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With the pandemic of COVID-19, maintenance of oral health has increasingly become the
main challenge of global health. Various common oral diseases, such as periodontitis and
oral cancer, are closely associated with immune disorders in the oral mucosa. Regulatory
T cells (Treg) are essential for maintaining self-tolerance and immunosuppression. During
the process of periodontitis and apical periodontitis, two typical chronic immune-
inflammatory diseases, Treg contributes to maintain host immune homeostasis and
minimize tissue damage. In contrast, in the development of oral precancerous lesions
and oral cancer, Treg is expected to be depleted or down-regulated to enhance the anti-
tumor immune response. Therefore, a deeper understanding of the distribution, function,
and regulatory mechanisms of Treg cells may provide a prospect for the immunotherapy
of oral diseases. In this review, we summarize the distribution and multiple roles of Treg in
different oral diseases and discuss the possible mechanisms involved in Treg cell
regulation, hope to provide a reference for future Treg-targeted immunotherapy in the
treatment of oral diseases.
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INTRODUCTION

Regulatory T cell (Treg) was first reported to be involved in maintaining self-tolerance as early as the
1970s, but there was still a lack of specific molecular markers (1). Until 1995, Sakaguchi et al. found
that the IL-2 receptor a-chain (CD25) was constitutively expressed on Treg cells, the concept of
regulatory T cells was formally put forward (2). Treg, as a subset of CD4+ T lymphocytes, is crucial
for maintaining self-tolerance and immune homeostasis. It characteristically expresses the
transcription factor forkhead box P3 (FOXP3), identified as the main regulator for Treg
development and function (3).

During the emergency of COVID-19, maintenance of oral health has increasingly become the
main challenge of global health due to the possibilities of increasing viral transmission (4). Oral
diseases are ones of the common public health problems. Among them, periodontitis is the most
important cause of adult permanent teeth loss; lip and oral cancer, as the 15th most common cancer
worldwide, is closely related to the quality of human life (5). As the epitome of the whole body
system, the oral cavity is affected by a variety of diseases and disorders, including apical periodontitis
org June 2021 | Volume 12 | Article 6678621
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and periodontitis as acute and chronic infectious diseases,
autoimmune diseases such as Pemphigus Vulgaris (PV), oral
cancer, and oral potentially malignant disorders (6). Increasing
evidence shows that the regulation of Treg cell number and
function in different diseases have opposite expectations. In
autoimmune diseases, Treg cells are expected to be more stable
and polyclonal and play a practical immunosuppressive role (7).
On the other hand, Treg cells suppress the anti-tumor immune
response, accelerate tumor proliferation and metastasis in some
tumors. Therefore, Treg targeted immunotherapy is often at the
forefront of anti-tumor therapy (8). However, it is worth noting
that the research on the role and regulatory mechanisms of Treg
cells in oral diseases is incomplete. In this review, we discuss the
immunosuppressive mechanisms of FOXP3+ Treg cells and
summarize their distribution and function in different types of
oral diseases, especially the possible mechanisms involved in the
regulation of Treg distribution, proliferation, and function, to
provide some new prospects that may eventually apply to
clinical treatment.
TREG BIOLOGY

Treg cells are involved in maintaining immune tolerance,
accounting for 5% - 10% of CD4+ T cells in the peripheral
circulation (2, 9, 10). According to their different origins, the
Treg population is further divided into three subgroups: thymus-
derived Treg cells (tTregs), peripheral Treg cells (pTregs) and
induced Treg cells (iTregs). tTregs are mainly derived from T-
cell precursors stimulated by TCR signal and costimulatory
molecules in the thymus; while pTregs are induced from naïve
CD4+ T cells that are exposed to cytokine TGF-b and IL-2 in the
periphery. Besides, iTregs are induced in the TGF-b
environment in vitro with unstable Treg phenotypes (11). The
transcription factor forkhead box P3 (FOXP3) has been
considered as a specific Treg molecular marker, essential
for its differentiation, phenotype maintenance, and
immunosuppressive function (12). FOXP3 gene mutation leads
to the impairment of Treg cells development and inhibition
function, resulting in human IPEX (immune dysregulation,
polyendocrinopathy, enteropathy, X-linked syndrome) disease
and scurfy in rodents, respectively (13, 14). IPEX is also named
X-linked autoimmunity allergic dysregulation syndrome
(XLAAD). Patients with the disease will present many
immunopathological symptoms within infancy, including
enteropathy, diabetes, dermatitis, thyroid disease, and anemia
(15). The scurfy mice are characterized by scaly and ruffled skin,
spleen and lymph node enlargement, and premature death about
a few weeks after birth (16, 17).

The intrinsic commitment and stable maintenance of the
Treg lineage depend on the sustained high expression of FOXP3.
It endows Treg with a variety of essential characteristics,
including high expression of CD25 and cell surface molecules
like cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4),
suppression of proinflammatory cytokines as IL-4 and IL-17
conversely (18). At the same time, FOXP3 can interact with ∼700
Frontiers in Immunology | www.frontiersin.org 2
target genes and multiple microRNAs to regulate the
development and function of Treg collectively (19, 20).

In addition, the stability of the Treg lineage is also regulated
by epigenetics. The FOXP3 locus contains several conserved
noncoding enhancer sequences (CNS) that are targeted by
epigenetic modifications and several transcription factors (21).
Mothers against decapentaplegic homologue 3 (SMAD3) and
nuclear factor of activated T (NFAT) bind to CNS1 after the
activation of TGF-b signal and promote FOXP3 expression,
which plays a key role in the induction of pTreg cells (22).
During tTreg cell development, CpG elements within CNS2
manifest demethylation progressively. Besides, both runt-
related transcription factor 1 (RUNX1) and core-binding factor
subunit (CBF-b), forming a trimeric complex at the CNS2,
enable the stable expression of FOXP3 (23). CNS3 also
facilitates FOXP3 transcription via the combination of c-Rel
(in the NF-kB pathway) after TCR signal activation (24). In
general, Treg stability is closely related to the complex and
interrelated genetic landscape shaped by FOXP3 and the
higher-level epigenetic regulation involved in the induction
and maintenance of FOXP3 expression.

However, the stability of Treg cells is not always immutable. It
has strong adaptability in an inflammatory environment. Under
the local inflammatory stimuli, dendritic-cell-derived IL-6 can
induce Treg cells to transform into Th17 cells (25, 26). Th17
cells, as the representative of CD4+ T cell pro-inflammatory
subsets, mainly secrete pro-inflammatory cytokine interleukin
IL-17 (27). Retinoid-related orphan receptor gt (ROR gt) is a
unique lineage-specific transcription factor of Th17 (28). Both
Th17 and Treg cells share a common key regulatory factor TGF-
b, which participates in the activation of RORgt and FOXP3 (29).
In the stimulation of proinflammatory cytokines such as IL-6 or
IL-21, a low concentration of TGF-b induces the development of
Th17 cells, correspondingly, a high concentration of TGF-b can
promote the differentiation of naive CD4+ T cells into Tregs and
maintain immune tolerance (30). IL-6 and IL-21 also upregulate
the expression of RORgt via inhibiting FOXP3 activity in a signal
transducer and activator of transcription 3 (STAT3) dependent
manner (31). In addition, pro-inflammatory cytokines tumor
necrosis factor-a (TNF-a) could down-regulate the expression
of FOXP3 by binding with tumor necrosis factor receptor RII
(TNFRII) and interfere with the inhibitory function of Treg cells
(32). At the same time, it promotes the recruitment of protein
kinase C-q (PKC-q) and inhibited Treg function by activation
downstream Akt signal (33). Therefore, the inflammatory
microenvironment may induce the instability of Treg cells, and
further exacerbate inflammatory responses and tissue damage in
inflammatory diseases, such as apical periodontitis.

On the contrary, tumor-infiltrating Treg cells showed quite
active inhibitory phenotypes, with high expression of immune
checkpoint molecules, including CTLA-4, programmed cell
death 1 (PD-1), T cell immunoglobulin and mucin domain-
containing protein 3 (TIM-3), lymphocyte activation gene-3
(LAG-3) and T-cell immunoreceptor with Ig and ITIM
domains (TIGIT) (34). Tumor cells can suppress the secretion
of IL-6 in dendritic cells by the overexpression of indoleamine
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2,3-dioxygenase (IDO), inhibit the reprogramming of Treg cells
to Th17 cells, and further enhance the stability of Treg cells in the
tumor microenvironment by silencing the expression of the Akt/
mTOR pathway (35). Therefore, the enhanced stability of Treg
cells in the tumor microenvironment may contribute to the
inhibition of anti-tumor immunity and immune escape.
MECHANISMS OF TREG-
MEDIATED SUPPRESSION

Treg cells exert immunosuppressive function through cell-
contact-independent or cell-contact-dependent mechanisms.
Cell-contact-independent mechanisms mainly include secretion
of inhibitory cytokines and metabolic disruption. Cell-contact-
dependent mechanisms mainly include modulation of antigen-
presenting cell (APC) function and mediating cytolysis or
apoptosis of target cells.

Induction of Inhibitory Cytokines
Treg cells secrete cytokines with vital immunosuppressive
function, including IL-10, TGF-b, and IL-35 (36). IL-10
downregu l a t e s th e exp re s s i on o f c l a s s I I ma j o r
histocompatibility complex (MHC II) and costimulatory
molecules, and directly inhibits the synthesis and secretion of
inflammatory factors, thus inhibiting the capacity of antigen-
presenting cells (APCs) and playing an anti-inflammatory role
(37). Interestingly, IL-10-producing T regulatory type 1 (Tr1)
cells are also endowed with similar inhibitory functions without
FOXP3 expression (38). TGF-b also affects the differentiation,
development, and function of various immune cells. TGF-b
inhibits APCs’ function and limits cytotoxic T lymphocyte
(CTL) proliferation (39). At the same time, immature CD4+ T
cells could be induced to Tregs by antigen stimulation in an
enriched TGF-b environment in vitro (40). Stimulated Treg cells
also exert an immunosuppressive effect in the form of cell-cell
interaction with persistently expressing TGF-b at a high level on
the cell surface (41). As a novel member of the IL-12 family, IL-
35 is another inhibitory cytokine explicitly secreted by Treg cells,
involved in the maintenance of its maximum inhibitory function.
Ectopic expression of IL-35 confers regulatory activity on naive T
cells in a titrable fashion, whereas recombinant IL-35 alone is
sufficient to suppress T-cell proliferation (42).

Regulation of Antigen-Presenting Cell
(APC) Function
CTLA-4, constitutively expressed in Treg cells, is an inhibitory
receptor associated with the T cell costimulatory molecule CD28
(43). CTLA-4 and CD28 compete for costimulatory receptors
(CD80, CD86) on antigen-presenting cells, resulting in the
downregulation of these two costimulatory molecules, thus
inhibiting the T cell response (44, 45). Furthermore, CTLA-4
promotes the upregulation of the enzyme IDO by dendritic cells
(DCs), which catalyzes the decomposition of tryptophan, an
essential amino acid. The potential downstream effects lead to
cell cycle arrest and more sensitivity to apoptosis of effector T
Frontiers in Immunology | www.frontiersin.org 3
cells, along with impairment of APCs function (46). Besides,
lymphocyte activation gene 3 (LAG-3/CD223) is highly
expressed on the surface of Treg cells, which combines with
MHC class II molecules in higher affinity than CD4. It inhibits
DC function and immunostimulatory capacity through the
inhibitory signal pathway mediated by immunoreceptor
tyrosine-based inhibition motif (ITAM) (47). Blocking LAG-3
attenuates the inhibitory effect of Treg cells, while the ectopic
expression of LAG-3 endows CD4+ T cells the inhibitory
activity (48).

Mediating Cytolysis or Apoptosis of
Target Cells
Treg cells also cause immunosuppression by inducing target cell
death via cell contact. Treg cells kill target effector cells, which are
mediated by releasing granzymes A and B in the perforin
dependent or independent manner (49–51). Additionally,
Tumor-necrosis-factor-related apoptosis-inducing ligand-death
receptor 5 (TRAIL-DR5) pathway has been proved to be an
important component of Treg-induced cytotoxicity (52).

Disruption of Metabolic Pathways
Another potential mechanism of Treg-mediated suppression is
the metabolic blockade. Treg cells highly express the high-affinity
IL-2 receptor (CD25), resulting in competitive consumption of
IL-2 with effector T cells. Therefore, the effector T cells are prone
to Bim-mediated apoptosis for the deprivation of the crucial
metabolic and survival cytokines (10, 53). Treg cells express the
ectoenzymes CD39 and CD73, which hydrolyze adenosine
triphosphate (ATP) or adenosine diphosphate (ADP) to cAMP
and adenosine, driving the accumulation of adenosine
nucleosides and disrupting effector cell metabolism (54). Treg
cells also promote the transfer of inhibitory second messenger
cAMP to an effector T cell via cell contact-dependent gap
junction and unexpectedly inhibit the immune function of
effector T cell (55).
DISTRIBUTION AND FUNCTIONS OF
TREG CELLS IN ORAL DISEASES

Treg Cells in Apical Periodontitis
Apical periodontitis is a local inflammatory immune response
caused by bacterial infection in root canals, which often leads to
periapical tissue damage and alveolar bone destruction (56).
Thus, the balance between the host pro-inflammatory and
anti-inflammatory responses supposedly determines the
progression and outcome of apical periodontitis, which is
regulated by different types of CD4+ T helper cells, including
at least Th1, Th2, Th17, and Treg cells (57). As a potential
protective subset of CD4+ T cells, accumulating studies have
revealed that the beneficial role of Treg cells in restricting the
overactivity of the periapical inflammatory response (58, 59).

The number of Treg cells was found remained at relatively
low levels from days 7 to 21 (acute phase, the lesions markedly
expanded in 3-dimensional directions) after induced periapical
June 2021 | Volume 12 | Article 667862
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lesions of the lower first molars in rats, and then increased
significantly by day 35 (chronic phase, the lesions expanded
slowly). Interestingly, the ratio of IL17+/Foxp3+ and the number
of osteoclasts correlated negatively with Treg cells (60). In
addition to artificially induced acute periapical lesions in
animal models, some human studies on chronic periapical
lesions assessed the expression of FOXP3, which was
associated with the histological type of lesion, the intensity of
the inflammatory infiltrate, and the thickness of the cystic
epithelial lining. Chronic periapical lesions include periapical
granulomas (PGs), radicular cysts (RCs), and residual radicular
cysts (RRCs). Periapical granulomas are the most common type
of chronic apical periodontitis. It is granulomatous tissue
composed of lymphocytes, fibroblasts, and other inflammatory
cells to replace the normal bone structure. With the persistence
of chronic inflammation, the epithelial cells of Malassez are
stimulated by cytokines and growth factors, proliferate into
epithelial masses, then liquefy and necrose in the center, and
gradually form into RCs (61). The RRCs are defined as radicular
cysts which remain in the jaw without proper treatment after the
affected tooth was extracted (62). FOXP3 expression in RRCs,
RCs, and PGs increased sequentially. The number of FOXP3+

cells was significantly higher in the inflammatory infiltrate grade
III, followed by that in grades II and I (63).

In another study, the percentage of Foxp3+ Treg cells
continued to increase after pulp exposure and was negatively
correlated with (sphingosine-1-phosphate receptor 1) S1P1-
positive cells by day 14 after the induction of periapical lesions
in rats. Upregulated S1P1 triggers a series of intracellular
responses to promote the receptor activator of nuclear factor
kappa B ligand (RANKL) expression, which is related to
osteoclast formation during the pathogenesis of periapical bone
destruction (64). Besides, S1P1 promotes inflammatory cell
infiltration and inhibits the function of Treg through the Akt-
mTOR pathway in the acute stage. Therefore, the complex and
precise regulatory network between S1P1 signal and Treg cells
better explains the process of periapical lesions.

By contrast, inhibition of Treg function with anti-GITR (a
phenotypic marker of Treg cells) in mice impelled the
exacerbation of severity of periapical lesions at 14 and 21 days,
increased expression of pro-inflammatory cytokines and
destructive tissue mediators, thus preventing the formation of
the inactive/stable status. Similar results were observed in
CCR4KO mice. Conversely, the expansion of Treg cells
attenuates lesion progression via the injection of cytokine C-C
motif ligand 22 (CCL22)-releasing particles in the root canal
system in a CCR4-dependent manner (58). These findings
suggest that Treg chemoattractant application may be a
promising option in the treatment of apical periodontitis.

A recent trial is also yielding promising results that Treg cells
were enriched around regenerating tissues in the root canals of
dogs after regenerative endodontic treatment (RET). In vitro,
stem cells from the apical papilla (SCAP) promoted the
conversion of pro-inflammatory T cells to Treg cells. It may
suggest that the anti-inflammatory and anti-apoptotic abilities of
upregulated Treg cells promote successful tissue repair and
Frontiers in Immunology | www.frontiersin.org 4
regeneration via releasing more cytokines and pro-healing
growth factors, which may create an appropriate immune
microenvironment for tissue regeneration (59).

These findings highlight that the infiltration of Treg cells is
crucial for preventing the progression of apical periodontitis and
promoting tissue regeneration. Treg cell dynamics plastically
regulate pathogenic Th1, Th2, or Th17 cell phenotypes to
maintain normal homeostasis and restrict inflammatory
reaction’s overactivity (65). Therefore, promoting endogenous
Treg recruitment-based therapy may provide a promising
strategy for the treatment of periapical lesions and osteolytic
diseases. At the same time, Treg enrichment creates an
appropriate immune microenvironment for tissue regeneration,
which lays a biological foundation for regenerative endodontic
treatment. In the future, the researches on the effectiveness and
biosafety of chemokine controlled release system and the exact
role of Treg in the regeneration process will be conducive to the
theoretical basis into clinical reality.

Treg Cells in Periodontitis
Most tissue damage in periodontitis is caused by the host immune
response to infection, although the accumulation of plaque
microorganisms is the initiating factor (66). Therefore,
controlling the host immune-inflammatory response remains a
challenge for periodontitis therapeutically interventions. Different
clinical studies have described Treg accumulation preferentially in
infected tissues, limiting the immune response. For instance, a large
number of Treg cells has been reported in middle and advanced
chronic periodontitis biopsies than gingivitis (67). Moreover, other
studies have shown that chemokines such as CCL17 and CCL22
are more abundant in tissues with higher inflammatory infiltration,
which seems to recruit more Treg cells from inflammatory sites in
a CCR4 dependent manner (68). However, some FOXP3+ cells
may function differently from conventional Treg cells. A small
population of IL-17A+FOXP3+ cells were found in periodontitis,
but not in gingivitis, suggesting the functional plasticity of Treg
cells transforming into inflammatory Th17 cells in the
periodontitis environment (69).

On the other hand, the defect of Treg cells function is
identified in many animal models to promote the progression
of periodontitis. In the A. actinomycetemcomitans induced mice
model of periodontitis, inhibiting the function of Treg cells by
anti-GITR resulted in alveolar bone resorption and increased
inflammatory cell infiltration, accompanied by the decrease of
IL-10, TGF-b, and CTLA-4 (70). A similar phenomenon was
observed in the IDO knockout mouse model along with
lipopolysaccharide (LPS)-induced inflammation, as IDO affects
the metabolism of Treg cells (71). In an experimental
periodontitis model, the phenotype and function of Treg cells
were also affected. The down-regulated Foxp3 expression and the
damage of the inhibitory effect of Treg cells on osteoclast
differentiation further promoted Th17-driven bone loss. The
hypermethylation of CpG sites in the Foxp3 locus caused by
periodontitis may be responsible for its function impairment
(72). In a recent study, the possible reason for the aggravation of
periodontal disease during pregnancy has been attributed to Treg
June 2021 | Volume 12 | Article 667862
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cells’ shortage. The expression of Foxp3, TGF-b, CTLA-4, and
CD28 in the gingiva of pregnant mice was reduced after
periodontal disease induction. Simultaneously, the frequency
and inhibitory ability of Treg cells in cervical lymph nodes
were also down-regulated in vitro test, with the increase of
inflammatory Th17 cells (73).

Currently, gratifying achievements have been reported in
biochemical recruitment and positive regulation of Treg cells.
Local or systemic administration of IL-35 also retards alveolar
bone resorption in periodontitis mice via regulating the balance of
Th17/Treg, down-regulating RANKL, and inducing
osteoprotegerin (OPG) production (74). Similarly, an injectable
and biomolecule-delivery of poly(L-lactic acid) (PLLA) nanofibrous
spongy microspheres (NF-SMS) promote Treg enrichment,
amplification, and Treg-mediated immunotherapy against bone
loss in a mouse model of periodontitis via significantly releasing
miRNA and IL-2/TGF-b (75). Exosomes from periodontal
ligament stem cells, as communication mediators, are also
involved in the regulation of Treg cell distribution and play an
essential role in immunomodulation. Compared with normal
conditions, the exosomes of periodontal ligament stem cells
isolated from Porphyromonas gingivalis lipopolysaccharide (LPS)
induced periodontitis environment transfer less miR-155-5p and
increased Sirtuin-1 (SIRT1) protein into CD4+ T cells, and then led
to the up-regulation of Th17 and the relaxation of Tregs, thus
exacerbating the inflammatory microenvironment of periodontitis
(76). In addition, the ratio of Th17/Treg also inclines by
oral administration of all-trans retinoic acid (ATRA) in
experimental periodontitis and thus providing protection against
periodontitis (77).

Therefore, these findings indicate that Th17/Treg ratio
imbalance is considered a critical role in the procession of
periodontitis. Treg cells suppress immunopathology to avoid
extensive periodontal tissue damage. It has been proved to
suppress osteoclast differentiation through cell-cell contact way by
Treg cells (78). Inhibitory cytokines released by Treg cells, such as
IL-10 and IL-4, are also largely involved in the inhibition of RANKL
expression (79). On the contrary, Th17 induces the maturation of
osteoclasts by promoting the expression of RANKL, accelerating
the resorption and destruction of alveolar bone (80). Therefore,
Treg cells and Th17 cells are considered the key cells to connect the
immune system and bone. Existing studies have shown that
periodontitis is closely related to diabetes (81), rheumatoid
arthritis, cardiovascular diseases (82), and other systemic diseases
(83). However, at present, most of the clinical treatment methods
for periodontitis are still the basic treatment for its initiating factors.
Therefore, exploring new immunotherapy for periodontitis in
humans may provide potential help for the macro-control of
systemic diseases. In the future, more researches are needed to
understand the diversity and plasticity of Treg subsets for a more
advanced and safer drug delivery system.

Treg Cells in Head and Neck Squamous
Cell Carcinoma
Immune escape is a characteristic of head and neck squamous
cell carcinoma (HNSCC) (84). Treg cells might contribute to the
Frontiers in Immunology | www.frontiersin.org 5
occurrence and progression of HNSCC by suppressing
antitumor immunity (85). Multiple pieces of evidence have
described that the number and inhibitory activity of Treg cells
is enhanced in tumors and peripheral circulation of patients with
HNSCC, compared with healthy donors, along with the
upregulated CD39, CD62L, CTLA-4, and FOXP3 (86–89). In
addition, Treg level was proved to have a significant linear and
positive correlation with tumor grades (90). Another study
showed that the percentage of Treg in peripheral blood
lymphocytes was also increasing correspondingly with the
tumor malignant degree and lymph node metastasis. The
higher the malignancy, the more activated Treg subsets (91).
In the process of oral precancerous lesions to oral squamous cell
carcinoma, Treg accumulation has also been widely proved, with
the increase of the degree of epithelial dysplasia (92). Treg cells
undoubtedly play a hostile role in the development of HNSCC.
In precancerous lesions, the inflammatory response is at the
peak, which is mainly maintained by Th17 cells with high levels
of inflammatory cytokines, such as IL-2, IL-6, and IL-17.
However, as the disease progresses, the increased level of TGF-
b released by cancer cells promotes Treg differentiation,
downregulates Th17 cells, further accelerating tumor
progression (93).

However, there are some conflicting results about the
prognostic value of Treg cells in HNSCC. Several data
sustained that the high frequency of Treg cells in primary
lesions and lymphogenic metastases were associated with a
poor prognosis (94, 95). In contrast, other studies described
that high Treg infiltration was associated with better overall
survival (OS) of HNSCC (96, 97). These apparent contradictions
were further explained in a recent study. Echarti et al. studied the
effect of Treg cells on overall survival (OS) under different
immune phenotypes and found that higher Treg cells level
tended to worsen OS in “immune desert (stromal cytotoxic T
cells (CTL) were ≤50 cells/mm2)” and “immune excluded”
tumors, but in “inflamed (intraepithelial CTL were >500 cells/
mm2)” tumors, high Treg cells significantly improved OS. This
indicates that the prognostic value of Treg depends mostly on the
inflammatory state of the tumor (98).

Another cross-sectional study showed that the amount of
Treg cells increased and persisted in HNSCC patients after
adjuvant chemoradiotherapy (CRT) compared with untreated
or surgery-only patients and were resistant to activation-induced
cell death (AICD) or cisplatin in vitro. These Treg cells have a
stronger inhibitory function after CRT, which may be related to
the upregulated latency-associated peptide (LAP), the
glycoprotein A repetitions predominant (GARP), and CD39.
This may be a potential driving factor for Immunotherapy
resistance and relapse of HNSCC (99).

These studies suggest that Treg cells can block the
effectiveness of antitumor immunity and contribute to tumor
immune escape. Therefore, the reasonable strategy of depleting
Treg cells or weakening their inhibitory functions should be
pursued for immunotherapy (100). At present, blocking Treg-
related immune checkpoint receptors (ICR) through immune
checkpoint inhibitors (ICIS) has become one of the most
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promising strategies for anti-cancer therapy, such as new
monoclonal antibodies against CTLA-4, programmed cell
death-ligand 1(PD-L1), and PD-1 (101). Although ICIS has
been approved for clinical application, the compensatory
mechanisms in the tumor microenvironment, such as the up-
regulation of other immunosuppressive molecules, remain as
potential challenges in cancer treatment (102). Therefore,
the study of combined therapy strategy for ICIS targeted
Treg cells may bring hope to optimize the anti-tumor
immunotherapy (34).

Treg Cells in Oral Mucosal Diseases
Oral mucosa is a vital barrier tissue to protect the oral cavity
from the invasion of pathogens and foreign antigens. It was
found that FOXP3+ Treg cells were highly abundant in oral
mucosa than in secondary lymphoid tissues and other mucosal
barrier sites, and they expressed a large number of CTLA-4 and
tissue retention molecule CD103. This indicates that a uniquely
large number of highly active Treg cells are needed to maintain
oral mucosal immune quiescence. Interestingly, Treg cells in oral
mucosa were mainly dependent on the recruitment and
migration of exogenous Treg cells, rather than in-situ
induction (103). Abnormal numbers of Treg cells caused many
types of oral mucosal diseases. For example, patients with
autoimmune disease Pemphigus Vulgaris (PV) showed a
decreased frequency of Treg cells, but an increased number of
Th17 cells, with the reduced expression of CCL22 (104). In
patients with chronic inflammatory disease aphthous ulcer, the
frequency of Treg cells in peripheral blood and their inhibitory
function were both down-regulated, which may be related to the
decreased expression of IDO (105). In contrast, the number of
Treg cells increased in precancerous lesions of oral mucosal
tissues. Through the comparative study of oral epithelial
precursor lesions (OEPL) and oral squamous cell carcinoma
(OSCC), the expression of CD25 and FOXP3 was found to be
positively correlated with the malignant degree of oral epithelial
lesions (92). In the precancerous condition of oral lichen planus
(OLP) and precancerous lesion actinic cheilitis (AC), FOXP3+

cell infiltration increased, and CD8+/FOXP3+ cell ratio
decreased, suggesting the promoting role of Treg in cancer
progression (106, 107). In addition, during the progress from
premalignant lesions to cancer, Th1 and Th17 phenotypes
gradually inclined to Treg phenotype in spleen and lymph
nodes (108). Therefore, Treg cells play an irreplaceable part in
maintaining the immune homeostasis of the oral mucosal
barrier. However, anti-Treg immunotherapy may contribute to
slow down the progression of precancerous lesions. In addition,
inducing the conversion of Treg to Th17-like phenotype may
provide a potential prospect for intervention the progress of
precancerous lesions.

In summary, Treg cells function like a double-edged sword,
which plays a protective role in inhibiting the course of
inflammatory diseases such as apical periodontitis and
periodontitis (Figure 1), and autoimmune diseases, but
accelerate the deterioration of precancerous lesions in oral
mucosa and HNSCC (Figure 2).
Frontiers in Immunology | www.frontiersin.org 6
REGULATORY MECHANISMS OF TREG
CELLS RECRUITMENT, PROLIFERATION,
AND FUNCTION IN ORAL DISEASES

The recruitment, proliferation, and function of Treg cells are
regulated by various complex regulatory networks, including
cytokines, intracellular signaling pathways, epigenetic
modification, and post-translational modification. These
regulatory pathways affect the stability and plasticity of
Treg from the cellular level to the expression of crucial
genes (Figure 3).

CCL22-CCR4 Axis
Many pieces of evidence suggest that the CCL22-CCR4 axis is
related to the regulation of Treg cells, involving different types of
oral diseases. CCL22 was originally recognized as a chemokine
produced by dendritic cells and macrophages under the
stimulation of bacterial components. It induces the migration
of target cells by binding to its specific receptor C-C chemokine
receptor type 4 (CCR4) (109). CCR4 is specifically expressed on
human Treg cells in response to its chemotaxis (110). In the
chronic inflammatory environment, CCL20 expression is
upregulated by the proinflammatory cytokine IL-1b, which is
further enhanced by the TGF-b-SMADs pathway through an
enhancer upstream of the CCL20 promoter (111). NF-kB is a
significant mediator of inflammation. Activated NF-kB can
transactivate CCL22 expression. CCL22 also can activate NF-
kB, forming a positive feedback loop (112). Interestingly, CCR4
expression is also upregulated by NF-kB activation mediated by
TNF-a (113), highlighting the essential roles of NF-kB in the
CCL22-CCR4 axis.

In apical periodontitis, studies have shown that CCL22
combined with CCR4 seems to be able to recruit more Treg
cells into periapical lesions of mice. CCR4 depletion
significantly impaired the migration ability of Tregs and
increased the severity of periapical lesions, associated with the
expansion of pro-inflammatory cells and tissue destruction
factors. On the contrary, local administration of CCL22 in
wild-type (WT) mice attenuated periapical lesions with
increased Treg number, but failed in CCR4KO mice,
suggesting that CCL22 promotes Treg cell migration in a
CCR4 dependent manner (58). Besides, it has been reported
that LPS promotes the secretion of CCL22 in macrophages by
downregulating the expression of miR-34a in the apical
periodontitis model of rats. The high expression of CCL22 is
parallel to the frequency of Foxp3+ Treg cells (114).

In periodontitis, chronic periodontitis patients showed high
levels of CCL22 and CCR4 compared with healthy donors (68). It
was early observed in murine and canine experimental
periodontitis that the release of CCL22 particles could recruit
more Treg cells to inflammatory sites, and significantly reduce
the alveolar bone resorption (115). Furthermore, in experimental
periodontitis, CCR4KO mice and the blockade of CCL22 in WT
mice both showed impairment of Treg migration, accompanied
by the expansive osteoclastogenic cytokine and increased
inflammatory bone loss. Adoptive transfer of CCR4+ Treg cells
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to the CCR4KO mice or exogenous release CCL22 provided by
poly (lactic-co-glycolic acid) (PLGA) microparticles rescued the
increased disease phenotype by promoting migration of Treg
cells (116).

Similar regulatory axes have also been described in oral
cancer. CCL22, as an oncogene, is upregulated in oral cancer
specimens to promote the migration and infiltration of Treg
cells. Silencing CCL22 expression showed opposite effects.
CCL22 expression in oral cancer cells was induced by IL-1b
secreted by cancer-associated fibroblasts, suggesting a new
therapeutic prospect by targeting the IL-1b-CCL22-CCR4
signaling axis for the treatment of oral cancer (117). Moreover,
CCL22 is the target of tumor suppressor miR-34a. In cancers,
Frontiers in Immunology | www.frontiersin.org 7
CCL22 is unregulated by the suppression of miR-34a mediated
by TGF-b (118).

Therefore, these findings suggest that the CCL22-CCR4 axis is
involved in Treg recruitment in a variety of oral diseases, and the
diverse regulation of the CCL22-CCR4 axis according to treatment
goals may provide a potential immunotherapeutic target.

The Roles of Interleukins
A variety of interleukins participate in the stability of Treg
phenotype and inhibitory function through different
mechanisms. Through the stable expression of FOXP3 and
CD25, IL-2 is irreplaceable for the development, stability, and
function of Treg cells (119). Multiple studies have shown that IL-
FIGURE 1 | Immune regulatory functions of Treg cells in apical periodontitis and periodontitis. Treg cells inhibit the differentiation of osteoclast precursors into
osteoclasts by secreting inhibitory cytokines, such as IL-10, IL-4, and TNF-b. Also, inhibiting receptor cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) on Treg
cells directly in contact with osteoclast precursors costimulatory molecules CD80 and CD86, which can induce the production of indoleamine 2,3-dioxygenase (IDO)
and induce the apoptosis of osteoclast precursors. Th17 cells upregulate osteoblasts and self-expressed receptor activator of nuclear factor kappa B ligand (RANKL)
through the release of inflammatory cytokine IL-17. At the same time, IL-17 plays an important role in the mobilization and recruitment of immune cells, stimulating
the release of local inflammatory factors, resulting in the expansion of osteoclasts, and the aggravation of inflammatory response. Pre-OC, osteoclast precursors;
RANK, the receptor activator of nuclear factor kappa B.
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2 receptor signaling can mediate the phosphorylation of signal
transducer and activator of transcription 5 (STAT5) by
activating Janus kinases (JAKs). Furthermore, activated STAT5
binds to the FOXP3 promoter and CNS2, promoting its
expression (120–122). On the contrary, when IL-2 signal
transduction was deficient, FOXP3 expression stability in Treg
cells was lost (123). Interestingly, FOXP3 and other transcription
factors jointly inhibit the expression of IL-2 in Treg cells, making
it highly reliant on IL-2 produced by activated non-Treg cells,
forming feedback control on the expansion of non-Treg
cells (124).

Treg cells secrete inhibitory cytokines IL-10, TGF-b, and IL-
35. Among them, IL-35 can produce regenerative feedback in
Treg cell response by inducing the activation and differentiation
of IL-35 producing Treg cells, termed iTR35 (74). Therefore, the
significant benefits of IL-35 based therapy lie in the direct
inhibition of IL-35 and the synergetic amplification of iTR35
immunosuppression (125).

Furthermore, IL-33, a member of the IL-1 cytokine
family, has attracted attention as an important Treg cell
immunomodulator recently (126). IL-1 receptor-like 1 (ST2)
is considered as the only receptor of IL-33. IL-33 could support
the expansion of ST2+Foxp3+ Treg cells (127), increasing the
Frontiers in Immunology | www.frontiersin.org 8
secretion of inhibitory cytokines IL-10 and TGF-b1 in
ST2+Foxp3+ Treg cells and promoting their suppressive
function in head and neck squamous cell carcinoma
(HNSCC). ST2 antibody made the opposite effect, which
suggested that ST2 may be a potent ia l target for
immunotherapy of HNSCC in the future (128). However, IL-
33 is also a pro-inflammatory cytokine. In a mouse
periodontitis model, systemic administration of IL-33
exacerbated bone loss in a RANKL dependent manner (129).
Therefore, given the different roles of IL-33 in different
diseases, a deeper understanding of IL-33 action mode in the
future will be more targeted at the IL-33-ST2 signal to treat
human diseases (130).

PI3K/Akt/mTOR Signaling Pathway
The PI3K/Akt/mTOR pathway is involved in many biological
processes such as survival, proliferation, growth, apoptosis, and
glucose metabolism (131). In Treg cells, the activation of PI3K/
Akt/mTOR pathway by inflammatory Toll-like receptor (TLR)
or T cell receptor (TCR) signals expand Treg cell amplification
(132) but reduces FOXP3 expression (133). FOXP3 inhibits Akt
phosphorylation and blunts PI3K/Akt/mTOR signal
transduction, by which FOXP3 gives a negative feedback
A

B

FIGURE 2 | Distribution and functions of Treg cells in head and neck squamous cell carcinoma. (A) Treg cells increase during the disease progression in
oral mucosal dysplasia and squamous cell carcinoma. Malignant cells can secret CCL22 to attract Treg cells, or secret TGF-b to suppress inflammatory
Th17 cells. (B) Immune suppressive mechanisms of Treg cells in head and neck squamous cell carcinoma. Treg cells can secret inhibitory cytokines, such
as TGF-b, IL-10, and IL-35, to suppress the functions of antigen-presenting cells (APC) and CD8+ effector T cells, directly kill effector or APC by granzymes,
consume of IL-2 by highly expressing CD25, and negatively regulate the maturation and functions of APC by immune checkpoint molecules, such as LAG-3
and CTLA4.
June 2021 | Volume 12 | Article 667862

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Treg in Oral Diseases
regulation and results in enhancing the suppressive function of
Treg cells (134). On the contrary, phosphatase and tensin
homologues (PTEN), a negative regulator of PI3K, is able to
stabilize Treg cells in tumors (135). Moreover, the
administration of PI3K-Akt pathway inhibitors in CT26 (a
mouse colon carcinoma cell line) mouse models showed a
significant therapeutic antitumor effect associated with a
selective reduction in Treg cells activation and proliferation
with no effect on conventional T cells. It was also demonstrated
that PI3K-Akt pathway inhibitors could enhance the antitumor
immune responses of the antitumor vaccine by inhibiting Treg
cell proliferation (136). Interestingly, mTOR inhibition by
rapamycin has been shown to support the proliferation and
survival of Treg cells, which is opposed to Akt and PI3K (137–
139). Specific deletion of the mTOR gene (Rictor) (140) or
inhibition of mTOR activity by rapamycin promoted the
induction of FOXP3 and maintained the function of Treg
cells (141). On the other hand, the anti-tumor effect of PI3K,
Akt, and mTOR inhibitors can directly present as the inhibition
of tumor cell proliferation and angiogenesis, as well as the
Frontiers in Immunology | www.frontiersin.org 9
survival enhancement of CD8+ T cells (142). Taken together,
these data suggested the complicated regulatory mechanisms of
the PI3K/Akt/mTOR pathway in Treg cells. Combination of
multiple PI3K/Akt/mTOR pathway inhibitors, targeting
different steps, may suppress both proliferation and function
of Treg cells and achieve better anti-tumor effects.

Methylation and Post-
Translational Modifications
DNA methylation has long been considered as one of the
important epigenetic modifications that regulate gene expression
but not changing the DNA sequence (143). FOXP3 expression is
also regulated by DNAmethylation (144). Campos et al. evaluated
DNA methylation patterns of 22 gene promoters involved in
immune regulation of periapical lesions. The methylation level
of the FOXP3 gene promoter was the highest in periapical
granulomas and apical cysts, negatively correlated with the
expression of FOXP3 mRNA. In addition, active periapical
lesions showed higher levels of FOXP3 methylation than
inactive periapical lesions. Therefore, the dynamic changes of
FIGURE 3 | Regulatory mechanisms of Treg cells recruitment, proliferation, and function in oral diseases. Macrophages and antigen-presenting cells upregulate the
release of cytokine C-C motif ligand 22 (CCL22) in an inflammatory environment and recruit more Treg cells to local tissues in a CC-chemokine receptor 4 (CCR4)
dependent manner. Similarly, tumor cells are involved in the release of CCL22 in head and neck cancer. In addition, the binding of IL-2 and its receptor CD25
activated the JAK/STAT5 signaling pathway to induce FOXP3 expression. Transforming growth factor b (TGF-b) also has a positive effect on FOXP3 expression by
activating mothers against decapentaplegic homologue 3 (SMAD3) transcription factors. Besides, IL-33 binds to the IL-1 receptor-like 1 (ST2) and further promotes
the expression of FOXP3 and proliferation of Treg cells. The PI3K-Akt-mTOR pathway activated by inflammatory Toll-like receptor (TLR) or T cell receptor (TCR)
signals may be involved in the FOXP3 expression inhibition and the regulation of Treg proliferation, while FOXP3 can negatively feedback on Akt activation. Post-
translational modification of mature FOXP3 protein, such as acetylation, enhances both stability and activity of FOXP3. FOXP3 can endow Treg with typical
characteristics, such as cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor receptor family-related protein
(GITR). APC, antigen-presenting cells; CNS, conserved non-coding sequence; IL-2R, IL-2 receptor; LPS, lipopolysaccharide; mTOR, mechanistic target of
rapamycin; PI3K, phosphoinositide 3-kinase; JAKs, Janus kinases; STAT5, signal transducer and activator of transcription 5; PI3K, phosphoinositide 3-kinase;
mTOR, mammalian target of rapamycin; TGF-bR, TGFb receptor; TLR, Toll-like receptor.
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FOXP3 methylation level at different stages of periapical lesions
may regulate Treg cells as a master switch, affecting the process
and outcomes of periapical lesions (145).

As for cancer, thymically derived natural Treg cells were
suggested as the primary type of Treg cells in tumor tissues and
showed a conserved demethylated region in the first intron of the
FOXP3 gene. This Treg-specific demethylated region is required
for the long-term maintenance of FOXP3 expression (146, 147),
which may mediate by the superfluous STAT5 and TET2 in
tumor-infiltrating Treg cells (148). Therefore, Treg-specific
demethylated region (TSDR) based supportive therapy may
provide a novel strategy for anti-tumor immunity treatment
via reducing intratumoral Treg cells infiltration or weakening its
inhibitory function.

Besides epigenetic modification, FOXP3 function is also
positively affected by a posttranslational mechanism: FOXP3
arginine methylations. The inhibition of type I protein
arginine methyltransferases (PRMTs) is reported to interfere
with arginine methylation of FOXP3 and damage the
inhibitory function of Treg cells; while up-regulating
PRMT1 could prevent Treg cells from tilting to Th1-like cell
phenotype (149). PRMTs have been proved upregulated in
several tumors, which indicates a poor prognosis (150).
Pharmacological ablation of PRMTs is showing a promising
prospect of tumor therapy by inhibiting the function of
Treg cells (151). At present, the clinical research of various
specific PRMTs inhibitors is in full swing and following
widely interest.

In addition, other post-translational modifications are also
involved in the regulation of Foxp3 functions, such as acetylation
Frontiers in Immunology | www.frontiersin.org 10
(152). Acetylation enhances both stability and activity of FOXP3
(152). Histone acetyltransferases (HTAs) and histone
deacetylases (HDACs) have been widely reported to coordinate
the differentiation, function, and stability of Treg cells (153). CBP
and p300 are the members of the HTAs family. Their combined
deletion leads to fatal autoimmunity in mice at 3 to 4 weeks
(154). Interestingly, the selective deletion of p300 damages the
inhibitory function of Treg cells and enhances anti-tumor
immunity without autoimmune deficiency (155). By contrast,
HDAC inhibitor therapy usually increases peripheral Treg cells
and enhances Treg suppressive function, upregulates acetylation
of FOXP3, and related markers like GITR and CTLA-4 (156).

So far, diverse regulatory mechanisms of Treg cell
recruitment, proliferation, and function have been reported in
oral diseases. Harnessing these mechanisms may help to treat
oral diseases (Table 1). However, understanding these
mechanisms needs to be improved.
CONCLUDING REMARKS

Oral diseases, as one of the most common public health problems
worldwide, are closely associated with immune disorders. When
patients suffer from autoimmune diseases such as rheumatoid
arthritis and systemic lupus erythematosus, oral manifestations
such as chronic periodontitis, oral lupus erythematosus, and
Sjogren’s syndrome are also common (157, 158). However,
when the body’s immune function defect, whether primary or
acquired, it is often accompanied by necrotizing ulcerative
TABLE 1 | Regulatory mechanisms of Treg cells recruitment, proliferation, and function in oral diseases.

Regulatory
mechanisms

Defects or treatments Effects on Treg cells Oral diseases References

CCL22-CCR4 axis CCR4KO mice; Intraperitoneal injection of
anti-CCL22 antibodies

Treg migration impairment Aggravation of apical periodontitis
and periodontitis

(58, 116)

CCL22-releasing PLGA microparticles Treg migration promotion Remission of apical periodontitis and
periodontitis

CCL22 gene silencing Treg migration impairment Impaired oral tumorigenesis (117)
CCL22 overexpression Treg migration promotion Promoted oral tumorigenesis

IL-2-JAKs-STAT5
signaling pathway

IL-2KO mice; JAKsKO mice; STAT5a/b
double KO mice

Reduction of Treg frequency Unknown (121)

Transient activation of STAT5 in IL-2-deficient
mice

Increasing Treg number

IL-35 Intragingival injections of IL-35 Increasing induction of iTr35 cells Inhibition of periodontitis progress (74)
IL-33 IL-33 overexpression Expansion of Treg population and

function
Poor prognoses of HNSCC (128)

Anti-ST2 mAb Inhibition of Treg number and function Promotion of effector T cell
proliferation

PI3K/Akt/mTOR
signaling

Targeting PI3K and Akt with specific
inhibitors

Inhibition of Treg proliferation Enhancement of the antitumor
immune response

(136)

Rapamycin (mTOR inhibitors) Expansion of Treg Inhibition of effector T cell function (137)
FOXP3 gene methylation Hypomethylation Promotion FOXP3 expression; Increase

of Treg infiltration
Inactive apical periodontitis;
Promoted tumorigenesis

(145, 147)

FOXP3 arginine
methylation

Targeting PRMTs Inhibition Treg function Enhancement of the antitumor
immune response

(149)

FOXP3 histone
acetylation

Selective deletion or pharmacologic inhibition
of p300

Inhibition Treg function Enhancement of the antitumor
immune response

(155)
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periodontitis, oral candidiasis, and the risk of tumor is
significantly increased (159). Treg cells play important roles in
maintaining immune homeostasis and self-tolerance in oral
tissues. They play protective roles in inhibiting the course of
inflammatory diseases such as apical periodontitis and
periodontitis but accelerate the deterioration of precancerous
lesions in oral mucosa and HNSCC. Therefore, Treg is a
promising immunotherapeutic target of oral diseases. So far, the
regulatory mechanisms of Treg distribution, stability, and
function remain largely unclear. Further researches are required
to explore these mechanisms and help to design Treg-based
therapeutic strategies for the treatment of oral diseases.
Frontiers in Immunology | www.frontiersin.org 11
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