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 Abstract 

  Background:  We previously showed that angiotensin type 1 receptor (AT1) blocker (ARB) at-

tenuates glomerular injury in  Nphs1-hCD25  (NEP25) transgenic mice, a model of selective podo-

cyte injury. However, subsequent studies in NEP25 mice with podocyte-specific deficiency of 

AT1 revealed that the protective effects of ARB are not through the podocyte AT1, thereby rais-

ing the possibility that the protective effects of ARB involve mineralocorticoids.  Methods:  
NEP25 mice were treated with the mineralocorticoid receptor blocker (MRB) spironolactone (25 

mg/kg/day, n = 10), the ARB losartan (250 mg/kg/day, n = 11), both (ARB+MRB, n = 8) or vehicle 

(Vehicle, n = 9) from day –7 to day 9 of induction of podocyte injury.  Results:  Although MRB did 

not reduce systolic blood pressure or proteinuria, addition of MRB to ARB significantly attenu-

ated glomerulosclerosis (glomerulosclerosis index: ARB+MRB 1.67  8  0.19 vs. MRB 2.01  8  0.29, 

ARB 2.35  8  0.19, and Vehicle 2.25  8  0.26, p  !  0.05) and preserved the number of WT1-positive 

podocytes (ARB+MRB 152.5  8  9.7 vs. MRB 117.2  8  9.0 or ARB 113.6  8  7.4, and ARB+MRB vs. 

Vehicle 97.5  8  4.0 per glomerulus; p  !  0.05).  Conclusion:  These data suggest that, while MRB 

does not attenuate proteinuria caused by podocyte-specific injury, it provides protective ef-

fects against glomerulosclerosis that is independent of systemic blood pressure. 
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 Introduction 

 Podocytes are visceral epithelial cells that form the outer layer of the glomerular filtra-
tion barrier, and serve as an important defense against urinary protein loss in the normal 
glomerulus  [1] . Dysfunction and loss of podocytes have been regarded as playing a critical 
role in the development of glomerulosclerosis  [2] . Our previous studies with a podocyte-
specific injury model,  Nphs1-hCD25  (NEP25) transgenic mouse  [3] , together with others 
 [4–6]  have shown that podocyte-specific injury causes proteinuria and glomerulosclerosis. 
Models of podocyte damage-induced glomerulosclerosis have also shown that blockade of 
the angiotensin type 1 receptor (AT1) attenuates podocyte damage and glomerulosclerosis 
 [3, 7, 8] . Importantly, however, our most recent study with the NEP25 mice has revealed that 
this protective effect of the AT1 antagonist is not through podocyte-specific AT1  [8] , raising 
the possibility of AT1-independent mechanisms.

  Aldosterone is a major mineralocorticoid, the synthesis of which occurs primarily in the 
adrenal gland and is stimulated primarily by angiotensin II via AT1  [9, 10] . Expression of 
mineralocorticoid receptor has been found in podocytes in vivo  [11] . Several in vitro   studies 
have suggested that aldosterone can directly injure podocytes through mineralocorticoid 
receptor  [12–14] . In animal models with glomerular injury, treatment with mineralocorti-
coid receptor blocker (MRB) protects against podocyte injury and glomerulosclerosis  [15–
17] . In humans, MRB decreased the amount of proteinuria in patients with chronic renal 
injuries  [9, 18–20] . In rat models with hypertension  [21, 22] , diabetes  [23] , renal mass reduc-
tion  [24, 25] , radiation injury  [16]  and adriamycin-induced nephrosis  [26] , addition of MRB 
to ARB or angiotensin-converting enzyme inhibitor (ACEI) lessened podocyte damage. The 
current study examines the role of mineralocorticoid receptor in podocyte injury and podo-
cyte injury-induced glomerulosclerosis as well as its relationship to AT1 blockade in NEP25 
mice.

  Animals and Methods 

 Animals 
 All animal procedures used in the study were approved by the Institutional Animal 

Care and Use Committee (IACUC) at Vanderbilt University. Male and female NEP25 mice 
with C57BL/6J genetic background were housed under normal conditions with 20 ° C, 12-
hour light/dark cycle. Mice had free access to normal rodent chow and water. At 12–18 
weeks of age, mice were randomly allocated to one of the following 4 groups; control drink-
ing water containing 2% ethanol (Vehicle, n = 9), spironolactone water (MRB, 100 mg/l, 
n = 10), losartan (ARB, 1 g/l, n = 11), or a combination of spironolactone and losartan 
(ARB+MRB, n = 8). Measured drug consumption was 250 mg/kg/day for losartan and 25 
mg/kg/day for spironolactone throughout the study period  [25] . In order to induce uniform 
podocyte damage, a large dose of anti-human CD25 recombinant immunotoxin (LMB2, 20 
ng/g body weight) diluted with phosphate-buffered saline was injected intraperitoneally. 
LMB2 did not cause any systemic and renal injury in wild-type mice  [3] . Preliminary ex-
periments showed that this LMB2 dosage caused nephrosis evidenced by systemic edema 
and established glomerulosclerosis within 2 weeks and death within 4 weeks. Drugs were 
started at 7 days before (day –7) LMB2, and mice were sacrificed on day 9, at a time when 
body weight increase and proteinuria plateaued, edema became obvious, and glomerulo-
sclerosis manifested.
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  Blood Pressure Measurement 
 Conscious mice were prewarmed at 37 ° C for 10 min before measurement. Systolic blood 

pressure (SBP) was measured using tail-cuff plethysmography (BP-2000 Blood Pressure 
Analysis System; Visitech Systems, Apex, N.C., USA). Final SBP readings were obtained by 
averaging 6–10 successful readings.

  Urine and Blood Biochemical Analysis 
 Spot urine was collected. Concentration of total protein was measured by the BCA meth-

od, and creatinine was measured by the picric acid method (Exocell, Philadelphia, Pa., USA). 
Concentration of albumin in the urine was determined by ELISA (Albuwell M; Exocell). Uri-
nary and serum sodium and potassium were measured by flame spectrophotometry.

  Morphological and Immunohistochemical Analysis 
 Kidneys were fixed in 4% buffered paraformaldehyde overnight at 4 ° C, processed and 

embedded in paraffin, and cut in 2- � m sections, which were stained with PAS. Each glo-
merulus was graded on a 0–4 scale, which represents the sclerotic area involving 0, 1–25, 
26–50, 51–75, or  1 75% of the glomerulus. Scores for all of the glomeruli on a section were 
averaged and defined as the sclerosis index for each mouse  [3] .

  Glomerular deposition of collagen IV, podocyte marker Wilms’ tumor suppressor gene 
1 (WT1), and serum/glucocorticoid-regulated kinase 1 (SGK1) were detected by immuno-
histochemistry. Briefly, after quenching endogenous peroxidase with 1% H 2 O 2  in metha-
nol, tissue sections were treated with 0.2 mg/ml trypsin/PBS at 37 ° C for collagen IV stain-
ing, or with microwave heat in citrate buffer for WT1 and SGK1 staining. Sections were 
then incubated with rabbit anti-mouse collagen IV (Serotec, Oxford, UK) at 1:   1,000 dilu-
tion, rabbit anti-mouse WT1 (Santa Cruz Biotechnology, Santa Cruz, Calif., USA) at 1:   800, 
or rabbit anti-SGK1 (Abcam Inc., Cambridge, Mass., USA) at 1:   2,000 dilution overnight at 
4 ° C. Standard blocking, secondary antibody incubation and developing procedures were 
applied according to the instructions provided by the corresponding MOM or ABC kit 
(Vector Laboratories, Burlingame, Calif., USA). Immunostainings were visualized by di-
aminobenzidine, and the digital images were captured at  ! 40 magnification. Podocytes 
stained for WT1 were quantitated by ImageJ software. Briefly, the color of positive staining 
was extracted by the plugin Colour Deconvolution function. The threshold of maximum 
color entry was determined by the investigator so that only dark-brown positive signals 
were entered for analysis, and assigned under the plugin Filter function. The number and 
size of WT1-positive podocytes in an outlined glomerulus as well as the glomerular area 
were then measured. The podocyte density in the glomerular sphere and the glomerular 
volume were computed according to the Weibel-Gomez equation based on stereological 
principles  [27, 28] , and the average number of podocyte per glomerulus was calculated from 
 1 30 measured glomeruli for each kidney section. The collagen IV-positive area fraction in 
the glomerulus was also quantified by ImageJ. Data from all glomeruli were then averaged 
for each animal. All morphometric analyses were done by trained laboratory staff blinded 
to group allocation.

  Statistical Analysis 
 Results are expressed as means  8  SE. Analysis of variance (ANOVA) and post-hoc 

Tukey test were used to evaluate differences between the groups. Nonparametric Mann-
Whitney U test was used for between-group comparisons when data were not normally dis-
tributed. All tests were two-tailed, and p  !  0.05 was considered statistically significant.
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  Results 

 Systemic Parameters and Drug Effect 
 Systemic edema was evident in all mice after induction of podocyte damage by LMB2 

injection. Vehicle control mice had 20% increase in body weight by day 8 ( table 1 ). Treatment 
with MRB or ARB alone did not prevent the increase in body weight, while ARB+MRB treat-
ment significantly attenuated edema and increased body weight.

  To follow the effects of spironolactone, urinary Na + /K +  ratio was measured 4 days after 
initiation of spironolactone treatment. Serum K +  measured at sacrifice on day 9 was 5.86  8  
0.08 mmol/l in Vehicle, 5.41  8  0.21 in ARB, 5.69  8  0.32 in MRB, and 6.46  8  0.21 in 
ARB+MRB (ARB vs. ARB+MRB, p  !  0.05). MRB tended to increase the Na + /K +  ratio com-
pared to control (MRB 0.975  8  0.225 vs. Vehicle 0.872  8  0.073, p = 0.10).

  The SBP did not differ at baseline (day –7) among the 4 groups. ARB significantly de-
creased SBP throughout duration of the study. MRB alone did not affect the SBP over the 
course of the study, and addition of MRB to ARB did not further decrease the SBP. Vehicle 
mice had slightly lowered SBP on day 8 that coincided with increased body weight and albu-
minuria, consistent with their nephrotic status ( table 1 ). 

 SGK1 stained positively in the kidneys from the Vehicle group, mainly in the tubules, 
while there was only a little expression in the ARB, MRB and ARB+MRB groups, suggesting 
the blockade of mineralocorticoid receptor and AT1 ( fig. 1 ).

  Proteinuria 
 Vehicle control mice developed massive albuminuria following induction of podocyte 

damage ( table 1 ). ARB treatment significantly decreased the amount of albuminuria on day 
4, while MRB treatment did not lessen the albuminuria. Addition of MRB to ARB caused a 
significant decrease of proteinuria on day 4 and day 8.

  Glomerulosclerosis 
 Glomerulosclerosis was evident in all mice after induction of podocyte damage. ARB or 

MRB alone significantly lessened sclerosis evidenced by decreased glomerular deposition of 

Table 1.  Body weight, SBP and proteinuria

Group T ime from induction of podocyte damage

day –7 day –4 day 0 day 4 day 8

Body weight,
% change 
from day –7

Vehicle –1.7580.46 0.7180.39 4.1081.72 21.1184.55
ARB –6.4182.37 –4.4082.49 –0.7883.01 11.5583.44
MRB 0.3980.49 0.4480.60 † 4.5381.83 21.8984.84
ARB+MRB –4.1582.47 –2.5581.37 –0.5881.33 4.8682.18*, ‡

Systolic blood
pressure,
mm Hg

Vehicle 105.2982.26 110.7383.20 118.4782.61 112.4085.78 95.2187.00
ARB 106.7983.72 95.8082.96* 91.0983.18* 92.1086.82* 81.7682.63
MRB 109.3881.29 109.2482.81† 112.5884.19† 114.7384.70† 103.9586.73
ARB+MRB 101.8083.78 86.3383.87*, ‡ 84.8282.90*, ‡ 84.3583.95*, ‡ 86.6885.26‡

Urine albumin-
to-creatinine 
ratio, �g/mg

Vehicle 30.21813.77 13.1988.12 299.68895.7 491.31889.20
ARB 14.1084.37 6.2381.05 81.49817.15* 369.03862.55
MRB 12.2682.09 4.8580.74 203.75853.52 466.05854.82
ARB+MRB 26.47813.51 9.4783.53 49.16819.01*, ‡ 260.74848.76*, ‡

Figures are means 8 SE. * p < 0.05 vs. Vehicle, † p < 0.05 vs. ARB, ‡ p < 0.05 vs. MRB.
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collagen IV, although the glomerulosclerosis index (GSI) did not change. Combination of 
ARB and MRB significantly decreased the glomerular collagen IV-positive area as well as GSI. 
The collagen IV-positive area in the glomeruli of ARB+MRB mice was further decreased 
compared with glomeruli of mice with ARB or MRB treatment alone ( fig. 2  and  table 2 ).

  Podocyte Injury 
 Expression of WT1, a podocyte differentiation marker, was significantly downregulated 

in Vehicle-treated NEP25 mice with podocyte damage. ARB and MRB alone tended to pre-
serve the number of WT1-positive podocytes (ARB vs. Vehicle, p = 0.053; MRB vs. Vehicle, 
p = 0.072). Mice treated with combined ARB+MRB had a significantly greater number of 
podocytes compared with the Vehicle, ARB, or MRB ( fig. 2  and  table 2 ).

  Discussion 

 Both ARB  [8, 29]  and MRB  [14, 17, 30]  have been shown to have a protective effect against 
chronic glomerular diseases, and protect podocytes from injury. Our current study showed 
that in NEP25 mice, a model of podocyte-targeted glomerular injury and sclerosis, treatment 
with the ARB losartan significantly alleviated massive proteinuria and podocyte loss, along 
with decreased blood pressure and less glomerular collagen IV deposition. Treatment with 
the MRB spironolactone protected against glomerulosclerosis and podocyte loss without af-
fecting proteinuria or blood pressure. Further, although addition of MRB to ARB did not 
provide additional benefits in blood pressure or proteinuria reduction, there was significant 
attenuation in glomerulosclerosis compared with ARB treatment alone. 

50 μm50 μm50 μm50 μm
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  Fig. 1.  SGK1 staining in NEP25 mice treated with ARB, MRB or both. NEP25 mice from the Vehicle group 
showed SGK1-positive staining in both tubular epithelial cells and glomeruli, while there were only a few 
positivities in the ARB, MRB and ARB+MRB groups, suggesting the effects of ARB and/or MRB. 

Table 2.  Glomerular histology

Group n GSI Collagen type IV, % WT1+ cells, /glomerulus

Vehicle 9 2.24980.261 38.8781.17 97.584.0
ARB 10 2.35080.187 33.1181.57* 113.687.4
MRB 10 2.00980.294 29.8781.68* 117.289.0
ARB+MRB 8 1.66880.187*, † 23.7281.44*, †, ‡ 152.589.7*, †, ‡

Figures are m eans 8 SE. * p < 0.05 vs. Vehicle, † p < 0.05 vs. ARB, ‡ p < 0.05 vs. MRB.
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 The current study in NEP25 transgenic mice with targeted podocyte damage showed 
that large doses of ARB significantly reduced proteinuria, suggesting a protection of podo-
cytes. This significant reduction in proteinuria was accompanied by significantly decreased 
blood pressure. These results, together with our previous observations that podocyte-specif-
ic inactivation of the AT1 gene did not protect against podocyte damage and glomeruloscle-
rosis in the NEP25 model  [8] , indicate that the protective effects of ARB against podocyte 
injury is not through its direct effect on podocyte AT1. Instead, the results are consistent 
with the notion that the salutary effect occurs through decreasing glomerular pressure or 
other effects on the glomerular filtration barrier  [31, 32] . Of note, although considerable ev-
idence shows that blocking the angiotensin system by ARB or ACEI reduces proteinuria and 
attenuates the progression of renal failure in patients and animals with chronic glomerular 
lesions, these interventions have only limited effectiveness in established late stages of glo-
merulosclerosis  [33, 34] . In animal models with podocyte-specific injury, the degree of pro-
teinuria at the early stages parallels severity of podocyte injury  [3, 6] . Thus, the current re-
sults complement these findings with the observation of only limited protective effects of 
these interventions in the rapidly progressive advanced glomerulosclerosis occurring in 
NEP25 mice.

  Activation of the mineralocorticoid receptor occurs in kidneys with proteinuria and 
podocyte injury  [14, 19, 35, 36] , and MRB attenuates the proteinuria and podocyte injury, as 
well as glomerulosclerosis and renal fibrosis in several pathophysiological conditions  [15, 17, 
25, 37–39] . While proteinuria is an important prognostic index in chronic glomerular dis-
eases  [40, 41] , its correlation with glomerular morphological findings is lost at the later stag-
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  Fig. 2.  Histology of NEP25 mice treated with ARB, MRB or both. NEP25 mouse, a model of specific podo-
cyte damage, showed extensive glomerulosclerosis, an increased area positive for collagen IV (Col IV) and 
a decreased number of WT1-positive podocytes in the glomerulus. Treatment with the ARB losartan, the 
MRB spironolactone, or with both in combination attenuated podocyte damage-induced glomeruloscle-
rosis, collagen deposition and podocyte loss. 
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es  [42] . Therefore, the lack of effect of MRB on proteinuria found in our NEP25 model is not 
surprising; it does suggest, however, that the protective effect of MRB is not through direct 
podocyte protection, either. This lack of effect on proteinuria paralleled a lack of effect on 
blood pressure.

  Although the cellular mechanisms of beneficial effects of MRB against glomerular in-
jury are not fully elucidated, involvement of a few profibrotic factors has been suggested  [15, 
16, 39, 43, 44]  along with systemic and/or glomerular hypertension  [45] . In our study, MRB 
provided significant protection against glomerulosclerosis despite the lack of reduction in 
proteinuria and blood pressure. Blood pressure- and proteinuria-independent effects on glo-
merular injury have also been reported in subtotally nephrectomized rats  [15, 25] . In this 
connection, even though aldosterone is largely under the influence of angiotensin II  [9] , ad-
ditional angiotensin II-independent protective effects of MRB against glomerular injury 
have been reported  [15, 16, 23, 46] . The additive effect of MRB on attenuation of glomerulo-
sclerosis demonstrated in animals given a large dose of ARB in our study but not in a subto-
tal nephrectomy model  [25]  indicates that the prosclerotic effect of mineralocorticoid recep-
tor activation in the podocyte-specific damage-triggered glomerular deterioration is AT1 
independent.

  In the later stages of glomerulosclerosis, such as one studied in the present study, the 
observed injury of podocyte is the combined consequence of propagation of podocyte dam-
age  [47]  and other glomerular pathophysiological changes, such as protein leakage through 
glomerular filtration barrier as well as loss of glomerular population. It is conceivable, then, 
that the preservation of WT1-positive podocytes by MRB treatment found in our study is, to 
a large extent, attributed to its effects to prevent glomerulosclerosis and loss, while the pro-
tection of ARB treatment reflects its early antiproteinuric effect.

  In summary, using a transgenic mouse model of severe glomerulosclerosis induced by 
specific podocyte damage, we found that blockade of mineralocorticoid receptor by spirono-
lactone significantly attenuated glomerulosclerosis, independent of its effects on proteinuria 
and blood pressure. The current results in a model with podocyte-specific damage-induced 
rapidly progressing glomerulosclerosis, together with our previous studies, suggest that the 
glomerular protective effects of angiotensin-aldosterone blockade are not dependent on di-
rect podocyte protection.
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