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Abstract

Diffusion tensor imaging (DTI) studies have revealed distinct white matter

(WM) characteristics of the brain following diseases. Beyond the lesion-symptom

maps, stroke is characterized by extensive structural and functional alterations of

brain areas remote to local lesions. Here, we further investigated the structural

changes over a global level by using DTI data of 10 ischemic stroke patients showing

motor impairment due to basal ganglia lesions and 11 healthy controls. DTI data were

processed to obtain fractional anisotropy (FA) maps, and multivariate pattern analysis

was used to explore brain regions that play an important role in classification based

on FA maps. The WM structural network was constructed by the deterministic fiber-

tracking approach. In comparison with the controls, the stroke patients showed FA

reductions in the perilesional basal ganglia, brainstem, and bilateral frontal lobes.

Using network-based statistics, we found a significant reduction in the WM sub-

network in stroke patients. We identified the patterns of WM degeneration affecting

brain areas remote to the lesions, revealing the abnormal organization of the struc-

tural network in stroke patients, which may be helpful in understanding of the neural

mechanisms underlying hemiplegia.
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1 | BACKGROUND

Focal brain lesions can affect the overall performance of brain net-

works. Over the past decades, numerous neuroimaging studies using

magnetic resonance imaging (MRI) have investigated the structural

and functional reorganizations after stroke (Lim & Kang, 2015). Diffu-

sion tensor imaging (DTI) is commonly used to evaluate the structural

integrity of the white matter (WM). Previous DTI studies in stroke

patients have calculated several diffusion tensor (DT) indicators

(e.g., fractional anisotropy [FA], mean diffusivity, radial diffusivity) in

various regions along the corticospinal tract (CST) of the lesioned and

contralateral hemispheres (Cunningham et al., 2015; Visser et al., 2019),

or computed the CST integrity (Byblow, Stinear, Barber, Petoe, &

Ackerley, 2015; Feng et al., 2015). These imaging indicators were sub-

sequently correlated with functional outcomes, further establishing

their value as predictive markers. Certain correlations have been identi-

fied between changes in specific fiber bundles and functional out-

comes, such as aphasia (Meier, Johnson, Pan, & Kiran, 2019), neglect
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(Umarova et al., 2017), and paralysis (Jang et al., 2014). One study mea-

sured FA and axial diffusivity (AD) across 48 different WM tract regions

in the brains of five hemiparetic patients. They found that patients with

lesions involving the corona radiata (CR) and middle cerebral artery

showed widespread reductions in perilesional FA and described longitu-

dinal changes in the perilesional and remote FA and AD in relation to

kinematic parameters of elbow flexion in the subacute poststroke

period (Oey et al., 2019). This globally reduced FA after stroke may

reflect extensive Wallerian degeneration (WD) of the descending path-

ways. Another study investigated global alterations of the lesion-spared

network architecture in the acute and chronic stroke phases in patients

showing spatial neglect. In addition to anterograde and retrograde axo-

nal degeneration, structural network alterations can represent remote

remodeling of fibers not directly connected to the lesion, that is, trans-

neuronal degeneration. Moreover, the results showed that longitudinal

WM changes, also transneuronal changes, may follow the persisting

deficit (Umarova et al., 2017).

Unlike the CST command of motor functions, the involvement of

other fibers and brain areas in movement control is not well under-

stood. Voluntary movements are mostly controlled by the CST. The

primary motor cortex is the source of most corticospinal axons, but its

activity is strongly influenced by the pallidum, striatum, cerebellum,

and many other cortical regions, including the somatosensory area of

the cortex. Different cortical regions are involved in specific motor

functions, such as motor learning, motor planning, motor preparation,

and coordination. A complete action includes motor initiation and ter-

mination, feed-forward and feedback control loops, and feedback

processing. Central processing systems also regulate movement

through integration of sensory information with the motor plan.

When the CST is damaged by large forebrain lesions in humans, the

loss of fine movement is accompanied by hypertonia and hyperre-

flexia. These deficits do not appear in monkeys with lesions restricted

to the CST, so they are probably attributable to damage to adjacent

forebrain structures, such as the striatum, in humans (Desrochers,

Brunfeldt, Sidiropoulos, & Kagerer, 2019; Watson, Kirkcaldie, &

Paxinos, 2010). Therefore, neural degeneration in some regions may

cause specific functional manifestations. We performed a pattern-

recognition classification of FA maps of the brain in an attempt to

explore regions that are closely related to motor function.

Multivariate pattern analysis (MVPA) is an imaging data analysis

method based on machine learning and pattern recognition. It

involves the use of pattern-classification algorithms to extract spatial

patterns from neuroimaging data for the analysis of individual charac-

teristics (Lao et al., 2004). MVPA offers the advantage of considering

interregional correlations and searching for abnormalities throughout

the entire brain because it adopts an unbiased and whole-brain

method without artificially setting the region of interest (ROI) (Pereira,

Mitchell, & Botvinick, 2009). This method has been widely used in

psychiatry-related studies to analyze mild changes observable in sub-

clinical populations (Janssen, Mour~ao-Miranda, & Schnack, 2018; Li

et al., 2014).

WM structural connectivity can be modeled as a network. A

network-based statistics (NBS) method can control the family-wise

error rate during mass univariate testing of every connection of the

network. NBS can be also used to investigate the interregional corre-

lations of the brain on a global level (Fortanier et al., 2019; Zalesky,

Fornito, & Bullmore, 2010). We utilized these methods to explore sub-

tle relevant changes and abnormalities of structural networks of the

brain for a deeper understanding of the intrinsic brain structural basis

of residual motor dysfunctions in ischemic stroke patients.

2 | METHODS

2.1 | Participants

Ten right-handed stroke patients (mean age, 56.7 ± 10.5 years) from

the Southeast University-affiliated Zhongda Hospital were recruited for

this study from March 2019 to December 2019. The inclusion criteria

for patients were as follows: (a) age ≥20 and ≤80 years; (b) first onset

of ischemic stroke with the involvement of the basal ganglia; (c) pure

motor deficits; and (d) stable condition after treatment of acute stroke

without recurrence. The exclusion factors were as follows: (a) a history

of neurological or psychiatric disorders prior or subsequent to symp-

tomatic stroke; (b) brain abnormalities unrelated to the infarct lesions;

and (c) MRI contraindications. All of the affected extremities were eval-

uated for motor function. The motor outcome of the affected limbs

was evaluated by the Fugl-Meyer assessment (FMA), including the

upper and lower extremities (Feng et al., 2015). The Brunnstrom stage

was also recorded. Recovery of the affected extremities was scored on

a 6-point scale (1 = severe; 6 = normal) (Naghdi, Ansari, Mansouri, &

Hasson, 2010). The clinical characteristics of the stroke patients are

summarized in Table 2. Eleven demographically matched healthy con-

trol participants (mean age, 61.5 ± 7.8 years) were also recruited.

The study was approved by the local Ethics Committee of the

Southeast University-affiliated Zhongda Hospital. All participants pro-

vided written informed consent to participate in accordance with the

Declaration of Helsinki.

2.2 | Image acquisition

Diffusion-tensor images were acquired using a 3.0-Tesla Philips (Ingenia)

Medical System equipped with a Synergy-L Sensitivity Encoding (SENSE)

head coil and a single echo planar imaging sequence, and 33 diffusion-

weighted images (b = 1,000 s/mm2) and a reference T2-weighted image

with no diffusion weighting (b = 0 s/mm2) were obtained with the

following acquisition parameters: voxel size = 2 � 2 � 2 mm3,

gap = 0 mm; echo time (TE) = 107 ms; repetition time (TR) = 5,835 ms;

field of view (FOV) = 256 � 256 mm2; flip angle (FA) = 90�;

matrix = 128 � 128; and slices = 75.

High-resolution T1-weighted axial images covering the whole brain

were obtained by a 3D-magnetization prepared rapid gradient-echo

(MP-RAGE) sequence with the following parameters: TR = 9.6 ms;

TE = 3.7 ms; FA = 9�; matrix = 256 � 256; FOV = 256 � 256 mm2;

voxel size = 1 � 1 � 1 mm3; gap = 0 mm; and number of slices = 140.
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Additionally, sagittal fluid attenuated inversion recovery (FLAIR) images

were obtained with the following parameters: TE = 110 ms;

TR = 7,000 ms; inversion time = 2,200 ms; FA = 90�; matrix

size = 480 � 480; FOV = 250 � 250 mm2; slice thickness = 5 mm;

number of slices = 20.

2.3 | Lesion mapping

Lesion-side normalization was performed to place lesions on the left

side of the brain. For patients with lesions in the right hemisphere, the

images were flipped from the right to the left along the midsagittal line

to simplify the comparison with other patients with stroke. In accor-

dance with previous investigations, lesion masks of each patient were

manually segmented on individual structural MRI images (T1-weighted

MP-RAGE and FLAIR images) using MRIcron software (http://www.

mricro.com). After spatial normalization of all individual lesion masks, a

lesion overlap image for all patients was constructed (Figure 1) (Chen &

Schlaug, 2013; Grefkes et al., 2008; Zhang et al., 2016).

2.4 | DTI data preprocessing and network
definition

DTI data analysis was performed by a pipeline toolbox for analyzing

brain diffusion images (PANDA, http://www.nitrc.org/projects/panda)

(Cui, Zhong, Xu, He, & Gong, 2013). The main procedure includes the

following steps: (a) correction for head motion and eddy current effects

using FMRIB's Diffusion Toolbox; (b) calculation of the DT metric, that

is, FA, for each voxel by using the DTIFIT tool; and (c) normalization by

registration of all the individual FA images to the FMRIB58_FA tem-

plate by calling the FNIRT tool (Guo et al., 2019). The FA maps were

obtained, and the FA values of 50WM labels were computed according

to the WM atlas “rICBM_DTI_81_WMPM_FMRIB58.nii.gz.” This atlas

is created by hand-segmenting a standard-space average of diffusion

MRI tensor maps from 81 normal participants according to histology

criteria and consists of 50 core regions (Mori et al., 2008).

Whole-brain tractography for each participant was performed in

the native diffusion space based on fiber assignment by the continuous

tracking algorithm (Mori, Crain, Chacko, & van Zijl, 1999). All voxels

with FA values ≥0.2 were used as seed points; the FA and curvature

thresholds of path tracing were set to 0.2 and 45�, respectively.

FA-weighted networks were constructed using 116 nodes defined

according to the automated anatomical labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002). The entire cerebral cortex was automatically par-

titioned into 116 anatomical ROIs (45 ROIs for each cerebral hemisphere,

26 ROIs for the cerebellum) using the AAL algorithm. The weight of the

edges in the network was defined as the mean FA value of the connected

fibers between each pair of nodes. In order to reduce false-positive con-

nections, two nodes were considered structurally connected only when at

least three fibers were reconstructed between them (Shu et al., 2011).

2.5 | Multivariate pattern analysis

Pattern classification analysis could be used to examine the differences

in the FA values between groups. A specific MVPA approach known as

support vector machine (SVM) was implemented using the Pattern Rec-

ognition for Neuroimaging toolbox (PRoNTo) software (http://www.

mlnl.cs.ucl.ac.uk/pronto/) (Schrouff et al., 2013). Individual FA maps were

treated as points located in a high-dimensional space. A linear decision

boundary in this high-dimensional space was defined by a hyperplane

that separated the individual brain images according to a class label

(i.e., patients vs. controls) (Figure 2a). A more detailed description of the

SVM can be found in previous reports (Li et al., 2014). The receiver oper-

ating characteristic curve (ROC), sensitivity, and specificity of the FA clas-

sifications and the weight of each brain region in the classification

analysis were obtained. The brain regions with voxels showing values

≥30% of the maximum weight vector value of the discrimination map

were considered to be the key areas.

F IGURE 1 Lesion incidence map of patients with stroke. Stroke lesions were projected to the left hemisphere for each patient and overlaid
onto a T1 template in MNI standard space. The color bar indicates the number of patients with stroke lesions in the corresponding voxel. The
numbers above the brain images are Z values marking the MNI coordinates of the transverse sections
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2.6 | Statistical analysis

Two-sample t tests were employed to test the group differences in

demographic data and imaging measures, while the differences in FA

values of 50 WM labels were compared between the two groups by

using the t test. Correlations between FA values in the core regions and

clinical scores were computed using Pearson's correlation test. These sta-

tistical tests were performed using the Statistical Package for Social Sci-

ence (SPSS) 22.0 software. The two-sample t test was adopted for the

comparisons of inter-nodal connections, followed by NBS using GRETNA

(v2.0.0) (Wang et al., 2015) to analyze the FA networks between groups.

In addition, the backbone extraction for the structural connectivity matrix

(the subnetwork) of each group was calculated to show the group proba-

bility matrix. Visualization of the results was performed by the BrainNet

Viewer (Xia, Wang, & He, 2013). The comparisons of the two sets of FA

values in the key areas derived from MVPA were performed in SPM12

with false discovery rate (FDR) correction (PFDR < .05, cluster size >5)

(Liang, Cai, Zhou, Huang, & Zheng, 2020).

3 | RESULTS

3.1 | Demographic data and patient characteristics

The demographic data of the patients and the controls are presented

in Table_1_SuppInfo. No significant differences in age or sex were

observed between the two groups. The mean interval from stroke

onset to DTI scans was 10.3 ± 9.0 weeks (Table 1). Stroke lesions

were projected to the left hemisphere for each patient and overlaid

onto a T1 template in MNI standard space (Figure 1).

WM labels with significantly different FA values between control

and stroke groups are shown in Table 3. The WM labels that corre-

lated with movement scores were evaluated with r values. Except for

the FA of the fornix, which increased, all other FA values reduced in

the stroke group. The most significant WM labels that showed

correlation with FMA (p < .001) were the left posterior limb of internal

capsule (PLIC, r = .795), superior CR (r = .720), and superior fronto-

occipital fasciculus (SFOF, r = .744).

3.2 | Overall classifier performance

Figure 2a shows the results of the MVPA classification between the

10 stroke patients and the 11 controls based on FA values. The overall

accuracy was 100%, and was significant at p < .005 (p = .001). Both

the sensitivity and the specificity were 100% (with ROC shown in

Figure 2b). The overall classification accuracy of the algorithm mea-

sures its ability to correctly sort the two groups.

3.3 | Discrimination map

In the whole-brain voxel weight maps, the weight vector value indicates

the relative importance of the voxel in the decision function, that is, the

discrimination between patients and controls (Figure 3). Note that all

voxels in the WMmask contribute to the decision function since the anal-

ysis is multivariate. The spatial distribution of the weight vector provided

information about the contribution of different areas to classification.

The brain regions that contributed the most to the discrimination

between stroke patients and controls were identified by setting the

F IGURE 2 The results of multivariate pattern analysis (MVPA) classification. The classification plot (a) and receiver operating characteristic
(ROC) curve (b) for the comparison between stroke patients and controls using fractional anisotropy (FA) maps derived from diffusion tensor
imaging (DTI) data, which yielded an accuracy of 100% (100% sensitivity, 100% specificity), with statistical significance at p < .005
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TABLE 1 Patient characteristics
ID Age (years) Side Localization of infarct BRS FMA Scan time (week)

1 49 R BG 3, 3, 5 58 22

2 67 R BG 2, 1, 4 37 2

3 57 L BG, PV 2, 1, 4 35 4

4 51 L BG, PV 3, 2, 4 41 10

5 60 R BG, CR 4, 4, 5 86 20

6 57 L BG, CR 2, 1, 5 38 3

7 74 L BG, CR 5, 4, 5 82 14

8 60 L BG 2, 1, 3 19 2

9 35 L BG 2, 1, 3 25 3

10 57 L BG 5, 5, 5 89 24

Note: Side: the hemisphere of lesions on brain; separate functional evaluation of proximal and distal

portions of the upper and entire lower extremities; (full score = 100); scan time: interval of DTI

acquisition from stroke onset.

Abbreviations: BG, basal ganglia; BRS, Brunnstrom stage; CR, corona radiata; DTI, diffusion tensor

imaging; FMA, Fugl–Meyer assessment; IC, internal capsule; PV, periventricular.

F IGURE 3 Whole-brain voxel weight map. It shows the white matter regions contributing to discrimination between groups based on
fractional anisotropy (FA) values. The color bar indicates the weight vector value of the voxel, which is also indicated in the intensity field of the
anatomical image (white fiber atlas “JHU-ICBM-FA-2 mm”) panel
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threshold to ≥30% of the maximum weight vector scores, consistent

with previous studies using MVPA for disease classification (Ecker

et al., 2010; Li et al., 2014). The most frequently identified classifying

features of the FA maps included the perilesional basal ganglia and

brainstem, with a few features appearing in the bilateral frontal lobes

(Figures 3 and 4a), which were considered as the key areas.

By comparing the FA values of the two groups in the discrimina-

tion map by SPM12 (PFDR < .05, cluster size >5), we found that the

stroke group showed reduced FA in the key areas, as shown in

Figure 4a and reported in Table 2. According to the WM atlas, these

clusters were mainly located in the CST pathway. Moreover, the FA

values of these areas showed a positive correlation with that of the

ipsilesional CST (r = .888, p < .001) (Figure 4b).

3.4 | Decreased connection of the component
network in stroke patients

FA-weighted networks were constructed from the nodes (brain areas)

defined according to the AAL atlas. The weight of the edges in the

network was defined as the mean FA value of the connected fibers

between each pair of nodes. The NBS approach was used on the

structural networks constructed by deterministic tractography. We

identified several significantly decreased connections of a component

network (subnetwork) in stroke patients (p < .001, p = .00099)

(Figure 5a and Table_2_SuppInfo).

Figure 5a presents the subnetwork that showed deterioration in

the brain structure of the stroke patients. Figure 5b,c demonstrates

F IGURE 4 (a) The brain areas showing decreased fractional anisotropy (FA) in the patients compared to the controls, including the left
brainstem, left basal ganglion and a fraction of voxels in the bilateral frontal lobe. These regions were identified by setting the threshold to ≥30%
of the maximum weight vector scores on the basis of the whole-brain voxel weight map. The color bar indicates the T value in two-sample t tests.
(b,c) The FA values of the ipsilesional corticospinal tract (CST) and the key areas both showed positive correlations with Fugl-Meyer assessment
(FMA) (r = .588, p ≤ .005; r = .784, p < .001). C: control group; S: stroke group
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the group probability matrix for the subnetwork of each group. The

table in supplementary information reported the regions as nodes in

the subnetwork. The subnetwork contained parts of the cerebral corti-

cal regions (the frontal, parietal, and occipital lobes), the subcortical

areas (the basal ganglion), and the cerebellum. Together with the results

of MVPA, these findings showed obvious changes involving the frontal

parietal lobe and the basal ganglia, and those in the brainstem region

may overlap with some of the fibers connected to the cerebellum.

4 | DISCUSSION

Beyond the well-known concept of lesion-symptom mapping, some

lesions in a single location in the brain could disrupt brain functions

routed to widespread neural networks (Burke Quinlan et al., 2015;

Lim et al., 2014). Our analysis confirmed that local destruction of basal

ganglia could affect remote areas in the brain.

4.1 | WM degeneration in the CST pathway of
stroke patients

The degree of anisotropy depends on the level of organization, the

integrity of the WM tract, and the degree of freedom for water diffu-

sion caused by the oriented axonal membranes and myelin sheaths

(Virta, Barnett, & Pierpaoli, 1999). Reduced anisotropy along the CST

far from the original lesions has been interpreted as WD (Thomalla

et al., 2004). DTI can quantify the FA values to evaluate pathology

changes in the WM, such as WD. Using MVPA, we reported that

apart from the basal ganglia region where the infarcts are localized,

brain areas with significantly decreased FA values were also located in

the brainstem of the lesioned hemisphere, and a few areas were pre-

sent in the bilateral frontal lobes, which might be indicative of the

degenerative lesions caused by WD.

The acute and chronic phases of stroke probably differ in terms

of WM changes since neural changes can include anterograde and ret-

rograde degeneration, or refactoring. However, regardless of the type

of alteration, it should generate specific structural changes and affect

the corresponding functions. Therefore, we performed pattern-

recognition classification using the whole-brain FA map and explored

the key brain regions important for distinguishing stroke patients from

controls. MVPA analysis explored the key brain regions important for

distinguishing stroke patients from controls. Most of the regions were

located in the WM based on the atlas, but some voxels were still not

in the WM areas. They may have been present at the junction of gray

and WM. Therefore, we can investigate the areas that were embed-

ded in a network by NBS. In comparison with the whole brain net-

work, we referred to the decreased FA-weighted component network

as a subnetwork. Its contents are displayed in Figure 5, and include

the frontal lobe, limbic lobe, occipital lobe, parietal lobe, basal ganglia,

temporal lobe, and cerebellum. We thought that this subnetwork may

be specific to basal ganglia stroke and could be generalizable for

patients with hemiplegia.

Our study verified the degenerative changes in the WM of stroke

patients. The infarcted lesions were mainly located in the basal ganglia

region, but the FA reduction in some remote areas had reached the

point where they could be differentiated from the controls. Thus, the

damaged structural anatomy of the subcortical areas may induce dete-

rioration of key WM areas in the brain.

4.2 | Decreased WM connections were widely
distributed across the brain regions of stroke patients

Many patients showed motor dysfunctions after the occurrence of cere-

bral infarction. These dysfunctions were usually related to injury of the

CST. The CST originates from multiple motor and somatosensory corti-

ces, including the premotor cortex, supplementary motor cortex (SMA),

TABLE 2 The brain areas showing decreased FA in patients in comparison with controls

ID Voxel size Peak MNI coordinate (x, y, z) Peak intensity Brain regions White matter regions (voxel size)

1 36 �4, �36, �46 0.028 Pons; Medulla.L CST.L 20

2 114 �10, �20, �22 0.032 Midbrain; Pons.L CP.L 57

CST.L 53

3 112 �22, �6, 16 0.027 Extra-nuclear;

Lentiform Nucleus.L

PLIC.L 43

SCR.L 30

SFOF.L 15

ALIC.L 12

4 9 �14, �20, 60 0.019 MFG.L Not in the atlas

5 7 24, �18, 66 0.023 MFG.R Not in the atlas

Note: ID: the index of the cluster; voxel size: number of voxels in the cluster; peak MNI coordinate: the location of the voxel with the maximum weight

vector scores (also peak intensity) in each cluster. Cluster Locater in PANDA software was used to locate the cluster image according to JHU ICBM-DTI-81

White-Matter Labels. White matter atlas (voxel size): the atlas regions this cluster involves and the quantity of voxels in this cluster overlapped with each

atlas region.

Abbreviations: ALIC, anterior limb of the internal capsule; CP, cerebral peduncle; FA, fractional anisotropy; L, left; MFG, medial frontal gyrus; PLIC,

posterior limb of the internal capsule; R, right; SCR, superior corona radiata; SFOF, superior fronto-occipital fasciculus (could be a part of the anterior

internal capsule).
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primary motor cortex, as well as primary and secondary somatosensory

cortices. The CST is crucial for proper execution of a volitional move-

ment (Chenot et al., 2019; Lemon, 2008). Apart from the CST and the

motor areas of the cortex, the proper execution of movements involving

balance and coordination also requires the extrapyramidal tract and other

brain regions such as basal ganglia and the cerebellum (Moreno-L�opez,

F IGURE 5 The subnetwork identified by the network-based statistics (NBS) analysis. (a,b) The subnetwork demonstrated reduced
connectivity in stroke patients in comparison with controls. The connections in the subnetwork shown in a brain model (a) and a circle (b). The
color bar represents the t value derived from two-sample t test for each connection and the thickness of the edges represents how significantly
the two groups are different (thickness of lines in b: t < 2.5, thin; 2.5 ≤ t < 3.5, moderate; t ≥ 3.5, thick). (c,d) The group averaged fractional
anisotropy (FA)-weighted structural connectivity network for the control and stroke groups. The color bar indicates the connection probability in
the groups. The abbreviations in (b) are illustrated in the Supporting Information. BG, basal ganglia; CB, cerebellum; FL, frontal lobe; LL, limbic
lobe; OL, occipital lobe; PL, parietal lobe; TL, temporal lobe
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Olivares-Moreno, Cordero-Erausquin, & Rojas-Piloni, 2016). The NBS

analysis showed that the structural subnetwork connection of the stroke

group was weaker than that of the control group, indicating that the

nerve fibers involved in the subnetwork were affected. Destruction of

the integrity and order of the brain structure may be reflected in the

WM. Not only was the motor cortex directly related to motor com-

mands, but other regions that regulated movement were also involved in

the subnetwork.

In addition, since the MVPA analysis is multivariate, all voxels in

the WM mask contribute to the decision function in the processing

stage. The CST passes through the frontal lobe and midbrain, and

MVPA verified its pathway degeneration in stroke patients with hemi-

plegia. Other brain areas influenced were explored by NBS (e.g., the

occipital lobe, parietal lobe, and cerebellum). The results of MVPA

more obviously showed the damage to the pathway from the basal

ganglia to the brain stem (Figure 4). The results of NBS showed that

the affected brain tissues were distributed across a wide range of

brain regions, and the damage to the pathway from the basal ganglia

to the cortex was more obvious (Figure 5). Both methods showed

reduced FA in the frontal lobe and basal ganglia. The connections

between the frontal lobe and the cerebellum pass through the cere-

bral peduncle (CP) in the brainstem. Therefore, the weakening of

these connections in subnetworks derived from NBS was partially

consistent with the decreased FA in the brainstem based on MVPA.

The affected contralesional areas were verified with the difference of

the corpus callosum and fornix between groups. In short, the

decreased FA appears to spread out from the original infarct area as

time elapses after the acute stage of the stroke onset. The sub-

network specific to basal ganglia stroke implicated the involvement of

an internal model in patients with hemiplegia. Next, we briefly discuss

the brain regions involved in the subnetwork.

4.3 | The bilateral frontal lobe

Similar to the results of previous studies showing infarct-related focal

thinning of the motor area in the remote cortex via degeneration of

inter-hemispheric connection fibers of the corpus callosum (Duering

et al., 2015; Hayward et al., 2017), we found changes in the connec-

tion between the frontal hemispheres, as well as reduced FA values in

a small area located in the contralesional frontal cortex. In studies cal-

culating the mean kurtosis values of manually drawn ROIs from diffu-

sion kurtosis imaging, secondary degeneration has been reported to

occur in the ipsilesional precentral gyrus (PreCG) at the 6-month

follow-up after subcortical stroke involving the CST (Wei, Shang,

Zhou, Zhou, & Li, 2019).

In Figure 5, the connection between the left PreCG and middle

frontal gyrus (MFG) in the subnetwork derived from NBS was reduced

in the stroke group, which may well be linked to reduced FA in the

frontal lobe in Figure 4. This cluster was not present in the WM atlas,

but was present in the MFG (Table 2). The CST originates from motor

cortices, including the PreCG, premotor cortex, and SMA in MFG. In

Table 3, FA values of the superior CR, anterior CR, superior

longitudinal fasciculus, and parts of the internal capsule were shown

to be decreased in the stroke group. We speculated that the FA

changes in the CST pathway and that these changes may be linked

with the related motor supplementary areas in frontal lobes.

4.4 | The basal ganglia region

The patients recruited in this study all had infarcts localized to the

basal ganglia. The comparison results for the WM regions in Table 3

TABLE 3 WM labels with different FA values between groups

ID WM label

t test Correlation test

p p r

Increased FA in the stroke group

1 Fornix .010 .024 �.490

Decreased FA in the stroke group

2 Splenium of the corpus callosum .035 .088

3 CST.L .000 .005 .588

4 Superior CP.R .001 .032 .468

5 Superior CP.L .026 .214

6 CP.L .000 .006 .579

7 ALIC.R .014 .048 .436

8 ALIC.L .003 .118

9 PLIC.R .040 .065

10 PLIC.L .000 .000 .795

11 RIC.R .018 .086

12 RIC.L .001 .003 .610

13 Anterior CR.L .039 .309

14 Superior CR.R .007 .064

15 Superior CR.L .000 .000 .720

16 Posterior CR.R .005 .062

17 Posterior CR.L .003 .038 .456

18 Sagittal stratum.R .001 .006 .582

19 Sagittal stratum.L .001 .033 .466

20 External capsule.L .001 .037 .457

21 SLF.R .004 .111

22 SLF.L .007 .110

23 SFOF.L .000 .000 .744

24 Uncinate fasciculus.R .008 .179

Note:WM labels with significantly different FA values between the control

and stroke groups using the t test (p < .05). The correlation between FA

values and FMA scores was determined using Pearson correlation test. The

correlation coefficient r is shown when p < .05. The analyses included the

control group which showed the full FMA score (FMA = 100).

Abbreviations: ALIC, anterior limb of the internal capsule; CP, cerebral

peduncle; CR, corona radiata; FA, fractional anisotropy; FMA, Fugl-Meyer

assessment; L, left; PLIC, posterior limb of the internal capsule; R, right.

Sagittal stratum (includes the inferior longitudinal fasciculus and inferior

fronto-occipital fasciculus); RIC, retrolenticular part of the internal capsule;

SFOF, superior fronto-occipital fasciculus (could be a part of the anterior

internal capsule); SLF, superior longitudinal fasciculus; WM, white matter.
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showed that the PLIC, anterior limb of the internal capsule, ret-

rolenticular part of internal capsule, and external capsule were affected

after stroke. These WM tracts were located between the thalamus and

basal ganglia. The advantage of the structural subnetwork derived from

NBS was that it showed connections between smaller brain areas, such

as the edges between the thalamus, putamen, pallidum, PreCG, SMA,

and PoCG (Figure 5b). The CST section passing through the internal

capsule may receive regulatory information from the nucleus of basal

ganglia. Due to the cortico-basal ganglia-thalamocortical “motor” loop,

any impact on the circuit constituents can lead to a shift in the balance

between neural interactions in the direct and indirect pathways and

subsequently lead to variations in the brain functions (Alexander,

Crutcher, & DeLong, 1991; Silkis, 2001). In the early stage of rehabilita-

tion, stroke patients with hemiplegia often have synergistic movements,

which are thought to be related to this loop.

4.5 | The parietal and occipital lobes

Fibers connecting the frontal, parietal, and occipital lobes were

affected after stroke (Figure 5), and the SFOF showed obvious degen-

eration in the stroke group (Table 3). The parietal lobe participates in

sensory and motor integration, while the occipital lobe is related to

visual effects. Stroke patients with dysfunction of normal voluntary

movements may develop corresponding abnormal sensory modula-

tions that gradually affect brain structure (Buaron, Reznik, Gilron, &

Mukamel, 2020).

4.6 | The cerebellum

The cerebellum is often related to balance adjustment, and patients

with hemiplegia usually experience problems with stability and coordi-

nation after stroke. The AAL atlas did not contain regions in the

brainstem. Therefore, connections in the network could not precisely

demonstrate fibers to the brainstem, including the red nucleus and

substantia nigra. In our study, the CP was changed after stroke,

and the reduced FA of the brainstem was probably related to changes

in cortico-ponto-cerebellar tract. Previous DTI studies also showed

decreased FA in the midbrain of stroke patients by manually plotting

ROIs (Wei et al., 2019). A recent study indicated that the cerebellum

plays a role in residual motor output by facilitating cortical excitability

in chronic stroke (Guder et al., 2020). Taken together, these findings

suggest that the inability to perform normal movements might gradu-

ally lead to abnormal balance, which is reflected in decreased cortico-

cerebellar connectivity in these patients.

5 | LIMITATIONS

This study had multiple limitations. First, the sample size was small.

Second, the interval of DTI acquisition from stroke onset ranged from

2 to 24 weeks. Recovery of FA in the penumbra regions occurs most

rapidly during the first 2 weeks following stroke, with continued

slow increases in FA occurring for many weeks thereafter (Ding

et al., 2008; Mandeville, Ayata, Zheng, & Mandeville, 2017). The

phases of rehabilitation may influence WM organization, but we

only discussed stroke patients with motor impairments in a cross-

sectional manner. Future studies should aim to further explore

these findings by expanding the sample size and dynamically

observing changes from the acute to chronic phases. Additionally,

emphasis should be placed on the classification and refinement of

clinical behaviors of stroke patients, with identification of the spe-

cific brain feature changes that correspond to the functional

outcomes.

6 | CONCLUSIONS

Our study recruited stroke patients with motor dysfunction and used

MVPA and NBS methods based on DTI data to detect reduced FA

values and abnormal WM connections at a global level in the brain of

these patients. We found multiple WM structural abnormalities in the

affected brain areas of stroke patients showing motor impairment.

Our study may provide the basis for further exploration of the neural

mechanisms involved in residual motor deficits in stroke patients. In

future studies, we will further compare the neural changes in well-

recovered patients to provide a basis for the development of adaptive

rehabilitation training strategies.
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