
Accelerating the Original Profile Kernel
Tobias Hamp1, Tatyana Goldberg1,2, Burkhard Rost1,3,4*

1 Bioinformatics & Computational Biology - I12, Department of Informatics, Technical University of Munich, Garching/Munich, Germany, 2 Center of Doctoral
Studies in Informatics and Its Applications (CeDoSIA), Technical University of Munich Graduate School, Garching/Munich, Germany, 3 Institute of Advanced
Study (TUM-IAS), Garching/Munich, Germany, 4 New York Consortium on Membrane Protein Structure (NYCOMPS) and Department of Biochemistry and
Molecular Biophysics, Columbia University, New York, New York, United States of America

Abstract

One of the most accurate multi-class protein classification systems continues to be the profile-based SVM kernel
introduced by the Leslie group. Unfortunately, its CPU requirements render it too slow for practical applications of
large-scale classification tasks. Here, we introduce several software improvements that enable significant
acceleration. Using various non-redundant data sets, we demonstrate that our new implementation reaches a
maximal speed-up as high as 14-fold for calculating the same kernel matrix. Some predictions are over 200 times
faster and render the kernel as possibly the top contender in a low ratio of speed/performance. Additionally, we
explain how to parallelize various computations and provide an integrative program that reduces creating a
production-quality classifier to a single program call. The new implementation is available as a Debian package under
a free academic license and does not depend on commercial software. For non-Debian based distributions, the
source package ships with a traditional Makefile-based installer. Download and installation instructions can be found
at https://rostlab.org/owiki/index.php/Fast_Profile_Kernel. Bugs and other issues may be reported at https://
rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel.

Citation: Hamp T, Goldberg T, Rost B (2013) Accelerating the Original Profile Kernel. PLoS ONE 8(6): e68459. doi:10.1371/journal.pone.0068459

Received March 19, 2013; Accepted May 31, 2013; Published June 18, 2013

Copyright: © 2013 Hamp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the Alexander von Humboldt foundation (www.avh.de) through the German Ministry for Research and
Education (BMBF: Bundesministerium fuer Bildung und Forschung; www.bmbf.de). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: rost@in.tum.de

Introduction

Profile kernels provide state-of-the-art accuracy
The characterization of proteins often begins with their

assignment to different classes. Examples for such classes are
protein families, distant structural relations, or sub-cellular
localization. GO, the Gene Ontology [1], is the most
comprehensive functional vocabulary and defines over 38,000
different 'GO terms', i.e. classes into which a protein could be
grouped. The simplest classification is through homology-
based inference [2–4]. A PSI-BLAST [5] or HHBlits [6] query
against a database with annotations such as Swiss-Prot [7]
creates a list of proteins that have reliable experimental
annotations and are sequentially similar to the target. Choosing
the annotation of the best hit for the query then constitutes one
simple means of annotating function [4,8].

Such a naive prediction method has disadvantages: query
results are usually ordered by the e-value or the HVAL [2] of
the best local alignment. This is not the best choice for all
classification problems. A membrane-integral domain, for
example, might be located at the N-terminus of the target,
whereas the alignment with the best hit begins near the C-
terminus. Therefore, advanced machine learning methods such

as Neural Networks or Support Vector Machines (SVMs) often
outperform simple homology-based inference [9–11], even for
very small classes [12].

These methods represent proteins in a high-dimensional
space, as given, for example, by the frequencies of the 20
amino acids in a protein. Some of the most popular and
accurate classifiers are sequence-profile based kernels in
conjunction with SVMs [13–19]. They do not require a protein
to be represented explicitly, but only implicitly via dot-products
to other proteins. Without this limitation, even the score of a
local alignment can be turned into a kernel function and
harness the advantages of the maximum-margin hyperplanes
computed by SVMs [15–17].

Methodological limitations difficult to address
This advantage, however, comes at a computational cost.

The dot products required for training are stored as kernel
matrices, which are quadratic in the number of training
samples. Furthermore, in order to classify a new query, dot
products have to be calculated with respect to all Support
Vectors. Their number, however, is typically proportional to the
amount of classes and template proteins. This puts strong
limitations on data set sizes and some kernels that are

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e68459

https://rostlab.org/owiki/index.php/Fast_Profile_Kernel
https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel
https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel
http://www.avh.de
http://www.bmbf.de

sufficiently fast for today’s searches might become infeasible
soon because the growth of the bio-sequence data far
outpaces the growth of computing hardware.

Current solutions to the problem of data set sizes that are
preventative for training include the use of linear SVMs,
keeping only parts of the kernel matrix in memory or massive
parallelization. All three options are mostly inapplicable to
profile kernels. The first two (linear SVMs; caching the kernel
matrix) are complicated because explicit sample vectors are
either unknown or too large and calculating the same kernel
values multiple times slows down training unacceptably. The
second (parallelization) has, to the best of our knowledge, not
been implemented by any state-of-the-art method, yet.

In some cases, predictions can be accelerated much more
elegantly: if a kernel operates directly in the feature space, the
normal vector separating one class from the other may be
calculated explicitly, instead of implicitly via support vectors
and associated weights. This reduces predicting a new query
to calculating a single dot product.

Accelerating the original profile kernel
Here, we show how to apply these concepts to the kernel

introduced by the Leslie group [13]. It is arguably the most
popular profile-based kernel today and its outstanding
performance for many tasks has been repeatedly confirmed
[16–19]. We have recently applied it in the development of a
state-of-the-art method for the prediction of sub-cellular
localization, LocTree2 [20]. On top of its high performance, the
original profile kernel has other advantages, such as the ability
to extract sequence motifs from trained SVMs. In particular, its
hyper-planes can be made explicit as long as also the
underlying k-mer trie based algorithm is modified accordingly.

Consequently, our first and most important improvement is
calculating the matrix product of input profiles and pre-
computed SVM normal vectors at full use of the k-mer trie
based data structure. This corresponds to an efficient and
highly parallel classification of many protein profiles with many
SVMs at the same time, without the need for multiple CPU
cores. Secondly, addressing the training phase, we can now
distribute the computation of a single kernel matrix to an
arbitrary amount of parallel processes. Due to optimizations of
procedures required both for training and testing, also existing
un-parallelized routines now run about five times faster than in
the original implementation. Finally, we have combined all the
necessary steps for training a classifier in a single program. It
automatically calculates the kernel matrix, learns a user-
defined SVM-based multi-class model, extracts and
compresses the SVM normal vectors and stores everything as
a ready-to-use predictor.

Materials and Methods

Original profile kernel
The algorithm to calculate the kernel matrix with the original

profile kernel has been thoroughly introduced in [13]. It maps
every profile to a 20^k-dimensional vector of integers. Each
dimension represents one k-mer of k consecutive residues and
a particular value gives the number of times this k-mer is

conserved in a profile of related proteins. Conservation is
calculated as the sum of the substitution scores for each
residue in the k-mer profile and has to fall below a certain user
defined threshold σ. Conserved k-mers are found very
efficiently by traversing a trie based data structure (Figure 1).
Each leaf corresponds to one of the 20^k dimensions and
defines a set of conserved k-mers. With this set, the kernel
matrix is updated so that each kernel matrix value is increased
by the number of k-mers shared by the two corresponding
profiles at that leaf.

In the following, we describe our own modifications and
extensions to this approach. Technical details are given in Text
S1. Our speed-up focuses on two different steps in the profile
kernel algorithm: the trie traversal and the matrix update.
Combined, these two always account for about 90% of the
overall runtime, but their individual fraction depends on the
respective kernel parameters and input. On average, we
estimate that the two contribute equally to the runtime.

Modification 1: Reducing kernel matrix updates to
matrix multiplication

At each leaf node during the traversal of the k-mer trie, a set
of conserved k-mers of the input profiles has remained (Figure
1). At this point, the original profile kernel updates the kernel
matrix: if, e.g., k-mer 1 belongs to input profile 3 and k-mer 2 to
input profile 8, then the value of the kernel matrix at row 3,
column 8 has to be increased by 1. Repeating this for all k-mer
pairs updates the entire kernel matrix for this particular leaf
node and the traversal continues. This operation can be greatly
simplified: first, we count how many conserved k-mers each
profile has at a particular leaf node. Only the profiles with non-
zero counts are added to a sparse matrix in which each row
stands for a profile and each column for a particular leaf. (To
save space, the matrix is stored as a “coordinate list”, i.e. as a
list of triplets of the form [x-coordinate, y-coordinate, value].)
For most leaves, we only add elements to this sparse matrix;
only when the buffer is almost full, we update the actual kernel
matrix. This can be done in arithmetically the same way as
described above, but operationally by a very efficient self-
multiplication of the buffered sparse matrix and an on-the-fly
addition of the result to the kernel matrix (mathematical details
in Section 1.1 of Text S1).

Modification 2: SSE2 instructions and new data
structure during tree traversal

Profiling the profile kernel executable with perf (part of the
Linux kernel) revealed that during traversal of the k-mer trie,
most of the time is spent on checking whether the substitution
score of the k-mers is below the user-defined threshold.
Implementing this double comparison with Streaming SIMD
Extensions 2 (SSE2) instructions, two values can be compared
in one CPU cycle, thus significantly improving overall runtime.

Modification 3: Multi-process kernel matrix calculation
Too large kernel matrices can no longer be kept in main

memory and may require several days for computation on a
single CPU. Therefore, we have added the feature to split this
task among several individual processes. Given m training

Accelerating the Original Profile Kernel

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e68459

profiles, we first assign each to one of n groups of size p=m/n
(n is user defined). Then we compute the dot products of the
profiles for one group to those of another group. This creates a
p x p sub-matrix of the original kernel matrix. Repeating this for
all O(p2) possible group pairs calculates all sub-matrices which
then have to be joined together to build the original kernel
matrix. The creation of a single sub-matrix can be accelerated
by only computing dot products between profiles from different
groups and again by applying Modifications 1 and 2 (Sections 1
and 2 in Text S1 for mathematical details).

Modification 4: Predicting new queries through normal
vectors (application of model)

In contrast to the kernels described elsewhere [16], the
original profile kernel introduced by the Leslie group allows the
explicit calculation of the discriminative normal vector w of a
SVM. The ‘SVM score’ of a new query profilep, i.e. its scaled
distance to the hyper-plane, can then be calculated as a single
dot product s=w·Φ(p), where Φ(p) is the feature vector of p and
Φ(p)j the number of conserved k-mers at leaf node j. In the
original implementation, dot products to all support vectors
were required (Section 2.1 in Text S1).

Figure 1. Sample k-mer tree traversal. Sketched is one part of a 3-mer trie traversal with two input profiles (P1 and P2). These
profiles were generated with proteins that were 186 (P1) and 241 residues long (P2; tables on the top). During traversal, some
conserved multi-mers remain at each node that fall below the substitution score threshold σ. The ‘Sample 3-mer trie traversal’
illustrates the transition from two-letter node ‘AA’ to node ‘AAA’ (‘AAA’ is also a leaf, because k=3). At node ‘AA’, five 2-mers have
remained from previous transitions (root -> ‘A’ -> ‘AA’) that still fall below the substitution score threshold σ=5. In the transition to
node ‘AAA’, each such 2-mer is extended to a 3-mer and each score re-calculated (k-mer extension and new scores in red). 3-mers
with a score > 5 are discarded (2/5) and those that remain (3/5) are used in the kernel matrix update. Afterwards, the traversal
continues until reaching the lexicographically last leaf (‘YYY’).
doi: 10.1371/journal.pone.0068459.g001

Accelerating the Original Profile Kernel

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e68459

In order to extract normal vectors from trained SVMs, we can
again use the k-mer trie. A single traversal can determine the
normal vectors of many SVMs and create a ‘normal matrix’ in
which each row represents one of 20^k k-mers and each
column one normal vector (details in Section 2.1 of Text S1).
This greatly accelerates the additional training time, as
classification problems are hardly ever limited to two classes in
computational biology.

In order to calculate the SVM score s=w·Φ(p) of a single
query p and a single normal vector w, we multiply wj with Φ(p)j

at each leaf node j and add the result to s (s is initialized to 0).
By using the normal matrix (above), this can be modified so
that the scores of all SVM normals are updated at each leaf
node, resulting in a vector of SVM scores for query p.
Traversing the trie with multiple queries at once consequently
generates a matrix of SVM scores in which each row
represents a target profile and each column a SVM.

With another extension similar to Modification 1, we can
again store k-mer counts in a sparse matrix and use matrix
multiplication to update the SVM scores matrix (Section 2.2 of
Text S1). SSE2 instructions again accelerate the transition
from one node to the next (Modification 2).

Modification 5: Pipelining the training and prediction
process

Using both, the normal and the SVM score matrices
described above, renders training and applying a multi-class
profile kernel based classifier a tedious task that requires many
data management steps. We have therefore pipelined the
entire model creation and application workflow in a Perl script.
In “model creation” mode, it calculates the kernel matrix, uses it
to learn an SVM multi-class classifier, extracts all weights for
the Support Vectors from the resulting binary SVMs, converts
these vectors into a matrix of normal vectors and stores all files
and parameters that are required for predictions in a “model”
folder. The user only has to provide the input profiles with class
labels and to specify the kernel parameters, a Weka [21] multi-
class model and the number of processes to use. The “model
application” mode then uses this model to first calculate SVM
scores with the normal matrix and the profile kernel and then
forwards them to Weka which finally calculates the class
probabilities of the queries.

Modification 6: Predicting new targets with support
vectors (baseline predictor)

In the original implementation of the profile kernel, there is no
prediction mode. In order to classify a query, its profile has to
be added to those of all support vectors and the kernel matrix
has to be re-calculated. Comparing the impact of our
modifications to this approach would be unfair, because a
simple prediction mode can easily be added: first, the kernel
matrix updates can be restricted to dot products between
targets and support vectors only; secondly, at each node in the
k-mer trie, we can stop going down further in the trie as soon
as there are no more k-mers left that belong to the queries.
Another difference to normal matrix based predictions
(Modification 5) is the output of dot products to support vectors
instead of SVM scores. This can be neglected, however,

because the time needed by external multi-class classifiers to
calculate SVM scores given dot products is minimal. In the
following, we will refer to this slightly altered original
implementation as the “baseline” implementation.

Data sets
In order to measure the runtime improvement of our new

implementation, we use four different data sets for kernel
matrix computations and three for classifying new queries.
They are described in detail in Section 5 of Text S1. In the
following, we only give a short overview. All profiles are taken
from a redundancy reduced Swiss-Prot database and readily
available as part of the PredictProtein [22] cache.

The four training data sets correspond to 5920 profiles
assigned to 18 classes (set “Euka (5920)”), 12,500 profiles
assigned to 125 classes (set “SP60_25k”), 25,000 profiles
assigned to 250 classes (set “SP60_25k”) and 100,000 profiles
assigned to 1000 classes (set “SP60_100k”).

The runtimes for classifying new profiles were measured with
models created from these four training data sets. As queries,
we used three other data sets containing 1, 200 and 20,000
non-redundant protein profiles. They simulate typical
classification tasks, ranging from the frequent single-user
single-target case to the prediction of an entire genome.

Results and Discussion

Speed measurements under stringent conditions
We measured the impact of our modifications on the speed

of both, the kernel matrix creation and the final application of
the model, i.e. the prediction of new queries. The time needed
to generate profiles was not included (Section 6 of Text S1 for
a discussion). The baseline for kernel matrix computations was
the original and publicly available profile kernel implementation
from the Leslie lab (http://cbio.mskcc.org/leslielab/software/
string-kernels); for predictions, we implemented the baseline
ourselves (Methods: Modification 6). None of our modifications
changed the original kernel arithmetically; the chance that
floating point imprecisions will yield different classifications is
very small, much less than 1:10^6. Also smaller changes of
SVM scores are quite rare (1:10^4 for 0.01% change; Section 4
of Text S1). Therefore, all previously published values for
accuracy remain valid.

Experiments were conducted on a 2 x 6-Core AMD Opteron
Processor 2431 (2.4 Ghz) with 32GB DDR2 main memory
using various data sets (Methods). Each kernel run was
executed as the only active process on the entire computer, so
that the conditions with respect to memory, disk and
hyperthreading were similar for all experiments. Repeating the
same measurements 20-30 times revealed a universal runtime
standard error below 5%. The profile kernel has two free
parameters: the length of the k-mer (k) and the substitution
score threshold σ. Parameter combinations were taken from
the original publication [13] and LocTree2 [20]. To our
knowledge, only the latter optimized these parameters and
found it preferable to use substantially higher substitution score
thresholds than reported originally (“k=5, σ=9” and “k=6,

Accelerating the Original Profile Kernel

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e68459

http://cbio.mskcc.org/leslielab/software/string-kernels
http://cbio.mskcc.org/leslielab/software/string-kernels

σ=11”). Other papers using the profile kernel appeared to have
copied the combinations reported in the original publication.

Kernel matrix creation five times faster and
parallelizable

Modifications 1 and 2 (Methods) yielded a constant
acceleration, ranging from twice to up to 14 times faster with
respect to the original implementation (Figure 2A). On average,
the new implementation was about five times faster, with the
speed-up increasing proportionally to the data set size. The
kernel matrix computation for the SP60_100k data set
(Methods) no longer fit into the main memory of our machine
(approx. 56GB). Hence, we used our new splitting technique
(Methods; Modification 3) to distribute its calculation amongst
100 individual processes that were run simultaneously on a
computer cluster (the CPU conditions described in the
paragraph above no longer applied for this proof-of-concept
run). This took about 40 minutes.

The speed of the kernel critically depends on its two
parameters (Figure 2). The large difference between, e.g. “k=6,
σ=9” and “k=6, σ=11”, is due to a loss of sparseness and an
accumulation of conserved k-mers during the trie traversal.
However, in our hands, this actually improved performance for
the development of LocTree2 [20], suggesting a relative
enhancement of the conserved k-mer signal despite a probable
increase of background noise. Indeed, we found the feature
vectors resulting from “k=6, σ=11” to be sparse but less so than
those resulting from training with “k=6, σ=9”.

Predictions accelerated by orders of magnitudes
Besides a general code optimization, our modifications

include the feature to calculate the SVM scores for many
queries and SVMs in one profile kernel run (model application
mode; Methods: Modifications 4 and 5). We compare this
variant to the original implementation extended by a support
vector based application mode (Methods: Modification 6). The
normal vector based variant that we introduced here, is at least
five times faster than the support vector based alternative
(Figure 2B, Euka data set, 20,000 targets, “k=5, σ=7.5”), with a
maximum acceleration of 205-fold (Figure 2B, SP60_100k, 200
target, “k=5, σ=7.5”). On average (arithmetic mean over all
experiments), our new implementation turned out to be about
66 times faster than the original implementation. Again: for
larger data sets, the speed-up would increase.

As long as the models are queried only with a few targets (up
to about 200), the most limiting factor is the size of the normal
vector matrix. For k=5, even the matrix with 1000 SVMs still
remains below 10GB (8.2GB), but it grows to 39GB for k=6 and
250 classes and consequently takes about 20 minutes to be
read from disk.

Comparison to SVM-Fold and SW-PSSM
Generating the same output as the original version, our new

profile kernel implementation can directly be used in existing
profile kernel based classifiers such as SVM-Fold [23]. This
web-server predicts SCOP classes from protein sequence.
Multiple binary SVMs are trained and embedded in a multi-
class scheme, called ‘adaptive codes’, which exploits the

hierarchical structure of SCOP. Extending or replacing the
Weka-based multi-class models with the adaptive codes
approach, our new workflow script (Methods; Modification 5)
could generate SVM-Fold automatically. For predictions, SVM-
Fold uses the baseline implementation (Methods; Modification
6) with an additional caching of k-mers in the higher levels of
the k-mer trie. Prediction speed could be greatly increased by
using pre-computed normal matrices (Methods; Modification 4).

A popular competitor of the original profile kernel in terms of
classification accuracy is SW-PSSM [16] (Smith-Waterman
Position Specific Scoring Matrix). We have compared our
implementation of the original profile kernel to this method and
found our program to be multiple orders of magnitudes faster
(Section 7 of Text S1 for details).

Future accelerations
Our new profile kernel implementation could be accelerated

even more. Future releases might include the following
improvements.

Optimizing a classifier requires evaluating alternative kernel
matrices that only differ by the parameters with which they
were created (k and σ). The matrices can all be calculated in a
single trie traversal. For example, with alternative parameters
“k=4, σ=6”, and “k=6, σ=9”, the cumulative substitution score of
a k-mer only has to be compared to nine at any node with a
depth <4 and >4. Only at a node of depth 4 (a leaf node for
k=4), it additionally has to be checked against 6 in order to
correctly update the kernel matrix for parameters “k=4, σ=6”.
Afterwards, the traversal continues with threshold 9 until
reaching the maximum depth (6). This principle can be
extended to an arbitrary amount of parameter combinations
and should greatly reduce the number of double comparisons
during trie traversal. On the implementation side, it requires an
in-memory kernel matrix and a sparse matrix buffer for each
parameter combination.

For the prediction of new queries (application mode), the
most significant bottleneck is reading and uncompressing the
normal matrix (before). Novel types of disks (e.g. solid state
drives) and decompression algorithms (e.g. Google’s lz4) might
yield another 5-fold acceleration on top of what we have
presented here. Given the appropriate hardware, the matrix
might also be kept in memory, thus practically eliminating the
bottleneck.

Conclusion

The original profile kernel proposed by the Leslie group is
highly accurate and can be applied to many classification
problems. Our new implementation produces the identical
results with considerably fewer computer resources (in terms of
runtime and memory).

It is available as a Debian package under a free academic
license and without dependencies on commercial products. All
Debian-based Linux systems (Ubuntu, Xandros, Mint,…) may
install it via their respective package managers. For all other
systems, the source package features a make-based
compilation and installation. Detailed instructions and download
links can be found at https://rostlab.org/owiki/index.php/

Accelerating the Original Profile Kernel

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e68459

https://rostlab.org/owiki/index.php/fast_Profile_Kernel

Fast_Profile_Kernel. Bugs may be reported via https://
rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel. For
documentation, we have written man pages that are shipped
with the package, as is a small sample classification problem.

The package installs two new executables: “profkernel-core”
and “profkernel-workflow”. The first is our new, backward-
compatible implementation of the original profile kernel. All
parameters and output formats of the original release by the

Figure 2. Speed measurements. Each arrow compares the runtime of the original implementation (upper symbol) to the new
implementation (lower symbol). The symbol type indicates the parameter combination. The number above or below an arrow is the
acceleration (original runtime divided by new runtime). All runtimes are wall-clock times of single processes. We did not perform an
experiment if it was clear that it would take longer than 24 hours. (A) Kernel matrix calculations. In this subfigure we compare
kernel matrix creation runtimes. Data sets correspond to subsets of a redundancy reduced Swiss-Prot database with 5920 (‘Euka
(5920)’), 12,500 (‘SP60_13k’), 25,000 (‘SP60_25k’) and 100,000 (‘SP60_100k’) samples, respectively. The SP60_100k experiment
(“k=5, σ=7.5”) for which we used 100 CPUs in parallel took 40 minutes and is not shown. (B) Prediction of new targets. This
subfigure displays the runtimes for predicting three sets of targets (1, 200 and 20,000 profiles; axis on top) using models created
with the training data sets (‘Euka (5920)’ to ‘SP60_100k’; axis on bottom).
doi: 10.1371/journal.pone.0068459.g002

Accelerating the Original Profile Kernel

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e68459

https://rostlab.org/owiki/index.php/fast_Profile_Kernel
https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel
https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel

Leslie group have been preserved. The second is a Perl script
that uses this binary and its new features as part of a model
creation and application workflow. It can both automatically
create new models and apply them to new queries.

Supporting Information

Text S1. Mathematical details and additional
information. This supporting text provides mathematical
details about the profile kernel accelerations and the matrix
multiplication algorithms. Additional studies investigate the
possible precision loss of the new implementation due to
floating point operations and compare runtimes to SW-PSSM.
Finally, we describe the data set in more detail and discuss
whether profile generation runtimes should be considered
when measuring kernel speed.
(PDF)

Acknowledgements

Thanks to Tim Karl and Laszlo Kajan (TUM) for invaluable help
with hardware and software, to Marlena Drabik (TUM) for
administrative support. Last, not least, thanks to Rolf Apweiler
(UniProt, EBI, Hinxton), Amos Bairoch (CALIPHO, SIB,
Geneva), Helen Berman (PDB, Rutgers Univ.), Phil Bourne
(PDB, San Diego Univ.), Ioannis Xenarios (Swiss-Prot, SIB,
Geneva), and their crews for maintaining excellent databases
and to all experimentalists who enabled this analysis by making
their data publicly available.

Author Contributions

Conceived and designed the experiments: TH TG BR.
Performed the experiments: TH. Analyzed the data: TH.
Contributed reagents/materials/analysis tools: TH TG. Wrote
the manuscript: TH BR. Acceleration techniques: TH.

References

1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. (2000)
Gene Ontology: Tool for the Unification of Biology. The Gene Ontology
Consortium. Nat Genet 25: 25-29.

2. Rost B (1999) Twilight Zone of Protein Sequence Alignments. Protein
Eng 12: 85-94. doi:10.1093/protein/12.2.85. PubMed: 10195279.

3. Rost B, Liu J, Nair R, Wrzeszczynski KO, Ofran Y (2003) Automatic
prediction of protein function. Cell Mol Life Sci 60: 2637-2650. doi:
10.1007/s00018-003-3114-8. PubMed: 14685688.

4. Hamp T, Kassner R, Seemayer S, Vicedo E, Schaefer C et al. (2013)
Homology-based inference sets the bar high for protein function
prediction. BMC Bioinformatics 14 Suppl 3: S7. doi:
10.1186/1471-2105-14-S1-S7. PubMed: 23514582.

5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. (1997)
Gapped Blast and PSI-Blast: A New Generation of Protein Database
Search Programs. Nucleic Acids Res 25: 3389-3402. doi:10.1093/nar/
25.17.3389. PubMed: 9254694.

6. Remmert M, Biegert A, Hauser A, Söding J (2012) HHblits: lightning-
fast iterative protein sequence searching by HMM-HMM alignment. Nat
Methods 9: 173-175. PubMed: 22198341.

7. the Uniprot Consortium (2011) Ongoing and Future Developments at
the Universal Protein Resource. Nucleic Acids Res 39: D214-D219. doi:
10.1093/nar/gkq1020. PubMed: 21051339.

8. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T et al. (2013)
A large-scale evaluation of computational protein function prediction.
Nat Methods 10: 221-227. doi:10.1038/nmeth.2340. PubMed:
23353650.

9. Jaakkola T, Diekhans M, Haussler D (2000) A discriminative framework
for detecting remote protein homologies. J Comput Biol 7: 95-114. doi:
10.1089/10665270050081405. PubMed: 10890390.

10. Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: a string
kernel for SVM protein classification. Pac Symp Biocomput: 564-575.
PubMed: 11928508.

11. Leslie CS, Eskin E, Cohen A, Weston J, Noble WS (2004) Mismatch
string kernels for discriminative protein classification. Bioinformatics 20:
467-476. doi:10.1093/bioinformatics/btg431. PubMed: 14990442.

12. Hamp T, Birzele F, Buchwald F, Kramer S (2011) Improving structure
alignment-based prediction of SCOP families using Vorolign kernels.

Bioinformatics 27: 204-210. doi:10.1093/bioinformatics/btq618.
PubMed: 21098432.

13. Kuang R, Ie E, Wang K, Siddiqi M, Freund Y et al. (2005) Profile-based
string kernels for remote homology detection and motif extraction. J
Bioinform Comput Biol 3: 527-550.

14. Liu B, Wang X, Lin L, Dong Q (2008) A discriminative method for
protein remote homology detection and fold recognition combining Top-
n-grams and latent semantic analysis. BMC Bioinformatics 9: 510. doi:
10.1186/1471-2105-9-510. PubMed: 19046430.

15. Man-Wai M (2008) PairProSVM: Protein Subcellular Localization Based
on Local Pairwise Profile Alignment and SVM. IEEE/ACM Trans
Comput Biol Bioinform 5: 416-422. doi:10.1109/TCBB.2007.70256.
PubMed: 18670044.

16. Rangwala H, Karypis G (2005) Profile-based direct kernels for remote
homology detection and fold recognition. Bioinformatics 21: 4239-4247.
doi:10.1093/bioinformatics/bti687. PubMed: 16188929.

17. Thanh N, Rui K (2009 17-21, 2009). Partial Profile Alignment Kernels
Proteins Classifications: 1-4.

18. Toussaint NC, Widmer C, Kohlbacher O, Rätsch G (2010) Exploiting
physico-chemical properties in string kernels. BMC Bioinformatics 11
Suppl 8: S7. doi:10.1186/1471-2105-11-S10-O7. PubMed: 21034432.

19. Weston J, Leslie C, Ie E, Zhou D, Elisseeff A et al. (2005) Semi-
supervised protein classification using cluster kernels. Bioinformatics
21: 3241-3247.

20. Goldberg T, Hamp T, Rost B (2012) LocTree2 predicts localization for
all domains of life. Bioinformatics 28: i458-i465. doi:10.1093/
bioinformatics/bts390. PubMed: 22962467.

21. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P et al. (2009)
The WEKA data mining software: an update. SIGKDD Explor Newsl 11:
10-18. doi:10.1145/1656274.1656278.

22. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic
Acids Res 32: W321-W326. doi:10.1093/nar/gkh377. PubMed:
15215403.

23. Melvin I, Ie E, Kuang R, Weston J, Stafford WN et al. (2007) SVM-Fold:
a tool for discriminative multi-class protein fold and superfamily
recognition. BMC Bioinformatics 8 Suppl 4: S2.

Accelerating the Original Profile Kernel

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e68459

http://dx.doi.org/10.1093/protein/12.2.85
http://www.ncbi.nlm.nih.gov/pubmed/10195279
http://dx.doi.org/10.1007/s00018-003-3114-8
http://www.ncbi.nlm.nih.gov/pubmed/14685688
http://dx.doi.org/10.1186/1471-2105-14-S1-S7
http://www.ncbi.nlm.nih.gov/pubmed/23514582
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
http://www.ncbi.nlm.nih.gov/pubmed/22198341
http://dx.doi.org/10.1093/nar/gkq1020
http://www.ncbi.nlm.nih.gov/pubmed/21051339
http://dx.doi.org/10.1038/nmeth.2340
http://www.ncbi.nlm.nih.gov/pubmed/23353650
http://dx.doi.org/10.1089/10665270050081405
http://www.ncbi.nlm.nih.gov/pubmed/10890390
http://www.ncbi.nlm.nih.gov/pubmed/11928508
http://dx.doi.org/10.1093/bioinformatics/btg431
http://www.ncbi.nlm.nih.gov/pubmed/14990442
http://dx.doi.org/10.1093/bioinformatics/btq618
http://www.ncbi.nlm.nih.gov/pubmed/21098432
http://dx.doi.org/10.1186/1471-2105-9-510
http://www.ncbi.nlm.nih.gov/pubmed/19046430
http://dx.doi.org/10.1109/TCBB.2007.70256
http://www.ncbi.nlm.nih.gov/pubmed/18670044
http://dx.doi.org/10.1093/bioinformatics/bti687
http://www.ncbi.nlm.nih.gov/pubmed/16188929
http://dx.doi.org/10.1186/1471-2105-11-S10-O7
http://www.ncbi.nlm.nih.gov/pubmed/21034432
http://dx.doi.org/10.1093/bioinformatics/bts390
http://dx.doi.org/10.1093/bioinformatics/bts390
http://www.ncbi.nlm.nih.gov/pubmed/22962467
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1093/nar/gkh377
http://www.ncbi.nlm.nih.gov/pubmed/15215403

	Accelerating the Original Profile Kernel
	Introduction
	Profile kernels provide state-of-the-art accuracy
	Methodological limitations difficult to address
	Accelerating the original profile kernel

	Materials and Methods
	Original profile kernel
	Modification 1: Reducing kernel matrix updates to matrix multiplication
	Modification 2: SSE2 instructions and new data structure during tree traversal
	Modification 3: Multi-process kernel matrix calculation
	Modification 4: Predicting new queries through normal vectors (application of model)
	Modification 5: Pipelining the training and prediction process
	Modification 6: Predicting new targets with support vectors (baseline predictor)
	Data sets

	Results and Discussion
	Speed measurements under stringent conditions
	Kernel matrix creation five times faster and parallelizable
	Predictions accelerated by orders of magnitudes
	Comparison to SVM-Fold and SW-PSSM
	Future accelerations

	Conclusion
	Supporting Information
	Acknowledgements
	References

