, and idiopathic low-molecular-
weight proteinuria associated with hypercalciuric nephrocal-
cinosis resulting from mutations in the CLCN5 gene located
on Xp11.22 encoding for the chloride channel 5 (CLC-5)
[31, 32]. CLC-5 belongs to a family of nine known voltage-
gated, transmembrane-spanning, chloride channel genes. It is
localized to endosomes and is expressed in the proximal
tubule, TALH, and collecting duct [33, 34]. CLC-5
colocalizes with H+-ATPase, and this pairing is important
for acidification of endocytotic vesicles [33]. The degrada-
tion activity within the endosome in the proximal tubule is
critically dependent on the acidification of the endosomal
lumen, which is believed to be mediated by CLC-5. The
exact mechanism that underlies hypercalciuria in Dent’s
disease is still under investigation. CLC-5 defect leads to
abnormal regulation of PTH and vitamin D metabolites from
diminished recycling of low-molecular-weight proteins, such
as luminal PTH receptors, vitamin-D-binding protein, etc.
[35–37]. Recent work by Silva et al. [38] demonstrated that
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the hypercalciuria in the CLC-5 knockout mice on low- and
high-calcium diets is of bone and renal origin and is not
caused by increased intestinal calcium absorption, despite an
elevated serum 1,25-(OH)2D3.

The phenotypic expression of Dent’s disease is quite
wide. The disease is more severe in males and is
characterized by hypercalciuria, medullary nephrocalcino-
sis, nephrolithiasis, low-molecular-weight proteinuria and
other tubular dysfunctions, and progressive renal failure.
The proximal tubular dysfunction can manifest as glucos-
uria, aminoaciduria, and phosphaturia [39]. Renal failure
occurs in about two thirds of patients with Dent’s disease;
the renal function generally begins to decline in the
adolescent years and reaches end stage by the fourth
decade of life. Serum calcium levels are normal or high-
normal, PTH is low, and levels of 1,25-(OH)2D3 are often
elevated [31, 39–41]. Hypercalciuria is a hallmark of Dent’s
disease and is the major risk factor for stone formation and
nephrocalcinosis, as these patients excrete normal quantities
of oxalate, citrate, uric acid, and other stone-risk determi-
nants [39, 40]. Infants and young children a have higher
degree of calcium excretion, in the range of 10–12 mg/kg,
compared with adults, with 4–6 mg/kg, and the hyper-
calciuria persist while fasting [31]. The hypercalciuria in
Dent’s disease is responsive to dietary calcium restriction
and thiazide diuretics [42].

Hereditary hypophosphatemic rickets with hypercalciuria
(HHRH) Tieder et al. [43] reported a Bedouin tribe with
hypercalciuria, hypophosphatemic rickets, and elevated
calcitriol levels. Patients with this disease have decreased
tubular absorption of phosphate and consequently hypo-
phosphatemia, high serum levels of 1,25-(OH)2D3, and
enhanced intestinal absorption of calcium, resulting in
hypercalciuric nephrocalcinosis and urolithiasis. Three
types of sodium-phosphate cotransporter have been found
in the renal proximal tubule [type I, type IIa, and type III
sodium/phosphate (Na/Pi) cotransporters] [44]. Type I Na/
Pi cotransporter is present on the brush border membrane
and has distinct anion channel properties. It is not regulated
under normal physiological conditions and is not believed
to be a major determinant of phosphorous reabsorbtion by
the proximal tubule. The type IIa Na/Pi cotransporter
(NPT2a) is highly expressed in the brush border membrane
and has been shown to influence 70–80% of the Na/Pi
cotransporter activity at the brush border membrane [45].
NPT2a is believed to be the major determinant of
phosphorous reabsorbtion by the proximal tubule and thus
of the tubular reabsorption for phosphate per liter glomer-
ular filtration rate (TP/GFR) value [45, 46]. Absence of
renal NPT2a expression leads to increased renal phosphate
loss resulting in hypophosphatemia [45]. The NPT2a is
inhibited by PTH and FGF-23 [47–49]. The type IIb Na/Pi

cotransporter is expressed in the small intestine and other
epithelial cells but not in the kidney. The type IIc Na/Pi
cotransporter is expressed in the brush border membrane of
the proximal tubule in weaning animals and decreases with
age [50, 51]. The type III Na/Pi cotransporter (Glvr-1 and
Ram-1) is expressed at the basolateral aspect of the
proximal tubule and is believed to play a housekeeping role
in maintaining cellular Pi concentration. Tenenhouse et al.
[52] showed that Npt1, Npt2, Glvr-1, and Ram-1 account
for approximately 15%, 84%, 0.5%, and 0.5%, respectively,
of total Na+/Pi cotransporter mRNA in the mouse kidney.
Prie et al. [53] sequenced the NPT2a gene from 20 patients
with urolithiasis or bone demineralization associated with
idiopathic hypophosphatemia and found two patients with
NPT2a mutations, one with a substitution of phenylalanine
for arginine 48 (exon 3) and the second with a methionine
for valine 147 substitution (exon 5); both patients were
heterozygous for these mutations. Lapointe et al. [54] found
no disease-causing mutation in NPT2a in a cohort of
recurrent hypercalciuric stone formers with a TP/GFR of
≤0.7 mmol/l. Although NPT2a appeared to be a good
candidate gene for HHRH, Jones et al. [55] and van den
Huevel et al. [56] found no mutation in the gene for NPT2a.
Only recently have SLC34A3 mutations in Na+/Pi-IIc
cotransporter been described in patients with HHRH [57].

Thick ascending loop of Henle in hypercalciuria

The permeability of calcium is very low in the thin
descending and ascending loop of Henle. In TALH, where
∼20% of calcium is absorbed, calcium absorption is passive
and driven by the large lumen-positive potential created by
sodium absorption [26, 27]. Paracellin-1 in the TALH plays
a critical role in control of passive calcium absorption. We
discuss briefly the recent developments in Bartter syndrome
(and calcium-sensing receptor), and familial hypomagne-
semia with hypercalciuria and nephrocalcinosis (FHHNC),
which have improved the understanding of calcium
homeostasis in this segment of the nephron (Fig. 2).

Bartter syndrome Bartter syndrome is a rare, genetically
heterogeneous, renal tubular disorder secondary to defects
in the transepithelial sodium chloride transport across
TALH. This autosomal recessive syndrome is characterized
phenotypically by failure to thrive, hypokalemia, metabolic
alkalosis, secondary hyperaldosteronism with normal blood
pressure, increased urinary prostaglandins excretion, and
hypercalciuria with nephrocalcinosis [58]. A breakdown in
sodium absorption in Bartter syndrome leads to poor
paracellular absorption of calcium, leading to hypercalci-
uria. Bartter syndrome can occur from mutation in one of
the five genes: (a) Bartter type 1 from mutations in the gene
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encoding for the luminal bumetanide-sensitive NKCC2 (gene
SLC12A1, locus 15q15), (b) Bartter type 2 from mutations in
the gene encoding for the luminal potassium channel ROMK
(KCNJ1, locus 11q24), (c) Bartter type 3 from mutations in
the gene encoding for the voltage-gated chloride channel on
the basolateral membrane (CLC-Kb; gene CLCNKB, locus
1p36), (d) Bartter type 4 from mutations in the gene
encoding for Barttin, a beta subunit required for trafficking
of CLC-Kb and CLC-Ka on the basolateral membrane
(Barttin; BSND gene, locus 1p31), and (e) Bartter type 5
from activating mutations in the gene encoding for the
calcium-sensing receptor located on the basolateral mem-
brane (CaSR; CASR gene, locus 3q13) [59–64].

The clinical presentation of Bartter syndrome can be
“classical”, or more severe presenting in the perinatal
period. Because of the defect in sodium handling by the
TALH, there is a failure in the paracellular absorption of
calcium, causing hypercalciuria and kidney-stone formation
with or without nephrocalcinosis. Children with type 3
Bartter syndrome can exhibit a mixed Bartter-Gitelman
phenotype consistent with the role of this chloride ion
channel in both the TALH and DCT. Type 4 Bartter
syndrome is associated with sensorineural deafness given
the role of Barttin, CLC-Ka, and CLC-Kb in the marginal
cells of the scala media of the inner ear [62].

Calcium-sensing receptor (CaSR) The CASR gene, located
on chromosome 3q13.3-q21, encodes for a plasma mem-
brane G-protein-coupled receptor known as the calcium-
sensing receptor (CaSR), which is stimulated by divalent
ions such as calcium and magnesium [65]. The CaSR plays
a role in regulation of PTH secretion and in renal tubular
calcium reabsorption in response to alterations in extracel-
lular calcium concentrations. It is expressed in the baso-
lateral side of the cortical TALH, and its stimulation by
elevated peritubular levels of reabsorbed calcium induces
an inhibition of NKCC2 and ROMK, resulting in decreased
sodium absorption and subsequently calcium absorption
[65–67]. Pearce et al. [68] described six kindreds with an
autosomal dominant inheritance of hypocalcemia and
hypercalciuria resulting from an activating mutations of
the CASR gene. Activating mutations of the CASR gene
give rise to hypercalciuria and hypocalcemia because of the
direct effect in TALH cells (where the CaSR can inhibit
calcium absorption) and to the inhibition of PTH secretion,
which induces additional downregulation of calcium ab-
sorption in the distal tubule. The inhibition of the NKCC2
transporter and ROMK channel leads to a Bartter syndrome
type 5. Children will present with hypocalcemia (usually
mild and asymptomatic but at times with carpopedal spasm
and seizures), hypercalciuria, and polyuria, and about half
may have associated hypomagnesemia [68–70]. The key
feature to note is that therapy of hypocalcemia with vitamin

D or calcium dramatically increases urinary calcium
excretion. This will further lead to polyuria, nephrocalci-
nosis, nephrolithiasis, and reduction in renal function, which
may be partially reversible following cessation of treatment
[68]. Thus, it is important to identify subjects with gain-of-
function CASR mutation, and in these patients, Vitamin D
therapy should be restricted to symptomatic patients only,
with careful follow-up of urine calcium excretion and
consideration of anticalciuric diuretics [71].

Familial hypomagnesemia with hypercalciuria and nephro-
calcinosis (FHHNC) FHHNC, or Michelis-Castrillo syn-
drome [72], is a rare tubular disorder. It is inherited as an
autosomal recessive disorder causing mutations in the PCLN-
1 gene on 3q27, which encodes for the protein claudin 16/
paracellin-1 [73, 74]. Claudins are membrane proteins that are
believed to play an important role in the integrity of the tight
junction. Paracellin-1, a member of the claudin family, is
expressed in the tight junctions of the TALH in humans [75].
The defect in paracellin-1 function interferes with the para-
cellular absorption of calcium and magnesium in the TALH.

FHHNC presents at birth. It is characterized by magne-
sium and calcium wasting, resulting in persistent hypomag-
nesemia (presents with neonatal seizures), marked
hypercalciuria leading to early nephrocalcinosis, incomplete
distal renal tubular acidocis (dRTA), hypocitraturia, urinary
tract infections, polyuria, and progressive renal failure [73–
77]. Some children with FHHNC have ocular abnormali-
ties, such as severe myopia, nystagmus, and chorioretinitis
[78]. Children reach end stage by their teenage or young-
adult years. The serum calcium level remains in the normal
range. Hypocalcemia is possibly prevented by increased
transcellular tubular calcium absorption in the distal tubule,
intestinal calcium absorption, and calcium release out of
bone, mediated by different hormones such as 1,25-(OH)2-
D3 and PTH. The serum PTH is elevated during the course
of disease and precedes the impairment in GFR. The
reduced concentrating ability, incomplete dRTA, recurrent
urinary tract infections, and the development of renal
insufficiency are not believed to result directly from the
genetic defect but rather as a consequence of medullary
interstitial damage from nephrocalcinosis. Children with
FHHNC do not have clinically significant salt wasting or
hypokalemic metabolic alkalosis and have normal renin and
aldosterone levels, which helps to differentiate this entity
from Bartter syndrome [75, 79]. The elevated serum PTH
helps in differentiating it from Dent’s disease.

Distal renal tubule and hypercalciuria

The fine tuning of calcium excretion occurs in the distal
part of the nephron in the DCT, connecting tubule and
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cortical collecting duct. Calcium absorption occurs in the
principal cells through an active transcellular pathway
(Fig. 3). Pseudohypoaldosteronism (PHA) type II from
with-no-lysine kinase 4 (WNK-4) mutation can cause
hypercalciuria from its role in regulation of TRPV5,
whereas dRTA leads to hypercalciuria indirectly from
metabolic acidosis and increased bone resorption.

Pseudohypoaldosteronism type II (PHA II) PHA type II is a
genetic disorder due to mutations in the gene encoding
WNK-1 or -4, which produces a clinical phenotype of
hypertension, hyperkalemia, and metabolic acidosis. Mayan
et al. [80] described a family with WNK4 gene mutation
was associated with marked hypercalciuria (and osteopenia)
that was responsive to thiazide diuretics. Jiang et al. [81]
recently showed that WNK4 positively regulates TRPV5-
mediated calcium transport, which could account for the
observed hypercalciuria.

Primary distal renal tubular acidosis (dRTA) Primary
dRTA is a hereditary disorder characterized by impaired
renal acid secretion resulting in hyperchloremic metabolic
acidosis, hypokalemia, hypercalciuria, hypocitraturia, and
inappropriately high urinary pH. The acidification of urine
at the distal tubule involves multiple proteins composed of
the vacuolar H+-ATPase, the band 3-anion exchanger 1
(AE1) (Cl�

�
HCO�

3 ), and carbonic anhydrase II. Thus,
dRTA can occur following mutation in the SLC4A1gene for
the AE1 in autosomal dominant dRTA [82, 83], in the gene
ATP6V1B1 coding for β subunit of the vacuolar H+-ATPase
(located in chromosome 2p13) in autosomal recessive
dRTA with sensorineural deafness [84, 85], and in the gene
ATP6VoA4 (located on chromosome 7q33-34) for α subunit
of the vacuolar H+-ATPase in autosomal recessive dRTA
without sensorineural deafness [86]. Mixed RTA can arise
from mutation in CAII gene for carbonic anhydrase II
enzyme [87, 88]. Primary dRTA produces a profound
metabolic acidosis, growth retardation, and impressive
hypercalciuria, nephrolithiasis, and nephrocalcinosis. The
hypercalciuria is believed to be secondary from the
increased buffering function of the bone and direct effect
of metabolic acidosis on calcium absorption, and the
development of progressive nephrocalcinosis is further
aggravated by the associated hypocitraturia.

Idiopathic hypercalciuria: absorptive, renal,
and resorptive hypercalciuria (role of vitamin D,
vitamin D receptor, PTH, and cytokines)

Pak et al. [89] introduced a tripartite classification of
absorptive, renal, and resorptive hypercalciuria for idio-
pathic hypercalciuria. Over the years, investigators have

further modified the classification based on urine calcium
excretion, serum phosphate, and serum PTH secretion
during fasting and after a calcium load [90]. It is now
postulated that idiopathic hypercalciuria can occur from
either or in combination with an (1) increased intestinal
calcium absorption mediated either by a direct increase in
calcium absorption (type 1 absorptive hypercalciuria) or
through excess 1,25-(OH)2D3-mediated calcium absorption
(type II absorptive hypercalciuria); (2) decreased renal
absorption of either calcium (renal hypercalciuria) or
phosphorus (type III absorptive hypercalciuria); (3) en-
hanced bone resorption (resorptive hypercalciuria) [91–93].
Maierhofer et al. [94] showed that administration of 1,25-
(OH)2D3 while eating a normal-calcium diet in healthy
subjects led to an increase in intestinal calcium absorption
and an increase in urinary calcium excretion, concluding
that the key components of idiopathic hypercalciuria are
related to calcitriol. They also showed that increased
calcitriol administration in humans on a calcium restricted
diet leads to negative calcium balance from increased
urinary calcium loss mediated through increased bone
resorption [95]. Similarly, vitamin D toxicity gives rise to
hypercalcemia and hypercalciuria by stimulating intestinal
calcium absorption. It is important to remember that
hypercalciuria usually precedes hypercalcemia as an indi-
cator of vitamin D overdose [96]. A fair number of
investigators have observed that blood calcitriol concentra-
tion is, on average, higher in patients with idiopathic
hypercalciuria or inappropriately normal for the condition
compared with healthy subjects. Kaplan et al. [97] found
elevated calcitriol levels in one third of absorptive hyper-
calciuria patients and normal values in two thirds, which
may be considered as inappropriately high given the
presence of relative hypoparathyroidism. Zerwekh and
Pak [98] observed that in both renal and absorptive
hypercalciuric subjects on thiazides, urine calcium excre-
tion was normalized, but only the renal hypercalciuric
group showed a decrease in intestinal hyperabsorption,
PTH, and calcitriol level, whereas no changes were
observed in the absorptive hypercalciuric subjects. These
results would support different inciting events in develop-
ment of hypercalciuria, namely, primary calcium leak in
renal hypercalciuria and abnormal 1,25-(OH)2-D3 metabo-
lism in absorptive hypercalciuria.

Data from NPT2a −/− mice that lack the Na+/Pi
cotransporter have provided further insight into the role of
1,25-(OH)2-D3 in the development of hypercalciuria. The
primary defect in tubular phosphate absorption in NPT2a −/−

mice stimulates calcitriol synthesis by the kidney, which in
turn increases intestinal absorption of calcium and phosphate
and inhibits PTH secretion, resulting in hypercalciuria [45].
A disruption in the 1 α-hydroxylase gene in NPT 2a−/− mice
decreases urinary calcium excretion and prevents develop-
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ment of nephrolithiasis, signifying the importance of
increased calcitriol synthesis in the development of hyper-
calciuria [99]. Similarly, in subjects with hypophosphatemic
tubular disorder such as X-linked hypophosphatemic rickets
(PHEX) and autosomal dominant hypophosphatemic rickets
(FGF-23) with decreased production of calcitriol due to the
inhibitory effect of FGF-23, no hypercalciuria is observed
until therapy with calcitriol is instituted [100, 101]. Studies
on the genetic hypercalciuric stone-forming (GHS) rat model
suggest a role for an increase in number and/or function of
vitamin D receptors (VDR) in enterocyte [102, 103]. Favus
et al. [104] found an elevation in tissue VDR level in patients
with idiopathic hypercalciuria with normal calcitriol level.

From studies done on GHS rats, it seems that the role of
bone in the development of hypercalciuria appears to be as
equally important as the intestines. While on a low-calcium
diet, GHS rats continue to have markedly elevated urine
calcium excretion exceeding their dietary intake, suggesting
a role for increased bone resorption. Krieger et al. [105]
showed that bone in GHS rats is sensitive to 1,25-(OH)2D3-
induced bone resorption, and Bushinsky et al. [106] showed
that alendronate decreases urine calcium excretion in GHS
rats on a low-calcium diet to a level below their dietary
intake (Fig. 4). Weisinger et al. [107] found alendronate to
decrease urine calcium excretion in adults with hyper-
calciuria, and Freundlich and Alon [abstract to be presented
at 14th International Pediatric Nephrology Association
(IPNA) 2007 meeting] recently reported preliminary similar
outcome in osteopenic hypercalciuric children. Cytokines
are known to induce bone resorption and inhibit bone

formation and may play a role in the rare of “resorptive
hypercalciuria”, in which a primary bone disorder is
believed to be the inciting defect. Ghazali et al. [108]
found cytokines such as interleukin (IL)-1β, IL-6, tumor
necrosis factor (TNF)-α, and granulocyte, macrophage
stimulating factor to be increased in hypercalciuric calci-
um-stone-forming subjects with increased bone loss. Sim-
ilar findings have been reported by Pacifici et al. [109],
which allude to a role for cytokines in the development of
hypercalciuria.

Hypercalciuria is a complex polygenic trait, and it is
possible that absorptive and renal forms of hypercalciuria
may represent a continuum of a single disease [110, 111].
When adults with idiopathic hypercalciuria are placed on a
low-calcium diet, there is a continuum from those who are
in “positive calcium balance”, suggesting a component of
direct increased intestinal calcium absorption, to those in
“negative calcium balance”, suggesting other mechanisms
of hypercalciuria [110]. The lack of evidence of increased
bone turnover in children with hypercalciuria suggests that
renal and absorptive hypercalciuria may not be distinct
physiologic entities [112]. An oral calcium loading test was
popular in the past to differentiate between the different
forms of idiopathic hypercalciuria; it has recently come
under challenge [91, 113]. In children, Aladjem et al. [114]
reevaluated calcium-loading tests after an interval of 3–
7 years in children who were initially diagnosed as having
absorptive or renal hypercalciuria and found a different
result in more than half of the children studied. However,
the classification, although not practical, has allowed
investigators to develop a structured approach to the
understanding of hypercalciuria.

Association of hypercalciuria with osteoporosis

A cross-sectional study from the Third National Health and
Nutrition Examination Survey (NHANES III) showed that
men (data weaker for women) with kidney-stone history
had lower femoral neck BMD than did men without kidney
stones after adjusting for age, body mass index (BMI),
ethnicity, and other potential confounders, with a concom-
itant higher prevalence of wrist and spine fractures [115]. In
a prospective study, Asplin et al. [116] found that the
severity of urine calcium excretion best predicted bone loss
in idiopathic hypercalciuric stone formers. Vezzoli et al.
[117] observed lower BMD in hypercalciuric compared
with normocalciuric stone-forming women, even in the
presence of increased intestinal calcium absorption docu-
mented by strontium absorption. Similarly, Pietschmann et
al. [118] found lower spinal BMD in hypercalciuric
compared with normocalciuric stone formers. In contrast,

Fig. 4 Urine calcium excretion in genetic hypercalciuric stone-
forming (GHS) and control (Ctl) rats. Alendronate led to a significant
decrease in urine calcium in the GHS, but not in the Ctl rats. GHS rats
(open symbols), Ctl rats (closed symbols), NCD normal-calcium diet
(1.2% calcium, triangles), LCD low-calcium diet (0.02% calcium,
squares), LCD + Aln alendronate (Aln, 50 g/kg per 24 h, circles).
Used with permission [106]
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Jaeger et al. [119] and Barkin et al. [120] found no
difference in BMD between normocalciuric and hyper-
calciuric stone formers.

When hypercalciuric stone formers were studied based
on Pak’s classification, the decrease in BMD was more
frequent and greater in patients with renal hypercalciuria
than in those with absorptive hypercalciuria [120, 121].
Other studies observed no reduction in BMD in absorptive
hypercalciuria [122, 123]. The overall trend in the literature
on adults with hypercalciuria, with or without stone disease,
would suggest that they have lower BMD, but the results
may vary based on subgroup analysis such as normocal-
ciuric versus hypercalciuric stone formers or between renal
versus absorptive hypercalciuria.

Penido et al. [124] found lower BMD in children with
idiopathic hypercalciuria, and in a subsequent study [125],
they found that these findings were more marked in children
with hypocitraturia in addition to the hypercalciuria. Garcia-
Neto et al. [126] had also made similar observation in an
earlier study but made an interesting observation of negative
linear correlation between age and bone mineral content in
children with idiopathic hypercalciuria, namely, the Z score
for BMD was much lower in older children with hyper-
calciuria, which raises the issue of whether adult osteoporo-
sis has its origin in childhood. Similarly, Freundlich et al.
[127] showed that reduced BMD was present in children
with hypercalciuria and concomitantly found a high inci-
dence of both hypercalciuria and reduced BMD in their
asymptomatic mothers. The data in both children and adults
indicate that the risk for bone loss is present in patients with
hypercalciuria, and its origin may lie in childhood; hence,
one must consider monitoring bone density as a proxy for
calcium balance in children.

Diet in hypercalciuria (or physiological hypercalciuria)

Diet can have a significant impact on calcium handling by
the renal tubules. Urinary calcium excretion is significantly
affected by sodium, protein, potassium, phosphorous, and
calcium in the diet. Ninety percent of calcium absorption
occurs as a paracellular event in the proximal tubule and
TALH, which places calcium absorption at the mercy of
sodium absorption. An increase in calcium delivery to the
distal nephron for transcellular absorption can overwhelm
the distal nephron, leading to obligatory hypercalciuria. An
increase in either oral or intravenous sodium chloride
inhibits net renal tubular calcium absorption and is used
with beneficial effect in the treatment of hypercalcemia to
increase urinary calcium excretion. The average consump-
tion of salt in industrialized countries is 10 g (or 170 mmol
Na)/day per person as determined by urinary 24-h excretion

in the INTERSALT study [128]. Nordin et al. [129] have
shown that approximately 1 mmol (or 40 mg) calcium is
excreted for every 100 mmol (or 2.3 g) of sodium. There is a
reproducible linear positive correlation between urinary
sodium (a surrogate for dietary intake) and calcium excretion
in stone formers as well as in normal individuals [130].
Thus, a diet high in sodium can lead to hypercalciuria [131].

An increase in dietary protein intake increases net acid
excretion because of the release of protons from oxidation
of sulfur in the amino acids methionine, cysteine, and
cystine [132]. Conversely, dietary potassium found mostly
in the form of potassium salts of metabolizable organic
anions in vegetable and fruits, reflects the dietary intake of
actual bicarbonate or potential bicarbonate, which reduce
net acid excretion [133]. Urine calcium excretion increases
as net acid excretion increases; hence, it rises progressively
as the protein intake increases. The increment in urinary
calcium excretion is ∼0.04 mmol (∼1.6 mg) calcium per
gram of protein. The increase in calcium excretion with
dietary protein is more marked in calcium-stone formers
than in healthy subjects [91, 134]. Similarly in healthy
subjects, an increase in dietary calcium increases urine
calcium excretion by 6–7% of the dietary intake increment,
whereas the change in calcium-stone formers is almost
twice for the same increase in calcium intake [133]. A
severe dietary phosphate deprivation induces increased
calcium excretion, probably by activating the vitamin D
endocrine system and thereby enhancing intestinal calcium
absorption when calcium is available in the diet, or bone
resorption when dietary calcium is low [94, 95, 135].

In the management of hypercalciuric stone formers,
close attention must be paid to dietary intake and
corrections made for dietary errors. Dietary hypercalciuria
linked to excessive intakes of sodium, protein, or calcium
or to deficiency in potassium or phosphate intake is
diagnosed when calcium excretion is high while the patient
is on his/her usual diet and normalizes during optimal
dietary conditions. Thus, it appears that the more society
deviates from the traditional balanced diet with optimal
intake of protein, salt, fruits, and vegetables, replacing them
with sodium-rich fast foods and artificial drinks, accompa-
nied by a decrease in intake of potassium-rich fruits and
vegetables, and increase in protein intake, the higher is the
risk for “physiological hypercalciuria” [136].

Approach to and management of hypercalciuria

Hypercalciuria in children can present as nonglomerular
hematuria (gross or microscopic), noninfectious dysuria,
urinary frequency and dysuria, abdominal and back pain, or
with urolithiasis [137, 138]. It can be intermittent or
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persistent, a transient phenomenon or associated with a
family history of urolithiasis. Once hypercalciuria is
detected in a child, a secondary etiology should be
considered, as successful correction of hypercalciuria in
such cases depends on eradication of the primary cause. An
evaluation for the rare monogenic disorders characterized
by hypercalciuria should be considered in the presence of
positive family history, failure to thrive, growth retardation,
rickets, acid-base disturbances, renal dysfunction, protein-
uria, electrolyte imbalance, dysmorphic features, or poor
response to therapy.

Hypercalciuria, like blood pressure, is defined in children
as urinary calcium excretion of >4 mg/kg per day on a
“statistical” basis, whereas in adults, hypercalciuria is defined
as >250 mg/day in women and >300 mg/day in men as an
“outcome” value observed in most calcium-stone formers.
The statistical cutoffs of 24-h urine >4 mg/kg per day or urine
calcium/creatinine ratio >0.21 and their clinical implications
have been recently addressed in detail by Butani and Kalia
[139]. They raise many questions about planning a strategy
for therapy in children. We believe that only symptomatic
hypercalciuric children should be treated with pharmacologi-
cal agents, whereas nonpharmacological intervention (vide
infra) can be used more liberally.

When idiopathic hypercalciuria is confirmed in symp-
tomatic children, we recommend as the first step to assess
whether dietary manipulation can normalize calcium excre-
tion. We recommend a Dietary Reference Intake for protein
and calcium that is not excessive in salt (2.0–2.4 g) per day
and supplemented with at least the recommended daily
allowance of five to six servings of fruits and vegetables
(3.0–3.5 g potassium) per day. Compliance with these
dietary recommendations can be assessed by measuring
urine Na+/K ratio, which should be <2.5. The dietary
implications of salt, protein, and fruits and vegetables in
hypercalciuria are well known, but we are cognizant of the
fact that children may not fully comply with such dietary
manipulations nor with the traditional recommendation of
high fluid intake [4]. If in 4–6 weeks hypercalciuria
persists, treatment with potassium citrate at 1–1.5 mEq of
potassium per kilogram per day is recommended. If the
child fails to tolerate potassium citrate or hypercalciuria
fails to correct, a thiazide diuretic can be added [4, 136].
Chlorothiazide 15–25 mg/kg per day or hydrochlorothia-
zide 1.5–2.5 mg/kg per day can be used. In the past, it was
proposed that thiazide-induced hypocalciuria occurred from
volume contraction, which through increased proximal
sodium absorption would increase the passive calcium
absorption. Costanzo et al. [140] showed that acute
administration of chlorothiazide in the tubular lumen
stimulated transcellular calcium transport in the DCT. The
earlier observation made by Costanzo et al. was recently
confirmed by Jang et al. [141], who showed that thiazides

increased the expression of TRPV5 and calbindin-D(28K)
and decreased expression of sodium-chloride cotransporter
in the DCT, leading to increased calcium absorption in the
DCT. Children on long-term thiazide diuretics will need to
be monitored for dyselectrolytemia, hyperlipidemia, and
hyperglycemia. One can consider adding amiloride, as it
further increases the hypocalciuric effect and decreases
potassium and magnesium loss. Contrary to past practice,
dietary restriction of calcium is not recommended in
children with hypercalciuria, as it puts the growing child
at risk for negative calcium balance and poor bone
mineralization. It may also increase urinary excretion of
oxalate from increased gastrointestinal absorption of oxa-
late resulting from decreased luminal calcium present to
bind with oxalate. For risk of possible negative calcium
balance, drugs such as sodium cellulose phosphate, a
nonabsorbable ion-exchange resin used for complexing
intestinal calcium, are not used in children. Phosphate salts
can be used in children with hypercalciuria due to tubular
phosphate leak. In children with hypercalciuria secondary
to renal tubular acidosis, potassium citrate is the drug of
choice for treatment of hypercalciuria. At times, this may
need to be supplemented by sodium bicarbonate and
calcium-sparing diuretics.

In summary, a better understanding of the rare inherited
renal tubular disorders associated with hypercalciuria has
improved our understanding of calcium handling by the
kidney and development of hypercalciuria. On the other
hand, our understanding of the more common idiopathic
hypercalciuria, probably inherited as a polygenic trait and
affected by the environment, remains dismal, and even more
so in children. Many questions remain open: Is dietary
manipulation adequate for all children, or should a subset of
children be offered anticalciuric therapy given that dietary
manipulation will not suffice or is not needed in them?
Should all children be treated with anticalciuric therapy?
Once an anticalciuric therapy is initiated, then for how long
should it be continued? The data on BMD is suggestive of
poor bone health in hypercalciuria; therefore, should all
children have a dual-energy X-ray absorptiometry (DXA)
scan with all its known pitfalls in children? Should DXA
findings be considered in planning therapy for hypercalciuria
in children? There are many such questions with respect to
hypercalcuria in children that need to be addressed. We
encourage the pediatric nephrology community to further
address these issues in the hope of developing evidence-
based care.
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