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ABSTRACT

A fundamental attribute of human hearing is the
ability to extract a residue pitch from harmonic
complex sounds such as those produced by musical
instruments and the human voice. However, the
neural mechanisms that underlie this processing are
unclear, as are the locations of these mechanisms in
the auditory pathway. The ability to extract a residue
pitch corresponding to the fundamental frequency
from individual harmonics, even when the fundamen-
tal component is absent, has been demonstrated
separately for conventional pitches and for Huggins
pitch (HP), a stimulus without monaural pitch
information. HP is created by presenting the same
wideband noise to both ears, except for a narrowband
frequency region where the noise is decorrelated
across the two ears. The present study investigated
whether residue pitch can be derived by combining a
component derived solely from binaural interaction
(HP) with a spectral component for which no
binaural processing is required. Fifteen listeners
indicated which of two sequentially presented sounds
was higher in pitch. Each sound consisted of two
“harmonics,” which independently could be either a
spectral or a HP component. Component frequencies
were chosen such that the relative pitch judgement
revealed whether a residue pitch was heard or not.
The results showed that listeners were equally likely to
perceive a residue pitch when one component was
dichotic and the other was spectral as when the
components were both spectral or both dichotic. This
suggests that there exists a single mechanism for the
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derivation of residue pitch from binaurally created
components and from spectral components, and that
this mechanism operates at or after the level of the
dorsal nucleus of the lateral lemniscus (brainstem) or
the inferior colliculus (midbrain), which receive
inputs from the medial superior olive where temporal
information from the two ears is first combined.
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pitch, Huggins pitch

INTRODUCTION

A tonal percept can be produced by a pure tone or a
narrowband noise (NBN; see Fig. 1A, top). A pitch
can also be produced by presenting a wideband noise
diotically, i.e., the same white noise to both ears,
except for a narrow frequency region in which the
noise is decorrelated between the two ears (see
Fig. 1A, bottom). For this “Huggins pitch” (HP)
stimulus (Cramer and Huggins 1958), the stimulus
presented to each ear alone sounds just like a white
noise. However, when the stimulus is presented
binaurally, the listener perceives not only a noise,
coming from the center of the head, but also a faint
tone with a pitch that corresponds to the center
frequency of the narrow band that is interaurally
decorrelated. The tonal percept is lateralized to one
ear or the other in a way that varies idiosyncratically
across listeners (Raatgever and Bilsen 1986; Zhang
and Hartmann 2008). HP stimuli produce a clear
musical pitch, supporting melody recognition
(Akeroyd et al. 2001). In contrast to a pure tone
or narrowband noise, for which pitch information
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FIG. 1. Schematic diagram of pitch stimuli. A Single component
stimuli that evoke a tonal percept when presented monaurally (top)
and for which binaural presentation is necessary (bottom). B Stimuli
with two harmonics used in the present experiment.

NBN-HP

is available monaurally at the level of the auditory
nerve, the perception of HP depends on fine
timing information from the two ears being com-
bined, and thus, depends on central processing
(beyond the cochlear nucleus). There is physiological
evidence that this processing occurs in the medial
superior olive (MSO), and that the results of this
brainstem processing can be measured in the inferior
colliculus (IC; Palmer and Shackleton 2002).

A complex tone containing several pure tone or
NBN harmonics (with spectral components centered
on integer multiples of the fundamental frequency,
FO) can lead to the perception of a single pitch, the
residue pitch (also called low pitch or virtual pitch),
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corresponding to the FO, even in the absence of
energy at the FO itself. The perception of a single
residue pitch rather than that of many single compo-
nents plays a crucial role in analyzing complex
auditory scenes in everyday life (Bregman 1990;
Darwin and Carlyon 1995). In humans, the ability to
extract the residue pitch is present from an early age
(Montgomery and Clarkson 1997). The vast majority
of studies of residue pitch have used stimuli that do
not depend on binaural interactions. However, a
residue pitch in the absence of the fundamental can
also be perceived when several HP components,
centered at harmonic frequencies, are presented
(Bilsen 1977; Gockel et al. 2009). For complex HP,
binaural presentation is of course essential. This
ability to derive a residue pitch, demonstrated for
spectral components on the one hand and for
binaural components on the other hand, could be
due to either a common pitch mechanism or to two
different pitch mechanisms, perhaps operating at
different stages in the auditory system. The present
study investigated whether or not the derivation of a
residue pitch from conventional spectral components
on the one hand and from binaurally created
components on the other is mediated by a common
mechanism or by two different mechanisms.

METHODS
Behavioral task

In a two-interval two-alternative forced-choice task,
listeners indicated which of the two stimuli had the
higher pitch. No feedback was provided in the
experiment proper. Each stimulus consisted of two
components whose frequencies were explicitly chosen
such that the listener’s pitch judgment would indicate
one interval if a residue pitch was perceived (i.e., if
the subject listened synthetically and heard the low or
virtual pitch), but would indicate the other interval if
no residue pitch was perceived (i.e., if the subject
listened analytically to the individual components).

Stimuli

The stimuli were complex tones consisting of two
“harmonics” of three different FOs: a 400-Hz FO
complex with components at 400 and 800 Hz (1st
and 2nd harmonics), a 267-Hz FO complex with
components at 533 and 800 Hz (2nd and 3rd
harmonics), and a 160-Hz FO complex with compo-
nents at 640 and 800 Hz (4th and 5th harmonics);
Table 1. Note that, as the FO decreases, the frequency
of the lower harmonic increases, while that of the
upper harmonic is constant. Thus, pitch judgments
based on analytic listening would go in the opposite
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TABLE 1

Complex tones that are compared with each other in the
main experiment

FO (Hz) Frequencies Harmonic Numbers
400 400+800 1st and 2nd
267 533+800 2nd and 3rd
160 640+800 4th and 5th

As the FO decreases (left-most column), the frequency of the lower
component increases (center column)

direction to those based on the residue pitch, i.e.,
based on synthetic listening. There were four con-
ditions (Fig. 1B). In condition HP-HP, both compo-
nents were HPs. In condition NBN-NBN, both
components were NBNs. In condition HP-NBN, the
lower component was a HP, while the upper compo-
nent was a NBN, and in condition NBN-HP, the lower
component was a NBN, while the upper component
was a HP. The first two and the last two will be
referred to as single-mode and mixed-mode condi-
tions, respectively.

All stimuli were generated digitally in MATLAB.
The HP stimuli were generated from a 500-ms
Gaussian noise that was low-pass filtered at 2 kHz.
They were generated in the spectral domain by first
applying a fast Fourier transform (FFT) to the noise
and then modifying the phases of one of two matched
buffers representing the left and right channels. The
modification consisted of linearly increasing (the
original) phase as a function of frequency over a range
of 0 to 2w radians between 3% below and 3% above the
center frequency of the chosen component(s). Apply-
ing an inverse FFT to the two spectral buffers gave the
signal waveforms for the left and right channels. Note
that after this phase modification, each channel still
contains noise as, within each channel, the phases are
still random. Thus, there are no monaural spectral cues
for pitch available. The HP stimuli had a spectrum level
of 35 dB (re 20 puPa). The NBN(s) that were added
diotically to the HP stimuli (or to the diotic low-pass
noise for the NBN-NBN condition) extended from 3%
below to 3% above the center frequency of the chosen
component(s) and had a spectrum level of 41 dB
(re 20 pPa). This relatively low spectrum level of the
NBN was chosen following some informal listening as to
give a pitch percept that was approximately matched in
salience, i.e., that seemed equally loud, to that of the HP
components.

During training, the complex tones had the same
FOs as in the main experiment (400, 267, and 160 Hz)
but they contained all harmonics up to 2.4 kHz. The
harmonics were sinusoids added in random phase
and presented in Gaussian noise that was low-pass
filtered at 4 kHz. The root mean square (rms) level of
the complex tone was 3 dB below that of the noise.
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The stimulus duration was 500 ms, including 40-ms
raised-cosine onset and offset ramps. The silent
interval between the two intervals within a trial was
500 ms. The stimuli were played out using a 16-bit
digital-to-analog converter (CED 1401 plus), with a
sampling rate of 40 kHz. Stimuli were passed through
an antialiasing filter (Kemo 21C30) with a cutoff
frequency of 15 kHz (slope of 96 dB/oct) and
presented via the two channels of Sennheiser HD650
headphones at an rms level of about 68 dB SPL.

Experimental procedure

Listeners indicated which of the two stimuli had the
higher pitch, without receiving feedback. Each F0O
complex was compared with each of the others.
Within a given trial, both stimuli were from the same
condition. Before each experimental block of 120
trials (ten trials for each condition and FO comparison
in a randomized order across condition and FO
comparison), listeners had a short training block of 30
trials that was intended to help them hear a residue
pitch when only two harmonics were present. In the
training block, feedback was provided. Overall, in the
main experiment, 100 trials were collected in each
condition for each FO comparison for each listener.

Initially, five subjects were tested without a short
training block before each experimental block. At that
point, it seemed difficult to find subjects who heard a
residue pitch with only two harmonics present in the
single-mode conditions; only two of the five were able to
do so. As synthetic listening with only two harmonics was
a prerequisite for the subjects in the present study, it was
considered worthwhile to introduce a short training
block that might help subjects to listen synthetically. The
initial five subjects were retested using training blocks
(subject numbers 1, 2, 11, 13, and 14 in Fig. 2), and the
effect of the presence of the training blocks on synthetic
vs analytic listening was evaluated on the basis of the
data from these five subjects.

Subjects

Fifteen subjects (mean age=30 years; range, 20—
48 years) with self-reported normal hearing were tested.
One of them was the first author. Thirteen of them had
some degree of musical training. Informed consent was
obtained from all subjects. This study was carried out in
accordance with the UK regulations governing biomed-
ical research and was approved by the Cambridge
Psychology Research Ethics Committee.

Analyses

The percentage of trials in which the listeners’
judgments followed the FO rather than the spectral
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FIG. 2. Percentage of judgments where residue pitch was per-
ceived. A Percentage of judgments following the FO shown for each
of the 15 subjects. The FOs of the stimuli to be compared were 400
and 160 Hz. Turquoise symbols represent percentages in the two
single-mode conditions (circles: HP-HP; squares: NBN-NBN). Yellow
symbols represent percentages in the two mixed-mode conditions
(downward pointing triangles: HP-NBN, the low component is a HP
and the high component is a NBN; upward pointing triangles: NBN-
HP, the low component is a NBN and the high component is a HP).
Each data point is based on 100 trials. Sixty independent data points
are plotted. B as A, but for comparison of 400-Hz and 267-Hz FO
stimuli. C as A, but for comparison of 267-Hz and 160-Hz FO stimuli.
A-C The dashed line indicates the separation between those listeners
who, in the HP-HP or NBN-NBN conditions, reliably heard a
residue pitch for at least one of the three FO comparisons and
those who did not.
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pitch of the individual components was calculated.
These percentages (based on 100 trials) are shown in
Figure 2, for each condition and FO comparison, for
all subjects. In the single-mode conditions, ten out of
the 15 subjects (subject numbers 1-10) consistently
heard a residue pitch with only two harmonics present
for at least some of the FO comparisons, i.e., their
pitch judgments followed the FO. The remaining
subjects either listened mainly analytically for all FO
comparisons in the single-mode conditions (subject 13)
or were inconsistent. The data from these five subjects
were excluded from further analysis (indicated by the
dashed line in Fig. 2), as they would not allow any
meaningful conclusions about the ability to hear a
residue pitch in the mixed-mode conditions; one
cannot expect subjects to perceive a residue pitch in
the mixed-mode conditions if they do not perceive a
residue pitch in the single-mode conditions. Next,
percentages were averaged across the two single-mode
conditions and across the two mixed-mode conditions,
respectively. All statistical analyses were conducted after
applying the rationalized arcsine units (RAU) trans-
formation (Studebaker 1985) on these percentages.
Pearson’s correlation coefficient was calculated
between the mixed-mode RAU-transformed percen-
tages of the time that responses went with FO and the
corresponding single-mode RAU-transformed percen-
tages. { tests were conducted, separately on the data for
each FO comparison, to assess the significance of the
difference between the RAU-transformed percentages
of judgments following the F0 in the single-mode and in
the mixed-mode conditions. The best fitting linear
regression line was calculated for RAU-transformed
percentages of judgments following the FO in the
mixed-mode and in the single-mode conditions, taking
into account that both the single-mode and the mixed-
mode data include measurement errors. This required
minimizing the perpendicular distances of the data
points from the fitted straight line, i.e., minimizing the
horizontal and vertical distances simultaneously. Note
that usually, i.e., in the standard way of doing linear
regression, the deviations between data points and fitted
straight line are minimized in one dimension only. For
example, only the deviations between the measured
values of the dependent y variable and the predicted y
values (the y values on the regression line for given
values of the independent variable x) are minimized;
the independent variable x is assumed to be errorfree.

Training

The effect of the training was tested separately for a
subgroup of five listeners. The statistical analysis
showed that the training did not significantly increase
the tendency to perceive the residue pitch rather than
the pitches of individual components. Two ¢ tests, one
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for the mixed-mode conditions and one for the single-
mode conditions (with RAU values averaged across
the three FO comparisons), showed that there were no
significant differences between the percentages of
judgments following the residue pitch before and
after training [single-mode, ¢(4) = —1.31, p=0.26;
mixed-mode, #(4) = —1.28, p=0.27]. Thus, the ten-
dency to listen analytically to a given set of two-tone
harmonic complexes seems to be a stable aspect of
perception that is not overcome by listening to multi-
harmonic complexes with the same FOs for which the
residue pitch is clearly perceived.

RESULTS

The main interest of the study was to compare the
proportion of trials on which listeners heard a residue
pitch in the mixed-mode conditions compared to the
single-mode conditions. If there are two separate
mechanisms for the derivation of residue pitches
from conventional spectral components and from
binaurally created components, then listeners should
not hear a residue pitch in the mixed-mode con-
ditions, as each component would feed into a differ-
ent mechanism. If, on the other hand, there is a single
mechanism for deriving residue pitch from conven-
tional and dichotic components, then listeners should
be equally likely to hear a residue pitch in the mixed-
mode and the single-mode conditions because, even
in the mixed-mode conditions, the two components
would feed into the same process.

Note that the predicted pattern of results for the
case of a single mechanism does rely on the absence
of salient perceptual differences between the tonal
percept that is evoked by the conventional spectral
component and the tonal percept that is evoked by
the HP. This proviso is needed because salient differ-
ences between the two tonal percepts might lead to
perceptual segregation (Bregman 1990; Darwin and
Carlyon 1995; Moore and Gockel 2002), and thus,
promote analytical listening to the individual compo-
nents rather than synthetic listening to the residue
pitch, even if there is only one mechanism for
deriving residue pitch. Subjectively, the salience of
the tonal percept evoked by the NBN was well
matched to that of the HP. Indeed the level of the
NBN necessary to achieve this (7 dB higher at the
signal frequency than the level of the HP noise), as
determined during informal listening, was very similar
to the relative levels determined by Plack et al. (2011)
in order to produce equal frequency discrimination
thresholds for a NBN and a HP component centered
at 300 or 600 Hz.

Before we can compare pitch perception in the
single-mode and mixed-mode conditions, we must
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ensure that judgments for the single-mode stimula-
tion provide clear evidence for the perception of
residue pitch. A preliminary analysis of the results
showed that, in the single-mode conditions, the
tendency to hear a residue pitch varied substantially
between subjects and also between FO comparisons
(see Fig. 2). The latter will be discussed below. The
former was expected, as it is well-known that when
only a small number of harmonics are present, as in
our stimuli, a significant proportion of listeners will
not perceive a residue pitch for a conventional
harmonic complex but rather will listen analytically
to individual spectral components (Smoorenburg
1970; Schneider et al. 2005a; Schneider et al.
2005b). Two thirds of the subjects tested consistently
perceived a residue pitch for at least some of the FO
comparisons in the single-mode conditions, i.e., their
pitch judgment consistently followed the FO (see
Fig. 2, subjects 1-10). The data of these ten subjects
(towards the left of the dashed line in Fig. 2) were
analyzed further and are discussed below.

The important comparison is between the
responses of these subjects in the single-mode and
the mixed-mode conditions. This is shown in Figure 3,
in which the percentage of judgments following the
FO, averaged across the two mixed-mode conditions, is
plotted as a function of the percentage of judgments
following the F0, averaged across the two single-mode
conditions. If it does not matter that one harmonic in
the complex requires binaural processing, while the
other one does not, then all data points should lie
around the diagonal. Broadly, this is the data pattern
observed.

Listeners’ responses in the single-mode and mixed-
mode conditions were highly correlated; Pearson’s
correlation coefficient calculated across all data points
was 0.99 (p<0.001). They were also highly correlated
for each of the three FO comparisons separately
(Pearson’s correlation coefficient was 0.95, 0.93, and
1.00 for the 400-Hz vs 160-Hz, 400-Hz vs 267-Hz, and
the 267-Hz vs 160-Hz comparison, respectively, with
$<0.001 for all comparisons). The best fitting straight
line calculated for all the data had a slope very close
to one (0.97 RAU) and an intercept (value of ywhen x
is zero) very close to zero (—1.38 RAU). These values
indicate near identity between the responses in the
single-mode and the mixed-mode conditions. In
addition, three separate ¢ tests, one for each FO
comparison, showed no significant differences
between the averaged percentages of judgments
following FO in the single-mode and in the mixed-
mode conditions [400-Hz vs 160-Hz comparison, #(9) =
2.84; 400-Hz vs 267-Hz comparison, #(9) = 1.76; 267-Hz
vs 160-Hz comparison, #(9) = —0.10; for all compar-
isons p>0.05, Bonferroni corrected]. Thus, the results
clearly show that (1) listeners are able to hear a
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FIG. 3. Perception of residue pitch in mixed-mode as a function of
that in single-mode conditions. Percentage of judgments following
the FO when averaged across the two mixed-mode conditions (one
HP and one narrowband noise component) as a function of the
percentage of judgments following the FO when averaged across the
two single-mode conditions (both components either HPs or narrow-
band noises) for ten subjects (represented by different colors). Each
data point is based on 200 trials. Thirty independent data points are
plotted; the cluster of points at the top right, indicating cases where
the listeners perceived the residue pitch in both the mixed-mode and
the single-mode conditions in about 100% of the trials, accounts for
18 of these.

residue pitch when one component is a conventional
spectral component and the other is a dichotic
component and (2) the ability to perceive a residue
pitch is not significantly affected by whether or not
the component pitches have a different origin
(whether or not they require binaural processing).
Therefore, the results clearly indicate the existence
of a single mechanism for deriving residue pitch
from conventional spectral and binaurally created
components.

Curiously, for the 267-Hz vs 160-Hz comparison,
five of the subjects seemed consistently to listen
analytically (see Fig. 2C, subjects 4-8; Fig. 3, circles
in lower left corner), while they listened synthetically
for the other FO comparisons. Verbal reports from two
subjects within this group, who, due to their musical
training were able to identify which musical intervals
they heard in the experiment, indicated that these
data were not due to analytic listening but rather to
an octave confusion. For the 267-Hz vs 160-Hz
comparison, they heard a musical interval corre-
sponding roughly to a minor third. Thus, these
subjects perceived the pitch of the complex with FO=
160 Hz as that of a complex with F0=320 Hz, and this
led them to judge the complex with FO=160 Hz as
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being higher than the complex with F0=267 Hz.
Overall, it seems that, even for this FO comparison,
subjects listened synthetically. One reason for the
octave confusion may be that having heard the other
pitches (267 and 400 Hz), the 320-Hz FO represented
a smaller change in chroma (the note of the sound)
than did the (true) 160-Hz FO. If so, then our results
suggest that, when judging the direction of a pitch
change between consecutive tones, listeners often
choose the direction that requires the smallest change
of chroma between the two sounds, while ignoring the
“pitch height,” i.e., which “octave” each sound is in.

DISCUSSION

Most current theories about the processing leading to
the perception of a dichotic pitch are based on the
assumption that there is an internal “central spec-
trum” that has a peak at the center frequency of the
narrow band that is interaurally decorrelated. It is still a
matter of debate how this central spectrum is generated
(Raatgever and Bilsen 1986; Culling et al. 1998;
Hartmann and Zhang 2003). The dichotic pitch is
supposed to be determined by the central spectrum. In
the case of a complex pitch (with multiple decorrelated
regions), the pitch has been assumed to be determined
via a central pattern recognition process (Goldstein
1973; Terhardt 1974) similar to those that can be
applied when a sound is presented either to one ear or
identically to both ears (Raatgever and Bilsen 1986).
The present results demonstrate a common mech-
anism for deriving residue pitch from spectral com-
ponents and dichotic pitch components like the HP,
which itself depends on binaural processing. Listeners
were just as likely to hear a residue pitch in the mixed-
mode conditions as in the single-mode conditions.
These results, taken together with physiological
reports, indicate that this common mechanism for
deriving the residue pitch is most likely located at or
beyond the dorsal nucleus of the lateral lemniscus
(DNLL) or the IC in the midbrain. Specifically, there
is physiological evidence that binaural processing of
temporal information that is necessary for the extrac-
tion of a dichotic pitch component occurs in the MSO
(Palmer and Shackleton 2002). As the output from
MSO cells does not project to other parts of the MSO,
but only to higher nuclei, i.e.,, the DNLL in the
brainstem and the IC in the midbrain (Schofield
2005), these are the earliest levels where information
on binaural components could be combined, thus
allowing the derivation of a residue pitch from
dichotic components. Our finding that the pitch
mechanism treats dichotic and conventional spectral
components alike means that this conclusion is not
specific to dichotic pitches such as HP but generalizes
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to the wide range of sounds we hear in everyday life. It
complements the finding that a representation of
residue pitch can be observed in auditory cortex
(Bendor and Wang 2005; Hall and Plack 2009) by
imposing a constraint on the earliest stage of process-
ing at which residue pitch is extracted.

The present results have specific implications for
models that aim to account for pitch perception using
simulations of the response of the peripheral auditory
system to auditory stimuli. For example, one popular
model simulates the response of the basilar mem-
brane, hair cells, and auditory nerve (AN), and then
performs an autocorrelation on the simulated
responses of AN fibers (Meddis and Hewitt 1991a, b).
Previous findings that listeners can derive a residue
pitch from spectral components presented to opposite
ears (Houtsma and Goldstein 1972) can be easily
accounted for by this class of model by simply assuming
that the autocorrelation process receives inputs from
AN fibers innervating both ears. This process could be
located as early as in the cochlear nucleus (CN; Palmer
and Winter 1992), which receives input from both ears
(Ingham et al. 2006). However, to the best of our
knowledge, there exists no evidence that the CN
supports binaural processing of fine temporal informa-
tion. Substantial modifications of this class of model
would be needed to account for the fact that spectral
components are readily combined with “components”
that do not exist monaurally and can only arise as the
result of binaural interactions of temporal information.
An outline of such a model has been described by
Akeroyd and Summerfield (1999). Another model,
which is one of the few to specify the neural processes
that derive residue pitch, was proposed by Wiegrebe and
colleagues (Wiegrebe and Winter 2001; Wiegrebe and
Meddis 2004). They proposed that the initial computa-
tion of pitch takes place in “sustained chopper” cells of
the CN. However, the lack of interaural temporal
processing by the CN means that this model cannot
account for the combination of spectral and HP
components.

There is evidence that, in speech perception, listen-
ers can combine two formants to determine vowel
identity, when one is defined by an increase in intensity
and the other is defined by an interaural decorrelation
within a narrow frequency band centered on the
formant frequency (Akeroyd and Summerfield 2000).
While this result might be expected for a speech
perception task dependent on identifying high-level
units stored in learned cortical representations, the
same was not necessarily true for pitch. Gockel et al.
(2009) showed that not only can listeners derive a
residue pitch from several HP components in the
absence of the fundamental, but also that FO discrim-
ination for a target HP complex can be impaired when
another spectral complex tone (the interferer) with FO
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close to the mean FO of the target is presented
simultaneously. The amount of interference from a
spectral complex interferer was about the same when
the target complex was a complex HP as when it was a
loudness-matched spectral complex. This interference
could arise because all simultaneous components
(whether spectral or binaurally created) feed into one
mechanism for deriving residue pitch. However, as also
discussed by Gockel et al. (2009), there existed the
possibility that spectral components and binaurally
created components fed into two different pitch
mechanisms and that FO discrimination for the
target complex HP was impaired because, at a later
stage, either the pitches might not be independ-
ently accessed or they might be transformed into a
common code. The current study addressed this
issue more directly and provided evidence that
spectral and HP components are combined into a
residue via a single mechanism. It did not, however,
address the issue of whether either the pitches of
the components or the residue pitch are deter-
mined by place or temporal mechanisms or both
(Carlyon and Shackleton 1994; Gockel et al. 2004).

To summarize, the mixed-mode stimuli were
equally likely to lead to the perception of a residue
pitch as the single-mode stimuli, indicating that the
mechanism that derives residue pitch does not
process components of different origin in a different
way (whether or not they require binaural process-
ing). This shows that there exists a single mechanism
for the derivation of residue pitch from binaural
components and from spectral components. This
mechanism is located at or beyond the DNLL or the
IC in the midbrain. The current findings may inform
future research into the physiology of the perception
of residue pitch.
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