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HIGHLIGHTS

e Predict grid-connected PV system output using principal component analysis and recurrent neural approaches.
e Use one-year measured data to validating the proposed models.
o Evaluation and comparison of system performance using ANN models and experimental results.
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This paper evaluated a 1.4 kW grid-connected photovoltaic system (GCPV) using two neural network models
based on experimental data for one year. The novelty of this study is to propose and compare full recurrent neural
network (FRNN), and principal component analysis (PCA) models based on entire year experimental data,
considering limited research conducted to predict GCPV behaviour using the two methods. The system data was
collected for 12 months secondly and hourly data with 50400 samples daily. The GCPV evaluates using specific
yield, energy cost, capacity factor, payback period, current, voltage, power, and efficiency. The predicted GCPV
current and power using FRNN and PCA were evaluated and compared with measured values to validate results.
However, the results indicated that FRNN is better in simulating the experimental results curve compared with
PCA. The measured and predicted data are compared and evaluated. It is found that the GCPV is suitable and
promising for the study area in terms of technical and economic evaluation with a 3.24-4.82 kWh/kWp-day yield,

21.7% capacity factor, 0.045 USD/kWh cost of energy, and 11.17 years payback period.

1. Introduction

Grid-connected photovoltaic (PV) systems have become one of the
most attractive renewable energy applications. It is the most likely to
replace a large part of fossil fuel energy. Many developments have taken
places, such as improved performance of the PV module and lower costs.
It is also highly flexible as it can be installed on the sea, valley, and
mountains as well as in remote and desolate places where it is difficult for
the electrical network to reach. Besides, it can be used in a hybrid system
with wind and diesel energy systems [1]. One of the most critical barriers
to the utilization of solar systems is the degradation of the performance of
PV modules due to the impact of weather conditions (dust, solar radia-
tion, ambient temperature, and relative humidity, etc.) [2]. PV module
productivity decreases as cell temperature rise due to the absorption of
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most solar irradiance. It converts them into heat, leaving a small fraction
only, which is converted to electricity. Dust accumulation causes low
productivity and increases cleaning costs, as it is varied from one place to
another. Also, the dust components depend on many parameters such as
wind direction, the topographic and geological nature of the area, and
human activities and pollutants. Researchers have suggested using
photovoltaic thermal (PV/T) systems instead of separate thermal col-
lector and PV modules as these systems cooled in different ways that
increase their thermal and electrical productivity, respectively.

Many researchers have investigated and evaluated the electrical
productivity of PV systems with varying grid-connected capabilities.
Mishra et al. [3] used the deep learning and wavelet transform methods
to predict PV power for a short-term period. The proposed model was
validated using experimental data in Illinois. The proposed model
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achieved high performance based on evaluation factors that obtained
RMSE of 0.0054, MAPE of 0.01906, MAE of 0.0381, and R? value of
0.66863. Shuvho et al. [4] evaluated and compared ANN and fuzzy logic
prediction models to predict the energy produced by 80 kW PV power
plants in Dhaka. The authors used data set from NASA and the two
models compared with accuracy and error rate. The results confirmed
that the ANN model is better than the Fuzzy model. Chbihi et al. [5]
performed a comparative study of three different PV panels in two
distinguished climatic stresses. The study examined the behaviors of the
three separate panels and the various sites on the performance of PV
panel production. Annual results record a loss between 0.44% and 1.1%
on site—also, the other site lost between 1.8% and 5.9% for the three
devices. Dahmoun et al. [6] examined and evaluated 23.92 MWp PV
plants' performance in long-term (3-Year) located in El Bayadh, Algeria.
The results confirmed the conformity of the desired data with the pre-
dicted data based on the high correlation coefficient of 91%. Wu et al. [7]
proposed the use of a hybrid system called a thermoelectric system
(PV-TE). In this system, the thermal generator connected to the back of
the photovoltaic module converts heat into electricity depending on the
temperature gradient between the two sides of the system. Charalambous
et al. [8] and Kazem et al. [9] illustrated the importance of studying and
predicting the power produced from PV/T systems before establishing
large-scale PV power plants. There is also a need to improve models,
technical and economic studies to estimate accurate results of these
systems to enable significant changes to the future systems. Kotfas et al.
[10] designed two photovoltaic systems of monocrystalline silicon and
polycrystalline silicon panels connected to a thermoelectric generator on
the hot side. The results of the study showed that the two studied systems
caused a decrease in the temperature of the photovoltaic panels, which
led to a clear increase in the generated power by about 11%. The best
performance was when working with monocrystalline PV panels. This
system was able to reduce the temperature of the panels by 6 °C at a solar
irradiance of 440 W/m?. The system also managed to reduce the tem-
perature of the panels by 19 °C at an irradiance of 1000 W/m?. Also,
Mahmoudinezhad et al. [11] has studied numerically with empirical
verification the behavior of a concentrated three-junction solar photo-
voltaic thermoelectric generator system. The study results showed that
the energy produced by the studied system (a concentrated
three-junction solar cell) changed rapidly with the change in the solar
radiation intensity, but this change became gradual when using the
thermoelectric generator due to its thermal capacity and resistance.
Therefore, the study found that the adoption of the thermoelectric
generator in the thermoelectric solar cell system provides a stable gen-
eration power.

Machine learning based on artificial neural networks (ANN) has been
used in many applications, including data recognition and classification,
future value prediction, control systems, and operation. ANNs are
mathematical algorithms that mimic the functions of the human brain.
The neural network processes inputs and can handle them based on its
structure. The use of intermediate neurons in the hidden layer reduces
errors and accelerates the learning process by adjusting the weight of
each neuron with the reconstruction of new weight values. The ANN is
classified into two types based on how the signal moves from the input to
the output layer (feedforward and feedback-recurrent-) [12]. Wu et al
[13] examined the potential of the ANN technique compared to practical
results and used to predict the performance of solar PV systems. The
researchers concluded that predicting the productivity of PV plants based
on the ANN concept is well-fitting the desired data. Cooling is used to
improve the performance of photovoltaic cells by switching to PV/T
systems, so that, Al-Waeli et al. [14] developed three models of linear
prediction and compared them to ANN models to predict the productivity
of PV/T system cooled by (nano-SiC-water) nanofluid and
nano-SiC-paraffin wax (PCM). The result's accuracy was verified by
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comparing them with experimental results. The study results showed that
the linear prediction algorithms studied reduced the error rate in the
predicted results and can contribute to determining the best-operating
conditions for any PV system easily and quickly.

The concept of deep learning (recurrent neural) is based on an
automatic learning mechanism to represent data by spreading a multi-
layered neural network. These classes are classified into uncensored,
semi-controlled, and supervised [15]. The "deep learning" concept is used
first to find out if there is any defect in the network. This concept is a
combination of deep learning geometry, wavelet transformation, and a
multi-precision mono universe. This concept has the potential to achieve
the desired goal with high accuracy [16]. Hossain et al. [17] used deep
learning to predict the output of a PV system and compared the results
with the outcomes of other studies that have adopted various methods
such as an artificial neural network (ANN) and support regression vectors
(SVR). The study results confirmed high prediction accuracy of energy
generated by the used PV system and at a less computational time could
be achieved using deep learning. Du Plessis et al. [18] proposed hybrid
neural models using macro-level deep learning neural networks, Long
Short-Term Memory, and recurrent neural techniques for forecasting a
short-term power of a 75 MW grid-connected PV system. The results
show that the proposed model achieved the best mean absolute per-
centage error (MAPE), varying between 1.42%-8.13%, which concluded
that the proposed models could capture the low-level behavior of the PV
system.

Many researchers have shifted to the use of deep learning in the study
of PV systems and to predict their productivity; for example, Wang et al.
[19] proposed three neural networks for deep learning to predict the
output of a PV plant. The researchers selected the most suitable algo-
rithm, which showed the best predictability of the power produced by
the station studied. Wen et al. [20] used the deep-learning concept to
predict the PV system's output used for domestic purposes. The re-
searchers suggested that the proposed method may outperform other
methods and advised to use it to predict microgrid systems as it con-
tributes to reducing the cost by 8.97%. Talaat et al. [21] proposed a
multilayer feedforward neural network (MFFNN) optimization model
based on multiverse Optimizer (MVO) and genetic algorithms (GA) to
forecast the PV power output of the 4-kW PV plant installed in Shaqra
City, Saudi Arabia. The three parameters were deployed for training and
testing the Neural proposed model: ambient temperature, wind speed,
and solar irradiance. They examined the efficiency of PV using the
normalized root mean square error and obtained a rate of 3.65E-4 and
2.82E-4 for MFFNN-GA and MFFNN-MVO models. Qu et al. [22]
deployed a neural temporal distributed model based on recurrent deep
learning for predicting the PV power generation for a panel installed in a
farm in southeastern China. Also, proposed an ARIMA linear forecasting
model for forecasting the linear series data at each linear trend segment.
The proposed model achieved high performance with an accuracy of
62.7%. And less nominalized root mean square error of 0.083 and a
nominalized mean absolute error of 0.041. Chahboun & Maaroufi [23]
deployed a Principal Component Analysis to compare the performance of
several machine learning approaches to predicate the PV power pro-
duction. The comparison includes the Bayesian regularized neural,
elastic net, support vector machines regression, and random forest net-
works. The results show that the Bayesian neural model achieved the
highest accuracy of 99.9% and RMSE of 0.002. It follows by the Random
Forest regression with an RMSE of 0.1434 and accuracy of 99.53%. Sun
et al. [24] asserted that for short-term solar prediction, it is appropriate to
use a convolutional neural network characterized by precise regulation of
hybrid input and chronological date. The use of deep learning out-
performs the stability model by 15.7-16.3%. Depending on the input
(celestial images) and the output of the efficient PV system, the training
time was reduced up to 83.0% without affecting the accuracy of the
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predicted results. Another prediction method is the principal component
analysis (PCA), a crucial category of unsupervised learning methods,
aiming to dimensionality-reduction multi domination input space.

This study aims to evaluate the potential of grid-connected PV sys-
tems in Oman using recurrent neural and principal component analysis
models. GCPV systems. Limited studies used the two methods to inves-
tigate GCPV systems. Also, the current paper compared the two methods
results with the experimental values. For this purpose, a 1.4-kilowatt
grid-connected PV plant was installed in the northern city of Oman,
Sohar. To assess the performance of the system, weather data, and system
outputs (current, voltages, and power) were collected for an entire year
from July 2018 to the end of June 2019. Predicting the productivity of a
PV plant has become a very active research area. It helps to accurately
predict and give data on the power of the plant with its secure connection
to the central power grid. References [22, 23, 24, 25, 26, 27, 28] have
demonstrated that the adoption of recurrent neural algorithms can safely
predict the conditions and productivity of grid-connected PV plants.
Unfortunately, to date, only a minimal method of recurrent neural has
been applied to predict the results of grid-connected PV systems.

The main contributions of this paper are to evaluate and comparative
analysis of the grid-connected PV system performance in Oman. Exper-
imental evaluation in terms of technical and economic aspects is pre-
sented first. The innovative aspect consists of proposed recurrent neural
and principal component analysis ANN models based on an entire year of
collected data. These models help to reduce the operational costs of these
power plants. Many research studies confirmed ANN models as an
excellent predicting approach. Unfortunately, a few research works
conducted the use of FRNN and PCA to PV output prediction. In these
models, analyzed data previously obtained to predict the relationship
between the input and output of the grid-connected PV system. These
models are sophisticated, and their applications are especially useful for
incomplete data and result in optimal learning models. The improvement
in the proposed model is not just about adopting training data but also
adopting the data that is best anticipated for system productivity.

2. Methodology and experimental setup
2.1. PV system description

Grid-connected PV systems (GCPV) consist of ten 140 GH-2PU PV
modules and an inverter have been installed to equip electrical peak
power up to (1.4 kW) with a generated voltage of (177 V DC) under
standard test conditions each (Figure 1) at Sohar University, north of
Muscat. This system is installed in the Sohar University campus, for sci-
entific research purposes. The PV modules are installed at a fixed opti-
munm tilt angle (27° facing southward depending on Kazem et al. results)
[31]. The PV modules are connected in series to supply sufficient voltage
to the grid-connected inverter (the ten connected PV modules provided a
series of 177 V). The inverter used is a Sunny Boy 1700 type (1.5 kW,
220-240 AC voltage, and 94.2% efficiency). Also, the PV module short
circuit current and open circuit voltage are 8.68 A and 22.1 V,

Figure 1. GCPV system.

Heliyon 8 (2022) e08803

Table 1. Experimental setup accessories and uncertainty.

Sensors and measuring instruments Experimental

uncertainty
Thermocouples Qt. 24, K-type +1.09 °C
Pyranometer (Global Apogee, (0-1300) W/m?  +1.20%
irradiance)
Flow meter (heat resistence) 0.01-0.30 kg/s +0.22
Anemometer cup 0-5m/s +1.00%

Data-logger and software
PV kWh metre
Laptop

Capture data
Display and logging data

Data storage

respectively. However, the highest PV and inverter efficiencies are 13.9%
and 94.1%, respectively.

The system was equipped by many thermocouples to measure the
modules temperature, pyranometer to measure the global irradiance, and
anemometer to measure the instantaneous wind speed. The system also
was attached to a data logger and software to catch the data. PV kWh
meter to display the logging data, and a laptop to store the gathered data.

All measuring instruments and devices were calibrated before use.
Table 1 lists the above systems description and uncertainty.

2.2. Study area

The study was conducted in Oman, which is one of the Middle East
countries that fall within the solar belt [26]. Oman relied heavily on
natural gas and diesel for electricity production [38]. There was no share
of renewable energy in the energy supply despite several resources,
including solar, wind, and hydropower [33]. Over the past few years,
electricity consumption in Oman has risen dramatically. In 2000, the
country's electrical energy consumption was 6850 GWh, while in 2018, it
reached 27,620 GWh [34]. All sectors, including residential, commercial,
and industrial consumption, increased during this period. Oman has
enormous solar potential as the solar irradiation arriving in this country
is one of the highest in the world [35]. Oman receives solar irradiance
ranging from 2500 to 3000 W/m?/day in January, rising to 5500-6000
W/m?/day in July [34]. With the proliferation and success of GCPV
systems in the Gulf Cooperation Council (GCC) region and within Oman's
energy vision in 2040, several gigawatts of electricity were planned to be
produced using PV plants.

Sohar is one of the northern provinces of Al-Batinah and is located in
the northern part of Oman. Also, Sohar is 234 km north of the capital
Muscat [31]. Figure 2 shows ambient temperature, diffuse and global
solar irradiance. The daily average diffuses and global solar energy for
the city of Sohar is 3289 Wh/m?/day and 6182 Wh/m?/day, respec-
tively. This potential of solar irradiance illustrates an excellent solar
energy zone, which motivates PV systems investments.

The average daily ambient temperature in the study area is moderate
(32 °C), and wind speed 4.4 m/h southeast, and the average relative
humidity is 40%. These values show the suitability of the study area to
install PV systems, where the average temperature and wind speed are
suitable for cooling PV panels, while the relative humidity is not high in a
way that causes negative effects on these systems.

2.3. Performance evaluation criteria

GCPV systems evaluation criteria were defined by the “International
Electro-technical Commission IEC61724”. The criteria contain energy
production (E) and yields (SY), performance ratio (R), cost of energy
(CoE), life cycle costs (LCC) and recovery period (PBP), present worth
(MC), the percentage value of the replacement cost (RC), efficiencies (),
losses (Py,ss) and capacity factor (CF) [24, 25, 32]. These criteria defined
in Table 2, respectively.
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Figure 2. Sohar profiles for solar irradiance and ambient temperature.
Table 2. The used equations for PV-generated power and performance evaluation criteria.
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The definition of specific yield or factor (SY or YF) is “the annual,
monthly or daily net AC energy output of the system divided by the peak
power of the installed PV array at standard test conditions (STC)”. Where:
YFq4 represents array yield while YFg is final yield and Yy is references
yield. Also, the capacity factor (CF) estimates benefits obtained from the
system. It is known as: “the ratio of the actual annual energy output to the
amount of energy the PV array would generate if it were operated at full
rated power (Pg) for 24 h per day for a year”. The performance ratio
definition (Pg) is “the standard employed to evaluate the used PV system
quality”. Life cycle cost “LCC” is the sum of the capital cost (Ccapita) plus
all present costs (R) minuses (Csalvage), which is evaluated by the Eq. (11).
The energy cost is calculated using LCC and Epy as in Eq. (10), and the

PV-generated power is calculated in Eq. (14). The T, is calculated as in
Eq. (15). Also, the PV electrical energy generated is calculated in Eq. (17)
in a set of periods (hour, day, or month). N = 60 min, 24 h, and 30 days
for an hour, day, and month, respectively. Finally, Egs. (18) and (19)
calculate PV array and system efficiencies. E is energy in Wh, G irradi-
ation in Wh/m?, and A is the PV area in m? as presented in Table 2.

3. Neural computation architectures
The artificial neural network (ANN) simulates linear or nonlinear

relationships and reduces complex data associations' dimensionality.
ANN is a computational mathematical function based on symbolic rules

Table 3. The specification of proposed neural network models’ structure.

Model #Input variables #Hidden Layers #Output Variables #Epoch Activation Function Learning fuction
FRNN Temperature (0C) solar 1,2,3 Current (mA) 100, 500, 1000 TanhAxon momentum o = 0.7
irradiation (W/m?) Best (1) Voltage (V) Best (1000)
Power (W)
PCA Temperature (0C) solar 1,2,3 Current (mA) 100, 500, 1000 TanhAxon momentum o = 0.7
irradiation (W/m?) Best (1) Voltage (V) Best (1000)
Power (W)
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Figure 3. Artificial Neural Architecture. (a) Recurrent Neural Network; (b) PCA network Architecture.

that emulate biological brain activities and mimics intelligent human
behaviour. The unique features of ANN like parallelism computing,
generalization, recurrent computing, and learning from experience made
it a proper approach for utilizing in many applications such as classifi-
cation, recognition, and association of data, etc.

Several architectures of ANN were developed and deployed for
monitoring and assessing the behaviour of renewable production sys-
tems. Several models utilize an internal memory for saving the updated
context information using past observations. Heterogeneous neural
models combined the feedforward and feedback mechanism to simulate
the recurrent neural system creating at any layer [36]. The accurate
predicting and examining solar irradiance are required in setting up and
sizing solar power applications. Therefore, finding robust mathematical
is crucial to control and manage the electrical grid effectively. Artificial
Neural Network (ANN) can provide manageable and accurate prediction
models with less computational effort. It can train with a minimum
number of datasets and control uncertainty in resource computation,
which helps enhance the forecasting models' performance. In addition,
the use of hidden layers and recurrent approach helps to improve the
results and fits the actual data. Also, the ANN provides a robust sensi-
tivity analysis of input variables for the best selection variables that in-
crease the model performance. The neural network implementation of
Principal Component Analysis (PCA) and Full-Recurrent Neural (FRNN)
algorithms were deployed using the NeuroSolutions software package
[37]. Table 3 shows the structure of both proposed methods (FRNN:
2-1-3, and PCA: 2-1-3), which means it consists of 2 inputs layers, 1
hidden layer, 3 output layers.

3.1. Recurrent neural network (RNN)

Recurrent Neural Network (RNN) computationally is more effective
than feedforward networks because it mimics the human biological na-
ture because it will use inputs that have already been processed and re-
used again to correct errors, as shown in Figure 3(a).

Many recent studies [18, 28, 29, 30, 38, 41] deployed and confirmed
the high efficiency of the RNN network compared to traditional ANN in
diverse applications. It is mainly used in applications that require
remembering to keep the sequence of input patterns based on the time
interval. The Full recurrent neural (FRNN) is a mathematical model that
processes the input datasets with a recurrent cycle of sending the outputs
of the hidden layer to feedback as input in the next stage. The production
of hidden layers will pass to the output layers, which will feedback the
output results as input again and forth until the stability of the activated
layers, whether hidden or output — the backpropagation learning
through time (BPTT) utilizing the gradient error to adjust the neuron
weight [38]. BPTT was used to remember previous information and store
and record it in long-term memory (LSTM). A reparative process is used
to adjust the values of the weights in the network. The adjustment pro-
cess computes the activation function in the hidden layers until the
network is stabled.

The recurrent neural networks (RNN) deployed leverage back-
propagation through time (BPTT) algorithm to determine the gradients
in less time compared to the traditional method. It can measure the input
data in time series that each input sample can be dependent on previous
values. It can remember the last data for a long time, which helps to
determine their Default behavior. Therefore, RNN can speed the predi-
cation computation and getting the results.

Back propagation learning method processes the information in both
feedforward, and backward directions to reduce the error of the network,
which passed back the information to the next layer through the links
[38]. The BP method adjusts and utilizes the weights' values of neurons
as defined in Eq. (20):

pt  epoch

E(w) =) ) (di(p)- yi(p))® (20)

p=1 i=1

The current neuron weight is computed as in Eq. (21):

Wij(n+ 1) = Wij(n) 4 si(n) + xj(n) 21

The momentum rule utilizes to accelerate and adjust the value of
neurons weights, which is defined in Eq. (22):

Wij(n+ 1) = Wij(n) 4 8i(n) + xj(n) + a(Wij(n) — Wij(n—1)) (22)
Where the step size () sets to 0.7 [36].

3.2. Principal component analysis (PCA)

PCA is a crucial category of unsupervised learning methods, which
aims to dimensionality-reduction of multi domination input space.
PCA process the input space for computing a set of orthogonal di-
rections (eigenvectors of the correlation matrix) and produce pro-
jections (the corresponding eigenvalues) of ordered directions [39].
Many of the features that motivate researchers to use PCA, which
include diminishing dimensions to reduce training time and use suit-
able representations, may enhance model performance. Therefore, it
reduces the high dimensionality of the input data to a low dimen-
sionality of the input data, which will help to speed the computation
and improve the prediction model's performance. Figure 3(b) shows
the PCA architecture, which is determining the eigenvalue using the
correlation ship method.

The score matrix of PCA is computed as in Eq. (23):

Yi = Wi X X1j + Wy X Xoj + Wpi X Xpj ... (23)

where w is the matrix of weights, and x is the data matrix of n observa-
tions and p variables.

The w matrix is calculated using the variance-covariance matrix (s) as
in Eq. (24)
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The correlation relationship between the i factor and the j" variable
is determined as in Eq. (25).
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Several factors are implemented for assessing the accuracy of the
output of proposed models. “Coefficient of determination (R?)” is the
most momentous method uses to evaluate the performance of pre-
dicting models as defined Eq. (26).

n 2

R*=1 _Z:‘[(}'z Ijl)z (26)
2 (yi—¥)

Where y; is the estimated output, p; is the predicted output and is the
arithmetic mean value of y;. Besides, methods like “Mean Square Error
(MSE)”, “Root Mean Square Error (RMSE)”, “Mean Absolute Error
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(27)

(28)

(29)

MAPE — liu 100 (30
S\ =1 i

The normalized mean square error calculates the mean relative
scatters and reflects the random error, ensuring that the results of the
predictions will not be biased in overestimated or underestimated cases.
It is computed in the equation Eq. (31).

(MAE)” and “Mean Absolute Percentage Error (MAPE)” are broadly used | |(x -l \)2
. . L NMSE(x,y) =1 — -—"—— 31
to measure and validate the results of mathematical and predicting x—X
models as resulted from Egs. (27), (28), (29), and (30), respectively.
n
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Figure 4. (a) PV and Inverter power production (1-15 April 2019); (b) GCPV technical performance parameters for entire year.
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Figure 5. Grid-connected PV system and monthly performance.

4. Results and discussion
4.1. Experimental results

The GCPV system's electrical and environmental data were measured
and recorded to analyze the performance. The sensors record every
second and hourly data used for long periods. However, the data was
used to investigate the system performance for 1, 15, and 365 days.
Figure 4 (a) illustrates PV and Inverter powers for the period from 1 to 15
April 2019. Because the Inverter efficiency is relatively high (94.5%), so
the conversion losses from DC to AC are low.
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In addition, the energy production (Ppy) is generally high even
though April is a spring season in the study area where the climate is
moderate in the shade, and the intensity of the sun is less variable than in
summer. Throughout the year, the best time for intensity and Ppy was
summer (May-October) with 245.8 kWh in June, when the sun-directed
illumination is moderately higher and reflectively reflected on the PPV.
Similarly, the lowest power and PPV recorded was in winter (November
to February) with 224.5 kWh in February.

Figure 4 (b) demonstrates the variety of deliberate PPV, PV energy
(EPV), and global solar radiation (G) of a specified day (1 June 2019).
The highest values for G are in June during the day, and PPV is 1158 W.
Be that as it may, the temperature is moderately high, which diminishes
Ppy and efficiency. The Ppy and Epy bend depends upon G, and they are in
consistence with more smooth energy bend early morning and late eve-
ning. This circumstance is because of the variety in temperature and G in
these periods. Also, for the entire year, it is found that the GCPV array,
reference, and final yields (YF) varied in the extent of 3.43 to 5.65 kWh/
kWp-day, 4.61 to 7.33 kWh/kWp-day, and 3.24 and 4.82 kWh/kWp-day,
respectively. Since G is high, YF is high too, where they are in directional
proportionality. However, YF shows a significant consistency with the
systems in literature [41, 42, 43]. Also, CF was 21.7%, CoE was 0.045
USD/kWh, and PBP is 11.17 years, calculated for the system. It is worth
mentioning that CF is close to the typical 21%, and the PBP is promising.
Furthermore, the CoE is interested since it is cheaper than using natural
gas to generate electricity in Oman, where CoE is 0.180 USD/kWh
(without government subsidies). The GCPV efficiency fluctuated be-
tween 9.1% and 10.8% — likewise, the most extreme efficiency was
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Figure 8. Scatter plotting method of the variable (a) ambient temperature; (b)
solar irradiation.

found in December while the least efficiency was in July. It is known that
the solar radiation is higher in July than in December, yet the climate is
increasingly dusty and hotter in July, which will adversely affect Ppy, YF,
CF, and efficiency this month (see Figure 5). Also, inverter efficiency
improved from 91% to 94%.

The yearly normal of the performance ratio observed to be 0.67
different between 0.53 in June and 0.71 in January. The performance is
highly dependent on the season, either summer or winter, given the
temperature and Pj,s in summer are positively different to circumstances
in winter.

The GCPV system AC voltage is delineated in Figure 6, which shows
high consistency. Based on measured values, it is found that the normal
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every day AC voltage and frequency are 49.98 Hz (+0.02%) and 248.58
V (£0.21%), which agree to power guideline in Oman.

Likewise, GCPV current estimated and recorded each second and
found to be consistent and follow G curve, with the highest current 7.70
A at noon.

4.2. ANN experimental implementation

The experiments utilize different recurrent neural approaches,
including Principal Component Analysis (PCA) and Full-Recurrent Neu-
ral approaches (FRNN). The NeuroSolutions software package is used to
design and implement the current proposed neural models. The experi-
mental data were collected in Sohar city (Coordinate: 24.3501° N,
56.7133° E) Oman, which recorded a data set everyone hour. However,
the data used to investigate 1, 15, and 365 days, and Inverter powers for
the period 1-15 April 2019. Two main factors should be chosen carefully
to enhance network output performance (number of epochs and hidden
layers). The experimental data consists of 500 datasets that are used for
training and testing the proposed models. 60% datasets are used in the
training phase and 20% of datasets for the cross-validation phase, and
20% of datasets for testing the results. Different epochs (100, 500, 1000)
are tested to choose the optimal number of epochs that maximize
network performance and reduce the MSE error. The maximum number
of epochs is 1000. Also, the number of hidden layers determined ac-
cording to the experimental data sets, which are set to one and two
layers. The number of hidden layers must be set between the number of
input variables and the outputs [40]. The experiments utilized the
network architectures using two input variables (ambient temperature
and solar irradiation). Also, the output variable is Experiment 1 and
Experiment 2, which is assigned either to PV current (I) or power (P),
respectively. Input variables for the FRNN models are temperature
ambient and solar irradiance. The output of Experiment 1 is the Current
(D), while the output of Experiment 2 is the Power (P). Also, Input vari-
ables for the PCA models are temperature ambient and solar irradiance.
The output of Experiment 1 is the Current (I), while the output of
Experiment 2 is the Power (P). The transfer function is TanhAxon, the
number of epochs is 100, 500, and 1000, the learning algorithm is mo-
mentum a = 0.7 with a step size of 1, and the number of data sets is 500
pair (300 datasets for training, 100 datasets for cross-validation, and 100
datasets for testing). The proposed neural models were performed under
the same conditions for systematic analysis. However, the number of
hidden layers is two and one for FRNN and PCA, respectively.

4.2.1. Statistics results

Figure 7 shows the relation between the experimental data of the
input variables (ambient temperature, solar radiation) and the data of
output variables (power, voltage, current). The figure shows some dif-
ferences in the curves of input-output variables between 0 and 1200.
Therefore, the variables (such as voltage and ambient temperature) with
a low amount and variation are close to the horizontal axes (time). It is
found from Figure 7 that the current waveform is more consistent with G

Table 4. Descriptive statistics data of quantitative variables.

Ambient Temperature (°C) Solar irradiation (W/m?) Current (A) Voltage (V) Power (W)
Mean 31.19 236.90 2.79 152.71 428.64
Median 30.63 249.38 2.09 152.32 327.31
Standard Deviation 3.28 159.95 2.41 4.66 365.60
Kurtosis -0.1201 -1.2817 -1.2334 2.2020 -1.3033
Skewness +0.2227 +0.0965 +0.4882 -0.1542 +0.4382
Minimum 22.44 3.9200 0 133.7600 0
Maximum 38.45 509.45 7.46 164.81 1106.35
Sum 3650.33 27717.61 327.54 17868.05 50151.97
Count 117 117 117 117 117
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Table 5. Correlation matrix of quantitative variables.

Variables Ambient temperature (°C) solar irradiation (W/m?) Current (mA) Voltage (V) Power (W)
Temperature (°C) 1.0000 0.3492 0.3997 0.0131 0.3926
solar irradiation (W/m?) 0.3492 1.0000 0.5244 0.2951 0.5324
Current (mA) 0.3997 0.5244 1.0000 0.0993 0.9993
Voltage (V) 0.0131 0.2951 0.0993 1.0000 0.1270
Power (W) 0.3926 0.5324 0.9993 0.1270 1.0000

comparing with other waveforms. However, the power followed the
current pattern and it is affected more by current variation in terms of
wave shape. On the other hand, the voltage values had more impact on
power production.

Figure 8 (a and b) depicts a definite figure of the form of ambient
temperature and solar irradiance using a scatter plotting method,
respectively. This figure illustrates the pattern and data analysis for T
and G. The maximum amount of temperature is 38.4 °C at 9:00 AM.
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Also, the minimum value of temperature is 22.4 °C at 6:00 AM. How-
ever, the data concentrated at 32.5 °C. Also, it records that the mini-
mum value of solar irradiance is 3.9 W/m? at 6:00 PM, while the
maximum amount is 509.4 W/m? at 11:00 PM, with data concentrated
at 343.6 W/m> However, it observed that there is some consistency
between solar radiation and PV current. The data was collected using
sensors, data acquisition and monitoring systems. It should note that
uncertainty is very limited in this study due to the large number of
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Figure 9. A comparison of the experimental data and the predicted output of proposed models (FRNN, PCA). (a) Power data; (b) Current data.
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Table 6. The evaluation factors and results of proposed neural models.

Power Current

FRNN PCA FRNN PCA
MSE 0.1778 0.0780 0.0488 0.0768
NMSE 0.4965 0.4391 0.4434 0.4420
R? 0.7471 0.7533 0.8119 0.7623

measured data (50,400 values), which was taken at 14 h a day, making
it easier to validate the results.

4.2.2. Skewness and kurtosis results

Skewness and kurtosis are two proper functions measure of symmetry
for explaining the descriptive statistics data, which depicts the configu-
ration of the data distribution. Skewness assesses the degree of symmetry
in the distribution of the dataset. Datasets have symmetrical (normal)
distribution if the value of Skewness is equal to 0. Skewness estimates the
comparative size of the two tails. The Skewness is computed as in Eq.
(32). Kurtosis is used to determine the probability at the merged scales of
the two tails as defined in Eq. (33). If the value of the kurtosis is equal to
3, then the datasets follow a normal distribution. Also, the dataset will
have more massive tails if the value of kurtosis is greater than 3. Also, the
dataset will have lighter tails than a normal distribution if the value of
kurtosis is less than 3.

—\3
skewanM

né® (32)

where n is the number of elements in the testing sample, x; is value the i
element, and § is the standard deviation of testing sample, X is the
arithmetic mean of the sample.

kurta4:Z

Table 4 illustrates that the datasets have a small Skewness rate
(0.2227, 0.0965, 0.4882, -0.154269077, 0.4382), which means that the
datasets have a normal distribution. Also, the datasets have a small
kurtosis value (—0.1201, —1.2817, —1.2334, 2.2020, —1.3033), which
indicates a lighter tail than a normal distribution.

Table 4 illustrates the mean value of the experimental data of (tem-
perature, solar irradiance, current, voltage, power) with a norm figure of
(31.19 °C, 236.90 W/mz, 2.79 A, 152.71 V, and 428.64 W) respectively.
However, the value of mean presents smaller differences with the amount
of median (30.63 °C, 249.38 W/mz, 2.09 A, 152.32 V, 327.31 W)
accordingly. Table 5 shows a high correlation between the output vari-
ables (current and power) with a rate of 0.9993, because the power
mainly depends on the current value. Also, it shows a moderate corre-
lation between solar irradiation and the output variables (current and
power) with a rate of 0.5244.

(x —%)"

né* 33)

4.2.3. Neural computing results

The neural predicting models were utilized and implemented using
NeuroSolutions software. The experimental data consists of 500 pairs of
data sets (Input, Output) used to train and learn the proposed models.
The information is recorded every one hour. Figure 9 (a) illustrates the
comparison of experimental values of power variable and the predicted
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output of proposed models (FRNN, PCA), which indicates well fits be-
tween the experimental and predicted data based on MSE value of
(0.177, 0.078), respectively. Table 6 shows that the proposed models
achieved an amount of normalized MSE (NMSE) with a rate of (0.4965,
0.4391), and the value of the correlation rate of (0.7471, 0.7533)
accordingly. On the other side, the system rated power in the lab at
standard test conditions is 1400 W at 1000 W/m?, 25 °C, and 1.5 AM.

However, due to the high solar irradiance (G) in Sohar, the power
production approach 1102.91 W at 12:00 noon. However, FRNN is better
in simulating the experimental results curve comparing with PCA.
Figure 9 (b) depicts a comparison of the experimental data of the current
variable and the generated output of proposed predicting models (FRNN,
PCA), which shows a close relation fitting between the experimental and
forecasting data based on MSE value of (0.0488, 0.0768), respectively.

The unsupervised learning starts with assigning random values to
weight, and then these weights will stabilize and get the optimal value.
This impacts some variations between the desired output and the
computed results in the first iterations until the network is stabled and
trained. Table 6 shows that the proposed models achieved an amount of
NMSE with a rate of (0.4434, 0.4420), and the value of the correlation
rate of (0.8119, 0.7623) accordingly. FRNN current waveform is
matching the pattern of the measured waveform comparing with PCA.

However, early morning at the beginning of the solar day, there is a
bit of difference between measured and predicted values due to the low
G. This is because the inverter starts searching for the maximum power
point until it reaches the threshold value. This situation makes the
measured Ppy low, and this is reflected in the predicted values. Table 6
summarized the evaluation factors and results of proposed neural models
(FRNN, PCA) for the current and power variables. From RZitis found that
the predicted current is more accurate using FRNN than PCA. However,
Ppy is close for FRNN and PCA. From the other side, MSE shows that the
prediction model error is less for PCA comparing with FRNN.

The results must compare under the same conditions for the com-
parison to be accurate and fair. This is missing in most comparisons with
previous studies, as most studies are conducted using particular inputs
and are calculated under different conditions. Therefore, the comparison
is relative to the method type and the accurate evaluation factors.

The comparison with references [21] is relatively sound because it is
in the same weather conditions but with a different installation angle for
the PV module. Table 7 presents comprehensive evaluations and com-
parisons of the proposed models' results with other researchers in the
literature survey for validating the obtained results.

5. Conclusions

One-year evaluation and comparison of GCPV system performance in
Oman based on experiment and two proposed neural prediction models
are presented in this paper. Various technical and economic criteria were
used to evaluate the effectiveness of the GCPV system. Full recurrent
neural network (FRNN) and principal component analysis (PCA) were
used to predict the system output. The proposed prediction models used
ambient temperature and solar irradiation as input variables. The elec-
trical current and power were predicted, evaluated, and compared with
measured values for validation. The highest technical results found yield
5.65 kWh/kWp-day, the capacity factor was 21.7%, and energy pro-
duction was 245.8 kWh. However, the energy cost was 0.045 USD/kWh,
and the payback period was 11.17 years. The two neural prediction

Table 7. The comparison between the proposed models and other studies.

FRNN PCA MFFNN-GA MFFNN-MVO Single RNN- SGRU Multi RNN- MGRU Bayesian neural Support vector reg. Elastic net reg.
[21] [21] [22] [22] [23] [23] [23]
MSE 0.1778  0.0780  0.565 0.033 Acc.0.627 Acc.0.529 0.00001 0.2514 0.4761
NMSE  0.4965 0.4391 0.036 0.028 0.1367 0.1118 - - -
R? 0.7471  0.7533  0.9913 0.9992 - 0.9999 0.9436 0.8933
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models FRNN and PCA achieved 0.0488 and 0.0768 MSE for the current
prediction. However, the achieved R? is 0.7471 and 0.7533 for power,
respectively. It is found that FRNN is better in simulating the experi-
mental results curve comparing with PCA. The information, evaluation,
and comparison in this study present a pathway for GCPV system current
and power prediction using two essential neural networks (FANN and
PCA), considering solar irradiation and ambient temperature variation.

The dependability of such GCPV is a fundamental point for invest-
ment, residential, and business applications. Additionally, it fundamental
to the viewpoint identified with the future research progress in the di-
rection of evaluating the degree and size of environment impacts con-
dition present on GCPV systems which is essential for further
improvement, explicitly in the solar ballet zone and average locales of
moderately high ambient temperatures and solar irradiation levels, or
general provincial and desert atmospheres.
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