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ABSTRACT

Sequence alignments may be the most fundamental
computational resource for molecular biology. The
best methods that identify sequence relatedness
through profile–profile comparisons are much
slower and more complex than sequence–sequence
and sequence–profile comparisons such as,
respectively, BLAST and PSI-BLAST. Families of
related genes and gene products (proteins) can be
represented by consensus sequences that list the
nucleic/amino acid most frequent at each sequence
position in that family. Here, we propose a novel
approach for consensus-sequence-based compar-
isons. This approach improved searches and align-
ments as a standard add-on to PSI-BLAST without
any changes of code. Improvements were particu-
larly significant for more difficult tasks such as the
identification of distant structural relations between
proteins and their corresponding alignments.
Despite the fact that the improvements were
higher for more divergent relations, they were con-
sistent even at high accuracy/low error rates for
non-trivially related proteins. The improvements
were very easy to achieve; no parameter used by
PSI-BLAST was altered and no single line of code
changed. Furthermore, the consensus sequence
add-on required relatively little additional CPU
time. We discuss how advanced users of PSI-
BLAST can immediately benefit from using consen-
sus sequences on their local computers. We have
also made the method available through the Internet
(http://www.rostlab.org/services/consensus/).

INTRODUCTION

Improved database search and alignment
methods boost biology

Sequence alignments are fundamental to modern molec-
ular biology. They are used to detect evolutionary
relationships among proteins and genes; they also provide
the basis for most advanced predictions of structure and
function for biomolecules. The more organisms are
sequenced, the more the need for sensitive and accurate
database search and alignment methods increases.
In conjunction with an appropriate scoring (decision)
function, sequence alignment methods can often
distinguish homologous from non-homologous genes/
proteins. Alignments are also used to establish residues
that are conserved between related sequences. This
helps to identify residues that are most important for
function and to transfer three-dimensional (3D) coordi-
nates in comparative modeling of protein structures. Since
most relations between genes or proteins are observed at
large evolutionary distances, small improvements in the
sensitivity and accuracy of database searches and align-
ments may translate to thousands of novel annotations
that could guide and accelerate experimental biology.

PSI-BLAST strikes a very good compromise
between speed and sensitivity

Ideally, an alignment method should accurately identify
and align related sequences in today’s rapidly expanding
databases within the shortest possible time. While we
want to simultaneously optimize speed and reliability, in
practice, there is a tradeoff; more accurate alignment
methods are relatively slow (e.g. profile–profile alignment
algorithms), while very fast methods are far less sensitive
than we might wish [e.g. BLAST (1)]. Generally, the most
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sensitive and accurate methods use profile–profile com-
parisons (2–5). In those algorithms, nucleic/amino acid
substitution patterns are used for both sequences being
aligned. One downside of profile–profile alignments is that
they are relatively slow. When aligning two sequences of
lengths m and n they require on the order of S �m � n
operations (where S is the size of sequence alphabet—20
for proteins). Moreover, the algorithm is not easily
amenable to acceleration. In contrast, the less powerful
sequence–profile alignment methods can be easily accel-
erated. This is most impressively visible in the case of PSI-
BLAST (6) that combines techniques for acceleration
[FASTA (7), BLAST (1)] with accurate profile-based
dynamic programming (8), and with an automated
iterative refinement of the search. As a result, the PSI-
BLAST search and alignment could be even two orders of
magnitude faster (9) than the corresponding Smith–
Waterman (8) alignment algorithm and almost as
sensitive. This is an impressive solution that clearly is
one reason for the enormous popularity of PSI-BLAST.
Often, everyday sequence analysis applies a two-tier
approach: first a search with a reliable and fast PSI-
BLAST followed by a search with programs that generate
more accurate alignments but are neither fast enough nor
set up for database searches such as ClustalW (10), T-
Coffee (11), MAFFT (12), MUSCLE (13). Note that in
the following, we use a slight deviation from the usual
connotation, namely the term profile–sequence instead of
sequence–profile alignment to differentiate between the
query (profile) and the template/database (sequence); PSI-
BLAST by this notation is a profile–sequence method.

Consensus sequences can represent families
of related proteins

Protein sequences are subject to continuous evolution.
Random mutations and insertions/deletions of nucleic
acids within genes are source of variability of protein
sequences. The pressure to maintain biological function
(and/or 3D structure) constrains the range of mutations.
In general, proteins can have quite dissimilar sequences
and still perform the same biological function and/or
have very similar 3D structure. At each sequence position,
i.e. for each residue, the mutational variability can be
characterized by a vector of amino acid substitution
frequencies. The resulting matrix is often referred to
as a sequence profile. The substitution frequencies are
typically computed from alignments of functionally
and/or structurally related proteins. In subsequent steps
(iterations), such profiles are then used as the basis
for aligning protein sequences (in profile-sequence and
profile–profile algorithms). A consensus sequence can
be thought of as a one-dimensional simplification of
such a profile that, e.g. substitutes the 20-dimensional
vector (for 20 amino acids) in each column (residue
position) by the most frequent or most informative
amino acid observed at that position. The consensus
can be applied globally (to all profile columns) or locally
(only to some columns) (14,15). There also exist other,
more specialized techniques for generating consensus
sequences (16).

Consensus sequences empower alignment methods

Consensus sequences were used early on to improve
alignments (17). Initially the substitution of profiles
by consensus mimicked profile–sequence alignments
(14,18) (more accurately leading to consensus–sequence
or sequence–consensus comparisons). Those methods
tapped into fast alignment algorithms such as FASTA
or BLAST. This approach is used successfully with
ProDom (19) and COBBLER (14) consensus sequences.
The development of fast profile–sequence alignment
methods such as PSI-BLAST halted the development of
sequence–consensus methods. Although BLAST-based
sequence–consensus searches may be considerably faster
than PSI-BLAST searches, they are thought to also be
considerably less accurate. A symmetric approach of
aligning a query sequence with a database of profiles
(sequence–profile alignments) is used, for example, in
Blocks Searcher (20) and in RPS-BLAST (6,21) to search
the Blocks (22,23), PRINTS (24) and CDD (25,26)
databases. Another approach is to align a query sequence
with profile-derived Hidden Markov Models (HHMs) as
applied by, e.g. Pfam (27) and Smart (28,29). An
interesting idea suggested for PSI-BLAST searches with
consensus sequences was never tested nor implemented on
a larger scale (30).
Profile–profile algorithms tend to be both most sensitive

and most accurate (31,32). Unfortunately, profile–profile
comparisons are also much slower and more complex than
heuristically accelerated sequence–sequence and profile–
sequence algorithms. For this reason their application to
everyday searches of large sequence databases on a typical
computer workstation is not practical. Recently, an
algorithm that approximates profile–profile algorithms
by performing consensus–consensus alignments (16) has
been published. In this article, we propose a different
approximation to profile–profile comparisons in which
only one profile is substituted by a consensus sequence
(profile–consensus alignment). A somewhat similar
approach (without heuristic speed-up) was proposed for
aligning quasi-consensus sequences with HMMs (33).
Consensus sequences can be derived in various ways. In
one approach the raw sequences are only replaced by
consensus residues ‘locally’, i.e. for some of the residues,
e.g. the evolutionarily conserved regions (as done by the
COBBLER method based on Blocks). Alternatively, one
could replace the complete sequence with a consensus
sequence. Here, we tested both alternatives.

Which consensus alignment is best?

Given all possible variants of using consensus sequences:
which one is best? A direct comparison of existing
methods may not provide the most informative answer
to this question because different methods generate
profiles and consensus sequences in different ways
(see Supplementary Data for such a comparison).
Here, we set up an experiment where we could control
all the parameters to study differences between various
algorithmic approaches. The same sets of multiple align-
ments and the same algorithms for computing consensus
residues were used. Also the same alignment algorithm
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(PSI-BLAST) was used to make all alignments. We com-
pared three possible ways of using consensus sequences in
alignments—aligning raw with consensus sequences
(sequence-consensus), aligning only consensus sequences
(consensus–consensus) and (proposed here) aligning
profiles with consensus sequences (profile–consensus).
In addition, we studied whether protein sequences locally
enriched with consensus information performed better
than simple global consensus sequences. Since the
alignment of consensus sequences is as widely applicable
and potentially as fast as alignment of raw sequences we
have also compared it with the standard raw sequence
alignment methods—PSI-BLAST and BLAST. Finally,
we have provided the first comprehensive analysis for the
quality of consensus sequence alignments.
We found that profile–consensus alignments out-

performed other consensus sequence alignments.
Notably, the profile–consensus approach most
closely resembled profile–profile algorithms. The profile–
consensus searches with PSI-BLAST were significantly
more sensitive and specific than the original PSI-BLAST
searches with raw sequences. Improvements were particu-
larly significant for more difficult tasks such as the
identification and alignment of distant structural relations
between proteins. Despite the fact that the improvements
were higher for more divergent relations, they were
consistent even at high accuracy/low error rates for non-
trivially related proteins. The improvements were very
easy to achieve; no parameter used by PSI-BLAST was
altered and no single line of code changed. Moreover,
the consensus sequence add-on required relatively little
additional CPU time. This new way of search and
alignment added onto the existing PSI-BLAST program
is almost as fast and easily applicable as PSI-BLAST itself.

MATERIALS AND METHODS

Generation of consensus sequences

For each test sequence used in this study, we generated
the position-specific scoring matrix (PSSM) using
PSI-BLAST. We used a maximum of five iterations, an
e-value threshold for inclusion in PSSM of 0.001 and no
query filtering [blastpgp options ‘�j 5 �h 0.001 �F F �Q
PSSM(ASCII)’]. All profiles were generated by aligning
against a redundancy-reduced version of the UniProt (34)
database [80% sequence identity reduction using CD-HIT
(35)]. The determination of consensus amino acids was
based on the ASCII PSSMs. Each original residue was
replaced with the amino acid that had the highest
corresponding PSSM score (highest ‘target’ to back-
ground frequency ratio). Three types of consensus
sequences were generated: In the ‘global consensus’
mode, we replaced all residues by the consensus; in the
‘consensustop50%’ mode we replaced the 50% of the
residues associated with most informative profile columns
(highest relative entropy) by the consensus; in the
‘consensuslow50%’ mode we replaced the 50% of residues
associated with least informative columns with consensus
residues.

Alignments

All alignments were generated using the ‘blastpgp’
executable in the PSI-BLAST suite of programs. All
profiles (PSSMs) used for alignments were generated in
the same way as profiles used for generation of consensus
sequences except that a file containing the binary version
of a PSSM was also stored [blastpgp options: ‘�j 5 �h
0.001 �F F �C PSSM(binary)’]. The binary PSSM was
used for a final PSI-BLAST search and alignment of the
database of consensus sequences using just one iteration
[blastpgp options: ‘�j 1 �F F �R PSSM(binary)’]. For
non-profile-based alignments of sequences ‘blastpgp’
program with default BLOSUM62 (36) scoring matrix
was also used (options: ‘�j 1 �F F’). For comparison of
performance PSI-BLAST (the same options) was used
to search the corresponding database of raw sequences.
For convenience of analysis the alignments of consensus
sequences were translated back to ‘real’ sequences using
a simple Perl script (Figure 1).

Evaluation of performance

There is no commonly accepted means of evaluating
the performance of database search and alignment
methods. One way of generating test sets of sufficient
size is to compare proteins with known 3D structures
because for such comparisons standards-of-truth can
relatively easily be generated automatically. We assessed
both the ability to identify related proteins and the
ability to correctly align them based on structural
alignments (below). Evolution has conserved the principle
components of protein 3D structures (often misleadingly
referred to as ‘the fold’) at higher divergence than
the principle aspects of protein function. Therefore,
evaluations based on structural alignments tend to put
emphasis on more diverged relationships than would
comparisons that are based on functional features.

Figure 1. Sketch of consensus search. First, the PSSM for a query
protein sequence is built by an iterative PSI-BLAST search over a
large database of proteins sequences (such as UniProt). The resulting
PSSM is then used to search and align sequences contained in a
target database of consensus sequences. Finally, consensus sequence
alignments are translated to alignments of the native raw protein
sequences.
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PSI-BLAST as the point of reference

All our evaluations used PSI-BLAST and BLAST
as points of reference. The rationale was manifold. First,
PSI-BLAST alone is not sufficient because there are many
different ways of running PSI-BLAST, i.e. we need a point
of reference in order to track our way of running
PSI-BLAST. For this we explored BLAST. Second,
most recent assessments of new alignment methods are
compared to PSI-BLAST and/or BLAST. Since it is rather
unreasonable to compare results obtained on different
data sets, we cannot directly compare our results to other
publications. However, the two reference points allowed
for the triangulation of a comparison. Third, our major
purpose was to illustrate the advantage of adding
our protocol onto existing PSI-BLAST searches,
i.e. PSI-BLAST is the most important point of reference
for our protocol. This is because PSI-BLAST is one of the
few tools that can be used for fast and accurate searching
of largest sequence databases and consensus sequence
alignments can be used for the same purpose.

Evaluation of search capability

We evaluated the ability to identify related proteins
with SCOP (37) (release 1.69). For the assessment
we omitted protein pairs from the same SCOP family
(considered rather easy to recognize) and pairs that
belonged to different SCOP superfamilies but to the
same SCOP fold (considered too difficult for sequence
alignment methods). Thus, our positives were pairs of
proteins from the same SCOP superfamily while negatives
were pairs of proteins from different SCOP folds.

Evaluation of alignment quality

Comparative modeling is a technique that allows the
modeling of a 3D structure for a query protein Q based on
a template T of experimentally known structure (38,39).
In the simplest implementation comparative modeling
first aligns Q and T and then copies the co-ordinates
from T to model the structure of Q based on this
alignment. Alignment mistakes significantly impair the
quality of such models. We measured the quality of
alignments implicitly, namely by assessing the quality of
the comparative models originating from the alignments.

We superposed all models (represented by Ca
atom coordinates) with experimentally determined 3D
structures using one particular automatic method for
structural superposition, namely LGA (40); this method
has become one of the standards in the experiments for the
Critical Assessment of Structure Prediction [CASP (41)].
First, we computed a Global Distance Test (GDT) (40)
that corresponds to the largest, not necessarily continuous
subset of residues superimposable within a specified
distance threshold. Second, we also computed Longest
Continuous Segments (LCS) (40) of residues (consecu-
tively modeled residues) that can fit under a specified
RMSD cutoff. The second measure provided us with
a local alignment quality test. Note that we chose a subset
of pairs (Q,T) such that for all pairs experimental
structures were available; we built the model for Q using

the known structure of T and assuming that Q had
no known structure, but we evaluated the accuracy of
the model using the experimentally known structure for Q.
We reported results for two different thresholds. The
first was rather stringent (2 Å); it focused on the essential
core similarities between model and experiment. The
second was rather relaxed (5 Å) thereby capturing more
generic, coarse-grained similarities. Note that
GDT computation uses the actual distance threshold
while LCS uses average distance (RMSD).
Note that we assess a real-life situation in which we

model structures for proteins Q that are not identical to
the experimentally known structures T. This implies that
the quality of a model also depends crucially on the
divergence between Q and T: at high evolutionary
distances, the two structures will differ so much in detail
that even accurate alignments will not give as accurate
models as inaccurate alignments between more closely
related pairs. We accounted for this effect by structural
alignments: we used the 3D alignment method
MAMMOTH (42) to align the known structures of Q
and T. This approximated an upper limit for what could
be achieved by simplistic comparative modeling that only
copied coordinates. The quality of models based on
MAMMOTH alignments was also evaluated using LGA.

Data sets

We analyzed the ability to correctly identify and align
related proteins on a subset of SCOP. We removed
domains with discontinuous sequences, structures with
missing coordinates, NMR structures, low-resolution
structures (52.5 Å) and short proteins (550 residues).
The resulting set of proteins was tailored differently for
assessing search and alignment quality.
To assess search capability (homology/fold recog-

nition), we reduced the redundancy of the sequence set
so that no pair of sequences could be aligned by BLAST
at e-values better than 10�3 (when computed on UniProt
database of �2 000 000 sequences) or at levels of sequence
identity and alignment length that corresponded to
HSSP-values above 0 (43,44) (whichever of the two
criteria applied). This yielded a data set of 2476 sequences
for which we applied an all-against-all test.
The choice of datasets for studying alignment quality

was motivated by the observation that the quality
of sequence alignments deteriorates rapidly below levels
of around 30% pairwise sequence identity (45). In order
to assess the ability of our add-on consensus approach to
correctly align more distant pairs, we did not consider
alignments with430% pairwise sequence identity. Within
this set of distant relatives, we monitored two different
levels of alignment difficulty correlated with standard
everyday uses of sequence alignment algorithms. First,
we chose only those protein pairs that could be aligned
by PSI-BLAST with e-values ranging from 10�3 to 10
when searching large public sequence databases. Second,
we looked at the more difficult task of aligning protein
pairs belonging to the same SCOP superfamily but
different SCOP families (with e-values of up to 100
when computed on sequence unique subset of SCOP).
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Those sets were composed of 1647 (set 1: most related,
non-trivial pairs), and 5551 (set 2: more difficult, most
diverged) protein pairs respectively. The final data sets
were ‘pairs non-redundant’ in the following sense: no
protein in any pair could be aligned with any protein from
any other pair at PSI-BLAST e-values better than 1000
(calculated on UniProt database).

RESULTS

Approximation of profile–profile alignments
performed best

For each alignment method tested here, we ordered all
alignments of all queries by e-values. Next, we computed
the cumulative number of true positive relations (same
SCOP superfamily but different family; note that cases
with the same superfamily and the same family were
carefully filtered out from our data set to reduce
redundancy) for increasing cumulative numbers of false
positives (pairs of proteins with different SCOP folds). For
any cumulative number of false positives (i.e. at any error
rate) searching with profiles against a database of global
consensus sequences yielded most true positives (profile-
consensus, Figure 2A and Supplementary Data). Such a
search was the closest approximation of profile–profile
alignments since only one of the profiles was replaced by
the corresponding consensus sequence. Replacing both
profiles by consensus sequences and scoring alignments
with a generic scoring matrix (BLOSUM62) did not
perform as well (consensus–consensus, Figure 2A).
Although this approach seemed to have some advantage
over PSI-BLAST in a low error region (few false
positives), the loss of some profile information for both
profiles was largely detrimental. Finally, searching with a
raw sequence and a generic scoring matrix against a
database of consensus sequences performed worse than
other consensus sequence methods but significantly better
than BLAST (sequence–consensus, Figure 2A).
We also observed that global consensus sequences

performed better than sequences with partial consensus
information. For example, searching with profiles against
consensustop50% sequences (50% of the residues in most
informative positions replaced by consensus) performed
somewhat worse than searching against global consensus
sequences (profile–consensustop50%, Figure 2A). Interest-
ingly, the search with the least conserved/informative
half of the residues replaced by consensus (profile–
consensuslow50%, Figure 2A) still improved performance
over raw (no consensus) sequences!
Few corrupted profiles can produce many false positives

with very significant scores. Alternatively, few very good
profiles with many related proteins present in the database
can identify them preferentially. Thus, plots of the
cumulative number of true versus false positives according
to alignment scores may be locally dominated by such a
bias. Counting the cumulative number of true positives
according to the alignment score rank obtained in each
individual query search (i.e. considering the first n
alignment pairs from each query) tends to reduce the
bias. This test demonstrated that few outliers did not skew

the results. Instead, the search against a database of global
consensus sequences produced the largest number of true
positives at any rank considered (Figure 2B).

Little additional CPU needed for add-on. In this study,
we used separate databases for iterative derivation of
PSSMs (non-redundant UniProt) and for the final search
and alignment (‘sequence unique’ SCOP; Figure 1).
In this scenario, our un-optimized add-on consensus
search and alignment nearly doubled the CPU time,
in the following way. Five iterations of PSI-BLAST
against SCOP would take about 5 s (on a single 2.8GHz
CPU with 1GB RAM), one additional iteration of
PSI-BLAST with the consensus sequence added another
�4 s. Most of the 4 s were spent on the search (3.2 s); very
little additional time was needed to translate alignments
of consensus sequences into ‘raw’ sequence alignments.

Figure 2. Consensus sequences performed better at any error rate. We
compared the performance of BLAST and PSI-BLAST, with different
strategies for consensus add-ons profile-consensus marked our standard
approach of aligning a PSI-BLAST profile of the query against a
database of consensus sequences (blue circles); profile-consensustop50%

aligned query profiles against a database in which only the 50% most
informative residues (Methods) were replaced by consensus sequence
(black inversed triangles); profile-consensuslow50% aligned query profiles
against a database in which only the 50% least informative residues
were replaced by consensus sequence (black rectangles); consensus-
consensus marked BLAST-based comparisons between consensus
sequences on both sides, i.e. for the database and the query (black
circles); sequence-consensus were BLAST-based comparisons between
native sequences on the query side and a database with consensus
sequences (black diamonds). For reference, results of original sequence-
based PSI-BLAST (green rectangles), and pairwise BLAST (gray
triangles) are also shown. True pairs were sequences from the same
SCOP superfamily (similar structure), while false ones belonged to
different SCOP folds (different structure) (Methods). (A) Alignments
(2476 sequences, all versus all) were sorted by e-values. True versus
false computed over all matches found below a given e-value threshold.
By construction, we excluded all pairs that were trivially related
(Methods), which explained why the curves for the pairwise BLAST
were so low. Profile alignments of global consensus sequences
performed best. The transparent gray lines marked the levels of 10,
20 and 30% errors. For instance, at the 10% error (90% accuracy)
level, the profile-based search of global consensus sequences revealed
over 66% more correct relations than PSI-BLAST (global-consensus-
based¼ 2483 true positives; PSI-BLAST¼ 1490). (B) To rule out that
the improvements of consensus sequence-based searches (A) originated
from few families, we counted the cumulative number of correctly
classified pairs (structural similarity recognized) for the first best
scoring n alignment pairs (rank n) from each query search (i.e for rank
n equal 2 we looked at 4952 pairs (2 times 2476). The searches of global
consensus sequences performed best at all ranks.
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Note that we actually ran PSI-BLAST against UniProt,
while we only applied the consensus addition to SCOP.
The entire PSI-BLAST search against UniProt took
about 5min per query. If testing the consensus method
on UniProt, we expect that this would lead to an
additional 4min of processing time.

Better alignments. We studied the alignment quality of
the best performing consensus sequence search algorithm
(profile–consensus) and compared it with the quality
of raw sequence alignments, i.e. the original PSI-BLAST
alignments. The quality was measured by assessing the 3D
structure models that resulted from a simple comparative
model-building strategy using these alignments. To
provide a useful perspective on the results, we also
evaluated 3D models obtained from structural super-
positions carried out with MAMMOTH (42). We found
that on average consensus sequence-based models had
significantly more (not necessarily consecutive) residues in
the vicinity of experimentally determined coordinates than
did PSI-BLAST-based models (Table 1). This was true
when measuring detailed structural similarities (stringent
distance threshold of 2 Å) as well as when measuring
coarse-grained structural similarities (relaxed distance
threshold of 5 Å), and it was true for both levels of
alignment difficulty (Table 1). However, the improvements
from our add-on of consensus sequences were most
significant for more difficult data sets and for more
coarse-grained similarities. The comparisons with the

models obtained from structural superpositions by
MAMMOTH further underscored the relative significance
of the gains from consensus-based searching. For exam-
ple, at the threshold of 5 Å consensus-based searches
increased the number of correctly modeled residues
around half as much as MAMMOTH did. Surprisingly,
at the stringent 2 Å threshold and the less difficult
(Table 1; PSI-BLAST e-values 10�3–10) consensus-aligned
models had, on average, more superposed residues than
the MAMMOTH models. This is rather surprising
because it implies that the sequence-only alignment
found a better superposition for two 3D objects than did
the structure-only alignment method. The likely explana-
tion for this puzzling finding is that MAMMOTH was
optimized for the identification of structural simi-
larities within 4 Å, i.e. a threshold more useful for more
distantly related structures. In other words, structural
alignments of MAMMOTH were likely not optimized for
finding ‘tight alignments’ of closely related proteins.
Nevertheless, the performance of consensus sequence-
based models generated without structures was impressive
in this case.
For local subsets of consecutive model residues we also

found that the models resulting from the consensus
alignments had longer segments of ‘good quality’ than
did PSI-BLAST based models (Table 2). This was true for
a more stringent RMSD threshold of 2 Å as well as for a
more relaxed threshold of 5 Å. Again, the improvements
from our add-on of consensus sequences were most

Table 1. Consensus sequences improve the global quality of structural models�

52 Å (Ca distance) 55Å (Ca distance)

PSI-BLAST PROFILE-CONSENSUS MAMMOTH PSI-BLAST PROFILE-CONSENSUS MAMMOTH

SCOP superfamily, only 15.8 (�0.2) 18.1 (�0.2) 19.6 (�0.2) 22.6 (�0.2) 27.2 (�0.3) 35.2 (�0.3)
PSI-BLAST e-values 10�3–10 34.7 (�0.4) 38.3 (�0.5) 36.5 (�0.4) 49.1 (�0.5) 55.2 (�0.6) 58.0 (�0.5)

�For each protein in our data sets (query Q), we aligned a similar protein in the PDB (template T) and used the experimental structure of T to model
the structure for Q by simply copying the Ca backbone of T onto Q according to the alignment provided. Since for all Qs in our experiment the
correct answer was known (all Qs had known structure), we could then assess how accurate the model was by superposing the model and the known
structure. For this superposition, we used the structural alignment method LGA. Here, the measure of accuracy was the percentage of Cas that were
closer to the real structure than some distant cutoff (55 Å for the three rightmost columns, and52 Å for columns 2–4). Note that the set of residues
below a distance threshold was not necessarily consecutive in sequence. We compared the consensus sequence-based approach with that of the
regular PSI-BLAST. The data for MAMMOTH was generated by optimally superposing the structures of Q and T without considering their
sequences. In principle, this approximated an upper threshold for performance (Results). The two rows distinguished different data sets
corresponding to different levels of alignment difficulty: ‘SCOP superfamily only’ were pairs of proteins that fell into different SCOP families and into
the same SCOP superfamily (coarse-grained structural relation), while ‘PSI-BLAST e-values 10�3–10’ were pairs of proteins with similar structure
that fell into the corresponding interval of sequence similarity. Note that both rows reflected the performance for ‘non-trivial’ tasks. Standard errors
are given in parentheses.

Table 2. Consensus sequences improve the local quality of structural models�

52 Å (Ca RMSD) 55 Å (Ca RMSD)

PSI-BLAST PROFILE-CONSENSUS MAMMOTH PSI-BLAST PROFILE-CONSENSUS MAMMOTH

SCOP superfamily, only 14.4 (�0.1) 15.7 (�0.2) 16.5 (�0.2) 23.8 (�0.3) 27.9 (�0.3) 35.3 (�0.3)
PSI-BLAST e-values 10�3–10 26.8 (�0.4) 28.0 (�0.4) 26.1 (�0.4) 51.6 (�0.6) 58.4 (�0.7) 62.8 (�0.7)

�Data sets identical to those as in Table 1; the difference is that accuracy is now measured by considering a single sequence-consecutive segment in
the model that falls below a certain distance threshold. The longest consecutive segments were identified by the program LGA. Note that thresholds
reflect cutoffs in terms of Ca RMSD, i.e. the distance averaged over the entire segment. In contrast, the values in Table 1 reflect actual Ca thresholds
for spatial distances.
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significant for more difficult data sets and for more coarse-
grained similarities.

DISCUSSION

Here we demonstrated that both the search and alignment
quality of PSI-BLAST can easily be improved without
having to alter the code. Performance improved substan-
tially with simply replacing the last iteration of the
standard PSI-BLAST search against a database of raw
sequences with a search against a database of consensus
sequences. The improvements were most significant for
non-trivial tasks such as the identification (Figure 2) and
alignment of distant structural similarities. All improve-
ments translated directly into better initial models for
comparative modeling (Tables 1 and 2).
The analysis provided a worst-case scenario for the

performance of consensus sequences resulting from simply
piggybacking a new idea (usage of consensus sequences
directly for the alignment) onto an old method
(PSI-BLAST). We neither altered gap penalties (11 for
opening and 1 for extension), nor substitutionmatrices, nor
any other parameter optimized for raw rather than
consensus sequences. Preliminary tests (data not shown)
indicated that consensus sequence-based searches did not
change the robustness/sensitivity with respect to such
parameters. We also found that using the most frequent
amino acid type at each position instead of the amino acid
with maximal PSSM score did not reduce the gain
significantly. On the other hand, the adverse consequence
of not optimizing any of the PSI-BLAST parameters was
that searching a database of consensus sequences took
almost four times as long as searching a comparable
database of raw sequences (�3.2 versus �0.8 s on a non-
redundant SCOP). Lately, we have realized that it was
largely due to using parameters such as thresholds for
extending hits (high-scoring residue words), triggering
gapped alignments and gap penalty values themselves
that were not optimal for consensus sequences (our
preliminary results indicate that raising the threshold for
extending hits by about 20% almost doubles the speed and
affects the sensitivity negligibly). Those details, as well as
the scoring matrix, remain to be optimized for the
particular concept of consensus sequences.
To generate global consensus sequences, we replaced

each amino acid in the template by the amino acid that
scored highest in the associated column of a profile PSSM
produced by a standard PSI-BLAST search. Thereby,
we maximized the self-score of the resulting consensus
sequence with respect to its PSSM. As a consequence, any
two proteins having similar profiles are also likely to have
a higher alignment score when consensus sequences
are aligned. Our results suggest that the corresponding
change of the alignment score for unrelated proteins
was considerably smaller. Surprisingly, replacing only the
least informative half of all residues by consensus
also improved performance (profile-consensuslow50%,
Figure 2). This may suggest that even weakly or non-
conserved positions are associated with specific

constraints on random amino mutations that can be
utilized to detect similarities.

The best performance of profile–consensus search
was achieved when the profile that was used to generate
the consensus sequence was obtained in the same way
as the profile used for the alignment scoring. For example,
when the profile used to compute the consensus was
obtained after fewer PSI-BLAST iterations, performance
deteriorated. Improving the searches through consensus
databases that apply more involved ways of using
consensus sequences such as ProDom and COBBLER
may therefore require one to search with the same type of
scoring profiles that was used to generate the database
in the first place. Unfortunately, the algorithms used
for their creation are considerably more involved and
more time consuming. In contrast, our add-on protocol
is very simple. The global consensus sequences can be
generated easily from PSI-BLAST ASCII matrices. The
optimal search of such database requires similarly easily
obtainable PSI-BLAST binary profiles. Any PSI-BLAST
user could easily accomplish this. However, the generation
of a large consensus database is computationally costly.
Therefore, we decided to provide an up-to-date consensus
sequence version of Swiss-Prot (46) and PDB (47) through
our website (http://www.rostlab.org/services/consensus/).
We plan to provide consensus sequences for the entire
UniProt in the near future. We have also provided a
simple Perl program for translating PSI-BLAST ASCII
matrices into consensus sequences. In addition, for the
convenience of users we have provided a script for the
conversion of aligned consensus sequences into the
corresponding alignments of real sequences. We have
also made profile–consensus searches available through
the PredictProtein server (48) (http://predictprotein.org).

Our results suggested that sequence–profile method
(i.e. methods that search database of profiles with a
sequence) such as IMPALA and the methods used to
search CDD (25,26) might also benefit from mimicking
profile–profile alignments through searching database
of profiles with a consensus sequence (consensus–profile
alignment). Similarly, methods that use sequences to
search HMM-derived profile databases such as in Pfam
and SMART might also improve performance by replac-
ing a raw query sequence with a consensus sequence as
proposed in this manuscript, although the HMM-derived
consensus sequences may be more appropriate (33).
Finally, it is also likely that methods using bidirectional
profile–sequence/sequence–profile scoring (49,50) will
benefit from using profile–consensus/consensus–profile
approach.

One advantage other than improved performance is
that consensus sequence-based alignments are likely less
sensitive to sequencing errors. This may be particularly
appealing in the age of massive sequencing efforts
that grind up indiscriminately what is found in oceans,
soils and polluted environments. Finally, it remains to
be shown that the advantage of using consensus sequence-
based searches for the identification and alignment of
remote structural similarities between proteins will hold
more generally, e.g. for the nucleotide sequences, and
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for the usage of with other alignment algorithms, such as
ClustalW or T-Coffee.

One consequence of our improvements was that the
consensus sequence-based alignment profiles were both
more diverse and more accurate than those generated
by the ordinary PSI-BLAST. Prediction methods that
use alignment profiles, such as those predicting aspects
of protein structure, tend to improve proportionally
with better profiles (51–54). It is therefore reasonable
to assume that our consensus sequence add-on to PSI-
BLAST will clearly boost the performance of downstream
methods for the prediction of protein structure and
function.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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