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Abstract

The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to

many industrial applications. Its members hydrolyze starch into smaller carbohydrates and

members of the family have been bioengineered to improve catalytic function under indus-

trial environments. We introduce a framework to analyze the response to selection of GH13

protein structures given some phylogenetic and simulated dynamic information. We find that

the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-

strands that alternate along the peptide backbone, common to all amylases) is not select-

able since it is under purifying selection. We also show a method to rank important residues

with higher inferred response to selection. These residues can be altered to effect change in

properties. In this work, we define fitness as inferred thermodynamic stability. We show that

under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good

candidates to increase the stability of the truncated α-amylase protein from Geobacillus

thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1). Over-

all, this paper demonstrates the feasibility of a framework for the analysis of protein struc-

tures for any other fitness landscape.

Introduction

The Glycoside Hydrolase Family 13 (GH13) is a multi-reaction catalytic family and its mem-

bers perform hydrolysis, transglycosylation, isomerization [1], condensation, and cyclization

reactions [2], and even animal amino acid transport [3] with no glycolase activity [4]. The

initial definition for this family was formulated in the early 1990’s [5–7]. According to this def-

inition, a member of this family must [6]: 1) hydrolyse or form (by transglycosylation) α-glu-

cosidic linkages; 2) have four conserved amino-acidic regions [8]; 3) contain the catalytic triad:

Asp, Glu, and Asp.; and 4) have a TIM-barrel-like fold in its structure.

Since then, the number of family members have increased [9] to include α-1,1-, α-1,2-, α-

1,3- and α-1,5-glucosidic linkages [1]. Also, the number of conserved regions has been updated

to 7 [10, 11].
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The catalytic activity and substrate binding residues in the GH13 family members occur at

the C-termini of the β-strands and in the loops that extend from these strands [12]. The cata-

lytic site includes aspartate as a catalytic nucleophile, glutamate as an acid/base, and a second

aspartate for stabilization of the transition state [13]. The catalytic triad plus an arginine resi-

due are conserved in this family across all catalytic members [14, 15]. The GH13 family has

many characterized enzymes with diverse functions which are summarized and clustered in

the CAZY database [16]. GH13 is a highly diverse family in function and is also ubiquitous,

being found in all kingdoms of life [15]. The GH13 family has been subdivided into over 40

subfamilies [17, 18] by their sequence motif and enzyme specificity [9], but they are all related

both in sequence and structure. To date, thousands of sequences comprise this family for

which hundreds of structures have been solved with more than 30 different enzymatic specific-

ities [9]. Many comprehensive reviews on their mechanisms, sequences, abundance, phylog-

eny and concept have been performed [12, 15, 19–24].

Part of the interest in researching this family lies in its industrial importance [25, 26]. The

GH13 family is the target of engineering efforts, focusing on factors such as thermal and alka-

line stability [27–30], specific activity [27, 31], and other diverse biochemical properties that

are important to the industrial context [28, 32, 33]. Many strategies have been used to engineer

this family including different “rational design” approaches [34] such as B-fitter [35], proline

theory [36], PoPMuSiC-2.1 [37], and sequence consensus [34]. However, to our knowledge,

there has been no attempt to leverage both phylogenetic and molecular dynamics signals to

quantify the potential of a structure in response to selection.

Exploring how selection acts on protein structures is not a trivial problem. One approach is

to assume that protein structures are shape phenotypes and that their 3D structures respond to

both genetic and environmental factors, thereby falling under a quantitative genetics frame-

work. Proteins and other shapes are highly multivariate in nature [38], and the model for their

phenotype (y) can be expressed as [39]:

y ¼ Xbþ Zaþ e ð1Þ

where X and Z represent design matrices for the fixed and random effects in vectors b and a
respectively, and e is the residual component that cannot be explained by the model. Here, y is

the phenotype of one structure and contains the x, y, and z coordinates of each homologous

residue. The residue’s homology is inferred with respect to the rest of the structures being ana-

lyzed. For a protein structure t that has 100 homologous residues, the length of yt is 300. The

more detailed explanation of the abstraction of the protein structure as a shape can be seen in

section “Abstracting protein structures as shapes”. With this model, the phylogenetic contribu-

tion to phenotype can be estimated. In a multivariate setting such estimation is called the G-

matrix, or genetic variance-covariance matrix, which summarizes the genetic contribution and

the interaction of all traits. In the example above, G is a 300 by 300 matrix.

Lande and Arnold [40] proposed a multivariate strategy to estimate the response to selec-

tion given G as:

D�z ¼ Gb ð2Þ

where D�z is a vector of changes in traits, and β is a vector of selection gradients. The latter

quantity is the effect of a particular trait on the relative fitness, and therefore depends on its

definition. Here we define fitness of a molecule as its function. In enzymes, for example, this

term could include the stability, effectiveness, and efficiency necessary for the protein to per-

form the required function. Then, the selection gradient can be understood as the change in

fitness when the trait (in this case geometry) varies.
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To apply the framework, the estimation of a G-matrix is required [41]. To deal with the fact

that the number of samples is limited, this inversion of matrices requires expensive computa-

tion and an eigen-decomposition of the covariance matrices carried out using the restricted

maximum likelihood (REML) approach is typically employed to perform the variance decom-

position. When applied to univariate data, REML is more accurate than maximum likelihood

methods because it better handles missing data (i.e. unknown parents, arbitrary breeding

designs, etc. . .) and can account for selection processes. However, REML has good properties

only asymptotically. The reliability of the estimates is questionable when data is scarce. One

way to deal with complex cases that might bias the REML estimates is to use Bayesian inference

of the animal model. This approach uses Markov chain Monte Carlo simulations and produces

more robust estimations than REML, with equivalent results in less complex cases [42]. This

robustness assumes that the Bayesian model has enough information in the prior probability

distribution. A given set of priors considerably affect the estimation of the variance compo-

nents. In particular, uninformative priors, such as flat priors (all parameters are equally likely),

can lead to biases in the estimation.

Lynch’s comparative quantitative genetic model: Applications to protein

structures

Lynch [43] developed the phylogenetic mixed model (PMM). In this model, the correlation of

phylogenetically heritable components is the length of the path from the most recent common

ancestor among two species and the root of the phylogenetic tree (i.e. time to the shared com-

mon ancestor) in the phylogeny [44]. The PMM can be described as [43]:

�z ¼ Xmþ aþ e ð3Þ

where X is an np × p incidence matrix, p being the number of traits and n the number of

observations.

An assumption of the model is that μc is shared among all taxa in the phylogeny. This is a

sensible assumption to make when analyzing truly homologous protein structures, since the

mean effect on the phenotype is shared by common ancestry. This also means that μc+ aci can

be interpreted as the heritable component of the mean phenotype for the ith taxon [43].

Here, the phylogenetic effects are the portion of the variation that has been inherited from

ancestral species [45]. It does not only contain the genetic component, but also some environ-

mental contributions given the shared evolutionary history of the taxa [46]. In PMM the ratio

between the additive component and the total variance is the heritability (h2) in a univariate

approach. Housworth et al. [46] pointed out that a univariate h2 in a PMM is actually equiva-

lent to Freckleton et al. [47]’s and Pagel [48]’s phylogenetic correlation (λ).

Despite the robustness of the models, the REML technique, employed to estimate them, has

two major drawbacks: assumption of normality of the data and high sample size requirements.

It is widely known that REML poorly estimates genetic correlation when overparameterized

(multi-trait inference), when the sample size is small (Martins, personal communication), and

when the normality assumption is violated [44]. These violations can be handled in a Bayesian

framework using Markov Chain Monte Carlo techniques. In such techniques, the higher com-

plexity of the joint probability calculation needed for the likelihood estimation can be broken

down in lower dimensional conditionals. From those conditionals the MCMC sampling can

be performed and marginal distributions can be extracted [44]. A discussion of the use of

Bayesian MCMC techniques is beyond the scope of this work. We refer the interested reader

to Sorensen and Gianola [49] for a good description of likelihood and Bayesian methods in

quantitative genetics.

Response to selection in protein structures
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Despite its strengths, the Bayesian framework also has weaknesses. The most important one

is that it requires proper and informative priors. Uninformative priors lead to biases with high

variation in results. The sensitivity to the choice of prior distribution should always be assessed

[50]. Given that in evolutionary biology datasets the amount of knowledge on the estimator is

scarce, well-informed priors are normally not available and by informing priors with partial

information, the estimation can become ill-conditioned.

To explore the feasibility of a comparative quantitative genetics (CQG) framework in pro-

tein structures, we simulated a dataset with variable numbers of traits and observations. We

show that the current implementations of the CQG framework are not feasibly applied to the

dimensionality required for protein structures. We devised a method that functions as a proxy

for the CQG framework and show that it is feasible and accurate. By applying this framework

using the energy of unfolding (ΔG˚) as fitness function to the GH13 family, we are able to

show how purifying selection has fixed the geometry of the TIM-barrel. We also demonstrate

how, by changing the fitness function, the response to selection propensity changes accord-

ingly. Finally, a proxy for the amount of dynamic deformation happening in the protein, given

a vector of selection, is explored.

Overall, we present here a starting framework to explore protein structure evolution and

design. This approach has the potential to inform researchers on the potential of a given struc-

tural family to respond under selective pressures. This is especially important in protein engi-

neering and structural evolution. It also has the potential to inform possible pathways to be

visited in a given fitness landscape. This approach can narrow down the structural variants

that a particular structural group followed (or could/can potentially followed) in evolution or

engineering, and therefore become an important tool in structural biology inquiring.

Materials and methods

GH13 dataset

The GH13 family has 111 structures reported in the CAZY database, with 386 representatives

in the PDB. Given that molecular dynamic simulations are very time consuming, we used a

subset of the proteins classified as Glycoside Hydrolases Family 13 (GH13). A stratified selec-

tion (from each CAZY structural grouping) of 35 protein structures was performed maximiz-

ing taxonomic diversity (i.e. avoiding sampling the same species). The structure of the

maltotetraose-forming exo-amylase from Pseudomonas stutzer (PDB code 1GCY) failed dur-

ing the MD simulation due to structural abnormalities in the crystal, perhaps steric clashes,

which induced unacceptably large forces, causing the integrator to fail. After lengthy energy

minimizations, the structure could not be resolved and therefore was removed from the

analysis. We chose to remove the structure instead of artificially modifying it, in order to avoid

bias in the data. A final set of 34 protein structures (Table A1 in S1 File) was used in further

analyses.

Molecular dynamics (MD) simulations

Each of the 34 protein structures was simulated in solution using the software GROMACS 4
[51]. The force field modes used for the simulations were GROMOS96 for the protein, and

SPCE for the water molecules. Data were collected every two picoseconds for at least 40 nano-

seconds, discarding the first 10 nanoseconds of simulation to achieve stability. This process

was performed using a workstation with 24 CPU cores and an NVIDIA TESLA™ GPU.

The analysis of these simulations will provide information on the flexibility (or within pro-

tein variance) of the protein, as opposed to the analysis across homologs which would provide

Response to selection in protein structures
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phylogenetic information (or between structures variance). By 40 ns all proteins analyzed have

achieved equilibrium and therefore most of the intrinsic variance has been captured.

Aligning the structures and MD simulations

The alignment of homologous proteins was performed using MATT software [52]. To align the

snapshots from MD simulations a General Procrustes Superimposition (GPS) was performed

using the R package shapes [53].

Abstracting protein structures as shapes

On a set of aligned protein structures, the abstraction is performed in a similar way to that in

Adams and Naylor [54]. However, they do not fully describe the abstraction. Here we assign a

landmark to the centroids of residues defined by:

ð
1

A

XA

j¼1

Xj;
1

A

XA

j¼1

Yj;
1

A

XA

j¼1

ZjÞ ð4Þ

where A will be the number of heavy atoms (C, O, N) that constitute the side chain of a residue

including the alpha carbon (Cα). This procedure takes into account only the homologous resi-

dues. It captures the variance of both the backbone and the side chain. In the case of glycine,

the centroid is the Cα.

Once the structure is abstracted as a shape, the resulting n (number of observations) by

l (number of coordinates of homologous residues) matrix is referred to as the phenotypic

matrix (P). For example, let us assume that we have a protein structure composed of 150 resi-

dues. Let’s imagine that 100 different taxa share an ortholog of this protein. After aligning

the protein structures let’s assume that 100 residues are homologous across all 100 taxa. The

resulting phenotypic matrix (P) will be composed of 100 rows of observations (n) and 300

coordinates (l). These dimensions correspond to the x, y, and z axis of each of the 100 homol-

ogous residues. To estimate the variation of this phenotype, the phenotypic variance VP can

be estimated by computing the variance-covariance matrix of P as VP = var(P), or G in a mul-

tivariate scenario.

Pooled-within group covariance matrix estimation

After the MD simulations up to 500 samples per simulation were obtained. The estimation of

the pooled-within covariance matrix was performed as follows:

1. Align every model within each MD simulation using General Procrustes Superimposition

(GPS): Remove extra rotations and translations that could occur during MD simulation.

2. Select an ambassador structure that is closest to the mean structure (the geometrical mean

of the dataset).

3. Align all ambassadors using MATT flexible structure aligner to identify homologous sites:

Multiple structure alignment to identify structural homology.

4. Extract the centroid of fully homologous sites: Identify shared information among all struc-

tures, as explained in section “Aligning the structures and MD simulations”.

5. Concatenate the centroids’ three dimensions for all trajectories.

6. Perform a GPS on the entire set of shapes to bring all pre-aligned structures into the same

reference plane.

Response to selection in protein structures
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7. Compute the pooled-within-species covariance matrix (W) by first computing the deviation

from the mean in each class/group (individual homologs in our case) as:

Dk ¼ xkðoÞ � �xk;s ð5Þ

then computing the sum over the classes of the products of Dk as:

Fl;m ¼
X

o:f ðoÞ¼s

½Dl� � ½Dm� ð6Þ

Finally, compute the pooled-within covariance matrix:

W ¼
1

n � S

XS

s¼1

ðFi;jÞi;j¼1;���;p ð7Þ

where S is the number of categorical variables describing the groups or species, ω is an

instance where f(ω) corresponds to the class value of the instance, and �xi;s is the mean of the

variable i for individuals belonging to s. Finally, n is the sample size.

Here,W contains the covariance matrix of the within-homolog (i.e. Molecular dynamic

data). To estimate the evolutionary component of P, the between structures/species covari-

ance matrix (B) has to be taken into account. B will be simply the difference between the VP
and W.

Estimating DG�

unfold as proxy for fitness

The DG�unfold on each model for each protein was estimated using the command line version of

FoldX [55]. It is important to notice that the computed DG�unfold is not comparable in proteins

of different size, therefore we computed the average DG�unfold per residue as:

^DG�unfold ¼
DG�unfold
r

ð8Þ

r being the number of residues. With this ^DG�unfold as proxy for fitness we can try to explore the

fitness surface. To do this, we used the first two principal components (PC) of a PC analysis of

the shapes as X and Y axes; ^DG�unfold in the Z axis (S1 Fig).

Is important to state here that the fitness is a relative quantity and depends on the objective

of the analysis. Here we chose DG�unfold for ease of computation, but this function only measures

structural stability. In proteins, function is the main selective trait. However, function in pro-

teins depends on several properties of the structure such as the aforementioned stability, as

well as the Michaelis constant (for enzymes), activation energy, free energy of the system,

among others. In this manuscript we will assume that the fitness function we are modeling is

stability, and therefore DG�unfold works as a good proxy for it.

Propensity to respond to selection

Arnold [56] showed that, despite high additive variances, Gmight not be aligned with the fit-

ness surface. This implies that even though βλ can be non-zero, the response to selection might

send the phenotype in a different direction than the fitness surface. Blows and Walsh [57]

and Hansen and Houle [58] developed an approach to measure the angle between β and the

Response to selection in protein structures
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predicted response to selection from the multivariate breeders equation, D�z as:

yD�z ‐b ¼ cos� 1
D�zTbl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�zD�zT
p ffiffiffiffiffiffiffiffiffiffi

blb
T
l

q

0

B
@

1

C
A: ð9Þ

yD�z � b would be zero when there is no genetic constraint, whereas an angle of 90˚ would rep-

resent an absolute constraint [59].

In simpler terms, yD�z � b will tell us how responsive to selection the protein is. Let’s imagine

we are trying to push one particular protein structure towards a higher fitness by selection. If

yD�z � b is low (close to zero), most of our selection effort will result in a shift in the structures

towards the desired goal. If yD�z � b is closer to 90˚, a very small fraction of the selection effort

will go towards the desired outcome. yD�z � b is therefore measuring the propensity of the struc-

ture to respond to selection.

Results and discussion

In Supplementary Material and Methods, and in Supplementary Results (S1 File) we have

shown that the traditional PMM models and their Bayesian counterparts are not feasible when

the number of traits and observations are in the order of those obtained in protein science

when MD simulations are taken into account. Here, we applied a simple method to overcome

this over-parameterization.

Overcoming over-parameterization: Approaching the G-matrix by means

of the P-matrix

Given the previous results, the estimation of the G-matrix within the Lynch’s PMM is not fea-

sible. This is not a new observation since in comparative evolutionary biology it is widely

known that accurate measures of G are difficult or impossible to obtain [60]. This pattern is

even more evident when dimensionality is high. On average, protein structures are composed

of over 200 residues in a three-dimensional system, which means over 600 variables. Also, the

sample size at the species level is typically small. For these reasons, a full and stable estimation

of the G-matrix is not possible. However, an increased number of samples can be achieved by

means of molecular dynamic simulations. This increases n considerably depending on the

length of the simulation. We have shown the infeasibility of the GLMM to deal with the

dimensionality and very large sample size. However, it has been shown that phenotypic (VP)

covariance matrices can be estimated with more confidence with large sample sizes [61]. It is

also shown that in some cases, VP can be used as surrogate for Gwhen the two are proportional

[60, 62]. To test this, we performed a shape simulation explained in S1 File. The simulation

was performed with 500 replicates as molecular dynamics snapshots, 100 taxa, and the traits

were varied from 2 to 1024 in a geometric series increase. Since the within-homolog matrix

structure is known, a pooled-within covariance matrix (W) was computed as exposed in the

section “Pooled-within group covariance matrix estimation”.

Table 1 shows the feasibility and accuracy of the pooled-within species co-variance estima-

tion method. Here the Cheverud’s Random Skewer (RS) test [61, 63] implemented in the R
package phytools [64] were used to test the accuracy. A discussion of the appropriateness of

the usage of this metric can be found in S1 File and references therein.

Even with highly multivariate data (1024 traits), the memory requirement is manageable

(less than 2 Gb), the evaluation is completed in under an hour, and the accuracy of the estima-

tion is high. The estimated G-matrix is almost identical to the simulated matrix in most of the
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runs, and the estimated MD have over 0.97 correlated responses to random vectors than the

actual MD. This is a surprising result since this method cannot completely separate the error

terms from the genetic and dynamic components. However, the split of the error term between

the two other components can render it negligible. Moreover, it seems that error does not sig-

nificantly affect the structure of G and MD, allowing them to behave almost identically in com-

parison to the simulated counterparts. Given these results, and the fact that the application to

real datasets can only be made with this approach, it is reasonable to keep using the described

method from this point forward. However, the biological and evolutionary meaning of this

approach is less clear than in the other methods since there is no explicit use of a phylogeny.

Meaning of the pooled within-structure covariance matrix. VP-matrices can be used as

surrogates of G-matrices in cases were they are proportional or sufficiently similar [65]. Proa

et al. [65] showed that this assumption can be relaxed if the correlation between G and VP�
0.6. In protein structures, we can assume that given the strong selective pressures and long

divergence times, the relationship between VP and G is standardized. Assuming that this is

true in protein structures, the estimated pooled variance-covariance (V/CV) matrices in real

datasets might have a specific biological meaning. This was described in Haber [66] for mor-

phological integration in mammals. Following Haber’s [66] logic, the within-structure/species

(i.e. thermodynamic V/CV) matrix refers to integration of residues in a thermodynamic and

functional manner. It also contains information about environmental factors affecting the

physical chemistry of the structure. Haber [66] includes a genetic component for his estima-

tion of the within population variation, since populations follow a filial design. Our data, on

the other hand, have a controlled amount of genetic component given that the sampling is

done in a time series instead of a static population. Our approach would be more related to an

estimation of within repeated measures design.

The among-structure/species (i.e additive or evolutionary V/CV) matrix refers to the con-

certed evolution of traits given integration and selection [66].

Response to selection in the GH13 family

As defined in Eq 2, the response to selection of a phenotype depends on the within-species

change in mean due to selection, the correlation between different traits, and the amount of

heritable component of the shape. The first component can be referred to as b ¼ V � 1
P S, and

also known as the vector of selection gradients [67] or directional selection gradient. The

Table 1. Accuracy and feasibility of the pooled-within covariance estimation. Memory (Mb), time (sec) and accuracy (random skewer correlation) of the pooled-within

covariance estimation approach. RSB corresponds to the random skewer test for the phylogenetic covariance and RSW to the dynamic component.

Traits Time (secs.) Memory (Mb) RSB RSW

p-val ρ p-val ρ

2 0.60 182.9 0.002 1.000 0.021 0.999

4 0.80 238.2 0.000 0.999 0.007 0.952

8 1.00 387.6 0.000 0.998 0.000 0.983

16 1.82 407.5 0.000 0.998 0.000 0.963

32 6.08 428.5 0.000 0.998 0.000 0.966

64 20.32 465.9 0.000 0.999 0.000 0.953

128 91.14 539.4 0.000 0.999 0.000 0.947

256 341.90 686.8 0.000 0.999 0.000 0.950

512 1342.36 982.2 0.000 0.999 0.000 0.938

1024 5268.82 1843.7 0.000 0.999 0.000 0.937

https://doi.org/10.1371/journal.pone.0196135.t001
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second and third elements are summarized in the G-matrix. As expressed in Eq 2, this covari-

ance matrix represents the genetic component of the variation in the diagonal, and the corre-

lated response of every trait to each other in the off-diagonal.

Another extension from Eq 2 is to compute the long-term selection gradient assuming that

G is more or less constant over long periods of time:

bl ¼ G� 1D�z ð10Þ

Here D�z would be proportional to the differences in mean between two diverging

populations.

It is important to stress the relationship between these concepts and fitness. Given that

fitness (w) is directly related to selection, its mathematical relationship can be expressed as

f ¼ aþ
Xn

i¼1

bizi þ ei [57], and so it behaves as the weight of a multiple regression of f on the

vector of phenotypes z.
In proteins, the definition of fitness is not trivial, and can vary depending on the hypothesis

being tested. If the analysis is done comparatively (i.e. across different protein structures from

different sources), a fitness analysis including exclusively structural measures, such as Gibbs

free energy (ΔG), can be misleading. The fitness surface that can arise from this data would

only represent departures from every individual native state. Nevertheless, ΔG and the energy

of unfolding (ΔG˚), are important measures to determine the stability of the protein which is

important for the fitness of a protein structure. The stability of the structure allows it to per-

form a function and is therefore under selection because it is necessary for the particular

biochemical function [68]. We are aware that there is a limitation to the protein structure sta-

bility role in fitness. To improve this fitness landscape, f can be defined by ΔG˚ coupled with

a functional measure. In proteins, function is the main selective trait; therefore, including a

term accounting for this would create a more realistic fitness surface. In enzymes this can be

achieved by using the Kcat/KM for each of the enzymes for a common substrate. The fitness

function (F) can be expressed as:

Fði; sÞ ¼ DG�i
Ki;s
cat

Ki;s
M

ð11Þ

where DG�i is the free energy of unfolding of the structure i, Ki;s
cat is the turnover number for

structure i in substrate s, and Ki;s
M is the Michaelis constant of protein i working on substrate s.

In the case of the α-amylase family (GH13), one might try to apply the framework devel-

oped in previous sections and try to estimate the response to selection of a subset of them.

However, Eq 11 cannot be applied since the information of the relative efficiency given a com-

mon substrate is not consistently available across all proteins in the dataset. For this reason we

are going to work exclusively with DG�unfold, keeping in mind two caveats, 1) that DG�unfold only

represents structural stability and 2) that it has been shown that ΔGequilibrium or DG�unfold are not

optimized for during evolution [69].

Estimating dynamic and genetic variance-covariance matrices in the α-amylase data-

set. The structure depicted with the higher fitness was model 1 of the Taka-amylase A struc-

ture (PDB code 2TAA; EC 3.2.1.1; α-1,4-glucan 4-glucanohydrolase; henceforth referred to

with its PDB code) (S1 Fig), from Aspergillus oryzae assuming ^DG� as fitness. The model 1 of

structure 2TAA can be assumed to be the result of the goal of selection. The realized response

to selection D�z$ can be defined as μ� − μ0, where μ� is the target or after-selection mean struc-

ture and μ0 is the starting or before-selection structure. To estimate D�z$ it is essential to have
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the fitness defined based on the questions to be asked, given that the interpretation of the real-

ized response to selection depends on it.

In an engineering perspective, let’s assume that μ� is the mean of a population of structures

with the desired stability. On the other hand, μ0 is the mean of a population of structures cre-

ated by a desired vector. One might ask the question of how does μ0 have to change towards

the stability of μ�. This can be achieved by computing βλ (Eq 10), and replacing D�z with D�z$.

In the particular case of the GH13 dataset, let’s assume that the model 1 of the structure 2TAA

is the desired phenotype (with the higher fitness in S1 Fig), and the model 643 of the α-amylase

protein (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1; henceforth referred to

by its PDB code) from Geobacillus thermoleovorans CCB_US3_UF5 (with the lower fitness in

S1 Fig) corresponds to the source phenotype. We have selected the protein with the lowest sta-

bility (as DG�unfold; S1 Fig), a functional yet truncated form of an α-amylase lacking both the N-

and C-terminal domains [70], as the source phenotype and pose the hypothetical scenario in

which we wish to improve its stability towards the more stable structure of the Taka-amylase A

(PDB code 2TAA; EC 3.2.1.1; α-1,4-glucan 4-glucanohydrolase). The latter structure was

shown to be the most stable (as per DG�unfold; S1 Fig) of the set. In our framework, however,

there is no requirement to use the extremes of the fitness distribution, as any gradient from the

source to the target will suffice to asses the response to selection in that particular hypothesis.

In the posed scenario, βλ would have a length corresponding to the dimensions of the

shape. In the GH13 case 297 homologous residues were identified, which means that these

shapes have a dimensionality of 891 traits. This dimension-per-dimension output is important

since it reflects the amount of pressure in each dimension per each residue. However, it makes

the visualization more difficult. For the sake of visualization simplicity, Fig 1 shows the abso-

lute value of the sum of βλ per residue, standardized from 0 to 1.

Fig 1A shows the selection gradient using the estimated G. Not surprisingly, the selection

gradient for the TIM-barrel is low. This means that there is not much directional selection in

this sub-structure. However, it is somewhat surprising that there is not any purifying selection

Fig 1.
P

i¼x;y;z jbli
j rendered in the source structure 4E2O. White represents the lowest magnitude (0), while red the

highest (1). Blue depicts the non-homologous residues. A. Selection gradient on G. B. Dynamic gradient onM.

https://doi.org/10.1371/journal.pone.0196135.g001

Response to selection in protein structures

PLOS ONE | https://doi.org/10.1371/journal.pone.0196135 April 26, 2018 10 / 17

https://doi.org/10.1371/journal.pone.0196135.g001
https://doi.org/10.1371/journal.pone.0196135


either. This can be explained by the fixation of the trait in the evolution. Since the TIM-barrel

is a widespread sub-structure that has been strongly selected during evolution, it might have

reached a point of fixation of its geometry. Therefore, the G-matrix shows little covariation

among these residues since the geometric variability is also low. It is important to stress here

that the phenotype measured is the geometry of the structure more than that of the sequence.

Therefore, despite some variation that may have occurred at the sequence level, it might not

have meaningfully affected the positional information.

However, one must be cautious with the approach employed in Fig 1 since the signs are

overlooked, thereby ignoring the direction of selection and the correlated response to selec-

tion. Nevertheless, this approach allows for a coarse-grained visual exploration of bli
. Individ-

ual instances identified by this method should be analysed afterwards in each dimension.

Table 2 shows the actual values of βλ for the top 5 positive values (directional selection) and

top 5 negative values (purifying selection).

Fig 1B and Table 3 show the mean difference between target and source when effects of cor-

related dynamic differentials are removed. Given that effectively G acts as a rotation matrix in

Eq 10 to remove the selection differentials, one may posit that the same can be achieved with

the dynamic (M) matrix. This concept is more difficult to interpret than the actual response to

Table 2. Selection gradient in the top 5 residues. Top panel shows the residues where at least one of its coordinates is under directional selection and the sum of their

absolute values is the highest. Bottom panel contains the information of residues where at least one of its coordinates is under purifying selection, and the sum of the raw

values are the lowest.

ResIndex Residue βX βY βz D�z X D�z Y D�z Z

Directional

112 TYR -5.225 1.082 11.138 -5.106 2.043 10.248

122 LYS 12.333 -2.321 -0.964 12.452 -1.360 -1.854

124 ASP 14.28 -6.963 -10.036 14.399 -6.002 -10.926

125 TRP 18.001 -0.984 0.336 18.121 -0.022 -0.554

126 PHE 11.53 -0.833 3.253 11.650 0.128 2.363

Purifying

80 HIS -5.580 -2.148 4.023 -5.461 -1.187 3.13

121 THR 2.508 -4.644 -5.731 2.627 -3.683 -6.621

223 TYR -0.010 -7.631 -7.634 0.110 -6.670 -8.524

358 SER -8.647 -3.461 1.963 -8.527 -2.500 1.073

394 GLU -4.561 -0.449 -4.002 -4.442 0.512 -4.892

https://doi.org/10.1371/journal.pone.0196135.t002

Table 3. Dynamics gradient in the top 5 residues. Top panel shows the residues where at least one of its coordinates is under positive gradient. Bottom panel contains the

information of residues where at least one of its coordinates is under a negative gradient.

ResIndex Residue βX βY βz D�z X D�z Y D�z Z

Directional

117 LEU 13.028 37.149 11.848 2.130 3.521 4.437

125 TRP 29.019 33.605 6.857 18.121 -0.022 -0.554

126 PHE 22.548 33.755 9.774 11.650 0.128 2.363

262 LYS 12.972 38.081 11.412 2.073 4.454 4.001

367 LEU 13.590 34.561 15.609 2.692 0.933 8.197

Purifying

124 ASP 25.297 27.625 -3.515 14.399 -6.002 -10.926

223 TYR 11.008 26.958 -1.113 0.110 -6.670 -8.524

https://doi.org/10.1371/journal.pone.0196135.t003
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selection. Once G is replaced by M in Eq 10, we might call it dynamic gradient to differentiate

it from the selection gradient already explained. In this case, if the gradient is zero for a

given trait, this can be interpreted that the dynamic component of the phenotype does not

contribute significantly to the difference in shape for that particular trait. In the case of non-

zero gradients, these can be interpreted as contributions of the dynamics to the differential,

either towards the target (positive gradient) or away from the target (negative gradient).

In the GH13 subset, most dynamic gradients were positive having only two residues that

had one coordinate under a negative gradient (Table 3). This can also be inferred by Fig 1B.

The values of the dynamic gradient are high but sensible given the definition of fitness. Since

we defined fitness as the energy of unfolding (ΔG˚), most of the information used to select

the target and source structures comes from stability, and therefore thermodynamic infor-

mation. The results depicted in Table 3 and Fig 1B suggest that most of the variation that

explains the difference in phenotype between the structure 4E2O and 2TAA is contained

within the molecular dynamic component rather than the approximation to the phylogenetic

component.

Orientation of G. The GH13 θ was 1.4 degrees, which means that the direction of optimal

response is 1.4 degrees away from the total genetic variation of 99% explained by the projec-

tion. According to this, the Geobacillus thermoleovorans structure is susceptible to the selection

in the actual direction of the fitness landscape towards the structure of Aspergillus oryzae to

achieve maximum stability. The extent of such change is given by D�z , which means that the

centroid position of the residue i should be displaced by~v ¼ ðD�zix;D�ziy;D�zizÞ.
In the case of the dynamics, the same approach can be taken. Here, θM was 1.5 degrees

which means that the optimal dynamic response is 1.5 degrees away from the optimal

response. This can be interpreted in a similar way as that of the regular θ. However, manipulat-

ing the structure along the dynamics gradient is not feasible.

The GH13 dataset yD�z � b was 0.3. This means that the genetic constraints on 4E2O are

not affecting the direction of selection. This posits the possibility that a strong directional

selection will drive the source structure towards the target. The same pattern happens when

this approach is applied to M. y
M
D�z � b

is 1.46 degrees, which is almost identical to θM. Thus,

there are almost no within-variation or dynamic constraints to the vector of response given

the dynamic gradient.

Concluding remarks

We have introduced the application of the approximation of comparative quantitative genetics

framework, by means of a pooled-within group covariance matrix in a subset of the GH13 pro-

teins, and demonstrated this application is feasible and provides sensible results, given the defi-

nition of fitness. This definition is essential in the interpretation of the results since it is the

interpretation that gives polarity to R$. Therefore, all conclusions about the response to selec-

tion and the selection gradient itself must be analyzed under this light.

The usage of M in the determination of the dynamic gradient could be controversial. This is

due to the fact that, in the partition of the phenotypic variance, M is expected to be the envi-

ronmental variance plus an error term. However, since the source data for the estimation of G
and M come from repeated measures by MD, M contains information about the thermody-

namics and folding stability of the protein. It is therefore also contributing to selection.

It is important to stress the fact that this is an approximation to the true G and true M, since

we have shown in previous sections that these cannot be estimated given the dimensionality of

the phenotype. However, we have shown that the pooled-within group approach gives consis-

tent results.
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We have also shown that, in a stability perspective, the TIM-barrel shows a small phyloge-

netic/genetic component to the selection gradient when a less stable structure (4E2O) is ana-

lyzed with respect to a more stable structure (2TAA). In an engineering perspective, this

means that most of the changes in shape come from the dynamics. Nevertheless, the small

yD�z � b shows that most of the changes applied to 4E2O would directly result in increasing the

stability towards the structure 2TAA. 4E2O is a truncated protein, and therefore some loss of

stability is expected. It seems that residues 112Y, 122K, 124D, 125W, and 126P, are good can-

didates to increase the stability of the molecule given their Dẑs. In these cases, the goal will be

to shift the position of their centroids by the resulting vector of the three dimensions.

Ultimately, we have shown a framework to analyse protein structures’ response to selection.

This framework have incredible potential in industry (protein engineering), structural biology,

and evolutionary biology, since allow us to narrow the search space within a given fitness land-

scape and potentially predict the extent of the propensity of a protein structure to be selected

towards a desired target.
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