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Abstract

Motivation: LncRNAs play important roles in various biological processes. Although more than

58 000 human lncRNA genes have been discovered, most known lncRNAs are still poorly character-

ized. One approach to understanding the functions of lncRNAs is the detection of the interacting

RNA target of each lncRNA. Because experimental detections of comprehensive lncRNA–RNA

interactions are difficult, computational prediction of lncRNA–RNA interactions is an indispensable

technique. However, the high computational costs of existing RNA–RNA interaction prediction

tools prevent their application to large-scale lncRNA datasets.

Results: Here, we present ‘RIblast’, an ultrafast RNA–RNA interaction prediction method based on

the seed-and-extension approach. RIblast discovers seed regions using suffix arrays and subse-

quently extends seed regions based on an RNA secondary structure energy model. Computational

experiments indicate that RIblast achieves a level of prediction accuracy similar to those of existing

programs, but at speeds over 64 times faster than existing programs.

Availability and implementation: The source code of RIblast is freely available at https://github.

com/fukunagatsu/RIblast.

Contact: t.fukunaga@kurenai.waseda.jp or mhamada@waseda.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Long non-coding RNAs (lncRNAs) play integral roles in diverse bio-

logical processes including transcriptional regulation (Kino et al.,

2010) and subnuclear structure formation (Naganuma and Hirose,

2013). The dysfunctions of many lncRNAs are associated with se-

vere diseases such as diabetes and various cancers (Wapinski and

Chang, 2011), and thus elucidating lncRNA functions is an import-

ant research topic. Although large-scale transcriptome analysis has

revealed that more than 58 000 lncRNA genes are encoded by the

human genome (Iyer et al., 2015), most of these lncRNAs are still

poorly characterized (de Hoon et al., 2015).

Sequence similarity search and RNA secondary structure similar-

ity search have achieved substantial success in characterizing the

function of protein-coding genes and small RNAs (sRNAs), respect-

ively (Altschul et al., 1990; Nawrocki and Eddy, 2013). However,

these strategies are unsuitable for inferring the function of lncRNAs

because lncRNAs frequently lack sequence and structure conserva-

tion (Cabili et al., 2011). In contrast, the identification of interaction

partners for each lncRNA should be a powerful approach for infer-

ring the function of lncRNAs because lncRNAs function by being

assembled with other proteins or RNAs (Hirose et al., 2014).

Several lncRNAs have been experimentally confirmed to regulate
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biological processes through their interactions with target RNAs.

For example, Abdelmohsen et al. determined that lncRNA 7SL re-

duces p53 protein translation levels by binding TP53 mRNA

(Abdelmohsen et al., 2014). Gong and Maquat also discovered that

lncRNA 1/2-sbsRNAs inhibit the translation of the interaction tar-

get RNA through a Staufen1-mediated mRNA decay process (Gong

and Maquat, 2011). These examples show that the identification of

lncRNA–RNA interactions is an important step in characterizing

lncRNA functions.

Several sequencing-based technologies have been developed for

the experimental discovery of RNA–RNA interactions. RIA-seq

(Kretz et al., 2013) and RAP-RNA (Engreitz et al., 2014) can iden-

tify target RNAs attached to an anchored RNA. Although these

methods are outstanding technologies to exhaustively detect inter-

action targets of a specific lncRNA, repeating these experiments

across many lncRNAs is labour intensive. In contrast, PARIS (Lu

et al., 2016), SPLASH (Aw et al., 2016), LIGR-seq (Sharma et al.,

2016) and MARIO (Nguyen et al., 2016) can comprehensively iden-

tify RNA–RNA interactions in vivo. However, the majority of the

detected interactions have been related to ribosomal RNAs or small

RNAs, and the number of identified lncRNA–RNA interactions has

been limited. In addition, because most of the lncRNAs show tissue-

specific expression patterns (Cabili et al., 2011; Iyer et al., 2015),

these experiments on various tissues are necessary but they require

quite hard work. Since the detection of genome-wide lncRNA–RNA

interactions through experiments is difficult, computational predic-

tion of lncRNA–RNA interactions is an indispensable technique.

Szcze�sniak and Makalowska predicted entire lncRNA–RNA

interactions across the human transcriptome using sequence similar-

ity search without consideration of RNA secondary structure

(Szcze�sniak and Makałowska, 2016). However, benchmarking re-

sults of RNA–RNA interaction predictions showed that omitting

RNA secondary structure information decreases prediction accuracy

(Lai and Meyer, 2016). To date, many RNA–RNA interaction pre-

diction tools that consider RNA secondary structure have been pro-

posed, e.g. IntaRNA (Busch et al., 2008), RNAplex (Tafer and

Hofacker, 2008; Tafer et al., 2011) and RactIP (Kato et al., 2010),

and can detect sRNA interactions with high accuracy. However, as

these programs were designed for detecting sRNA interactions, the

computational costs are too high to predict lncRNA interactions

comprehensively. To predict a comprehensive lncRNA interactome

with consideration of RNA secondary structure, Terai et al. (2016)

firstly screened interaction candidates based on only sequence com-

plementarity and then exhaustively predicted interactions using

IntaRNA. Although their approach effectively narrowed down inter-

action candidates, it still required extensive computational resources

to utilize IntaRNA. Therefore, a much faster RNA–RNA interaction

prediction program that considers RNA secondary structure is

required for further progress in lncRNA function estimation.

In the present study, we developed an ultrafast RNA–RNA inter-

action prediction algorithm for comprehensive lncRNA interaction

analysis. The key idea of our algorithm is the utilization of seed-

and-extension approach, which is widely adopted in sequence hom-

ology search tools including BLAST (Altschul et al., 1990). We

implemented this high-speed algorithm as a program named RIblast,

which detects seed regions using suffix arrays, and subsequently ex-

tends both ends of seed regions based on an RNA secondary struc-

ture energy model. While the prediction accuracies of RIblast were

comparable to those of existing programs, RIblast was more than 64

times faster than existing tools.

2 Materials and methods

2.1 Concept of the RIblast algorithm
RIblast enumerates potentially interacting segments between a query

RNA x and a target RNA y. RIblast uses two energies as the evalu-

ation criteria to determine whether two segments, (xs and ys) in se-

quences x and y, intermolecularly interact: accessible energy and

hybridization energy. Accessible energy is the energy required to pre-

vent the segments from forming intramolecular base pairs and can

be calculated by utilizing a partition function algorithm (McCaskill,

1990). Briefly, a segment with high accessible energies tends to not

form intermolecular base pairs because the segment forms intramo-

lecular base pairs (Fig. 1A). Hybridization energy is the free energy

derived from intermolecular base pairs between two segments and

can be calculated as the sum of stacking energies and loop energies

in the formed base-paired structure based on a nearest-neighbour en-

ergy model (Fig. 1B). When calculating hybridization energies,

intra-molecular base pairs are not taken into consideration. Here,

we defined the interaction energy between two segments xs and ys as

the sum of the accessible energy of xs, accessible energy of ys and hy-

bridization energy between xs and ys. RIblast outputs two segments

with a particularly low interaction energy as a detected RNA–RNA

interaction. Note that RNAup (Mückstein et al., 2006), IntaRNA

(Busch et al., 2008) and RNAplex-a (Tafer et al., 2011) also predict

RNA–RNA interactions based on this combination of hybridization

energy and accessible energy, and each showed high prediction accu-

racies in a previous benchmarking test (Lai and Meyer, 2016).

For all-to-all interaction predictions of lncRNAs, the calculation

time of accessible energies scales linearly with the number of se-

quences. This is because accessible energies of an RNA sequence can

be calculated independently of the other RNA sequences. On the

other hand, the calculation time of hybridization energies is quad-

ratic with the number of sequences when an all-to-all interaction

prediction is conducted. This calculation is the obstacle to compre-

hensive lncRNA–RNA interaction prediction. The calculation of hy-

bridization energy between two RNA segments is similar to the

calculation of a local alignment score between two sequences

(Tjaden et al., 2006). Therefore, hybridization energy can be calcu-

lated based on a Smith-Waterman algorithm-like method. In the

subject of local sequence alignment, many researches have been con-

ducted to speed up the calculation of alignments. Seed-and-

extension heuristic is one of the most successful approaches and has

been adopted by many sequence alignment tools, such as BLAST

(Altschul et al., 1990) and LAST (Kiełbasa et al., 2011). This

method first finds short matching regions, which are called seeds,

between a query and target sequence and subsequently extends

alignments from both end points of the detected seeds. We

recognized that the application of this approach to the calculation

of hybridization energy should accelerate the computation speed

considerably.

2.2 Methodology overview
RIblast implements two major steps: database construction and an

RNA interaction search. Figure 1C shows the flowchart of the

RIblast algorithm. In the database construction step, RIblast first

calculates the accessible energy of each segment in the target RNA

dataset. To speed up calculation, RIblast calculates approximated

accessible energies. Second, target RNA sequences are reversed and

concatenated with delimiter symbols inserted between the two se-

quences. Third, a suffix array of the concatenated sequence is
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constructed. The suffix array is an efficient text-indexing data struc-

ture that comprises a table of the starting indices of all suffixes of

the string in alphabetical order. It can be constructed in linear-time

relative to sequence length (Nong et al., 2011; Shrestha et al., 2014).

Fourth, in order to speed-up the RNA interaction search, search re-

sults of short strings are exhaustively pre-calculated. Then, the

approximated accessible energies, concatenated sequences, suffix

array and search results of short strings are stored in a database.

In the RNA interaction search step, RIblast first calculates

approximated accessible energies and constructs a suffix array for a

query sequence. Second, RIblast finds seed regions whose hybridiza-

tion energy is less than a threshold energy T1 based on two suffix

arrays of the query and the database. Third, the interaction energies

of the detected seed regions are calculated by summation of hybrid-

ization energy and two accessible energies. In this step, RIblast re-

moves seed regions whose interaction energies exceed 0 kcal/mol.

Fourth, RIblast extends interactions from seed regions without a

gap. RIblast terminates the extension when the duplexes is no longer

formed in the extension. Fifth, the interactions that fully overlap

with other interactions are removed. In addition, those interactions

with interaction energies exceeding the threshold energy T2 are also

excluded. Note that no interactions are removed if T2 is set to

0 kcal/mol. Finally, RIblast extends interactions from seed regions

with a gap. RIblast terminates the extension when the duplexes is no

longer formed in the extension.

2.3 The method for calculating accessible energy
We defined x i::j½ � as a segment from position i to position j in an

RNA sequence x. Here, we defined the accessible energy that is

required to make the segment form a single-stranded structure as

Eacc i; jð Þ, and the accessible probability that the segment x i::j½ � is

single-stranded as pacc i; jð Þ. For a fixed segment length, Raccess can

calculate accessible energies and accessible probabilities of all

segments with O NW2
� �

using dynamic programming (Kiryu et al.,

2011). Here, N is the sequence length and W is the constraint of

maximal distance between the bases that may form base pairs.

However, RIblast requires the accessible energies of segments

with arbitrary length, and the exhaustive calculation is computa-

tionally expensive. Therefore, RIblast uses approximated accessible

energies ~Eacc i; jð Þ instead of Eacc i; jð Þ. This method was proposed in

RNAplex-a (Tafer et al., 2011). ~Eacc i; jð Þ was defined as follows:

~Eacc i; jð Þ ¼ �RT log ~pacc i; jð Þð Þ

~pacc i; jð Þ ¼ pacc i; iþ d� 1ð Þ �
Yj

a¼iþd

~pacc að Þ

~pacc að Þ ¼ pacc a� d; að Þ
pacc a� d; a� 1ð Þ

R represents the gas constant and T represents the absolute tempera-

ture (we used T¼310.15 K in this study). By this approximation,

we only have to calculate the accessible energies of segments with

length d and dþ 1. In addition, by restricting the minimum length of

seeds to d, we need not calculate accessible energies of segments

whose length is less than d.

2.4 Seed search
BLAST searches seeds with a fixed length, but this method is unsuit-

able for RNA–RNA interaction search from the viewpoint of RNA

energy model. For example, in Andronescu’s energy model, the hy-

bridization energy of a 6-mer seed consisting of only G-C base pairs

is about -10 kcal/mol, but that consisting of only G-U base pairs is

about -1 kcal/mol. The large difference in hybridization energies

A

B

C

Fig. 1. (A) A schematic illustration of the effect of accessible energies. While a segment with low accessible energy tends to form inter-molecular base pairs, a

segment with high accessible energy tends not to form inter-molecular base pairs because such a segment tends to form intra-molecular base pairs. (B) Example

of hybridization energy calculation. Hybridization energy can be calculated as the sum of stacking energies and loop energies in the formed base-paired structure.

Generally, stacking energies stabilize RNA–RNA interactions but loop energies destabilize interactions. This calculation is based on Turner’s parameter.

(C) Overview of the RIblast algorithm
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between seeds of the same length may depress the performance of

tools. Therefore, RIblast adopts score-based seeds, as proposed in

GHOSTX (Suzuki et al., 2014). Our score-based seeds were defined

as the perfect base-pairing region whose hybridization energy is less

than the threshold energy T1 and length is at least d.

In RIblast, the enumeration of duplexes satisfying the seed crite-

ria and the search of the seeds in the database and the query are con-

ducted simultaneously based on the suffix array and the depth-first

search. Supplementary Figure S1 shows the schematic illustration of

the seed search. First, RIblast searches for a single inter-molecular

base pair such as G-C. If this pair is found in the query and the data-

base, then RIblast extends the base pair by one base pair as GG-CC,

GC-CG, . . ., GU-CG and then checks whether these extended strings

are found in the query and the database. If the extended strings are

detected and meet the conditions for score-based seeds, then RIblast

stores the string pair as a seed. If extended strings are detected but

do not meet the conditions for score-based seeds, then RIblast ex-

tends the strings by one base pair again and repeats this step. If ex-

tended strings are not detected, then the extension is stopped. The

search of extended duplexes in the database and the query is effi-

ciently calculated based on the suffix array (Shrestha et al., 2014).

To avoid overly long seeds, we restricted the max seed length length-

max. Supplementary Figure S2 shows the pseudo-code of the RIblast

seed search algorithm. Here, Sq and Sdb are the query sequence and

the reversed and concatenated database sequence, respectively. SAq

and SAdb are the suffix arrays of Sq and Sdb, respectively. seedq and

seeddb represent the temporary seeds for the query and database, re-

spectively. spq, epq, spdb and epdb are the indices of SAq and SAdb.

The SASearchNextString function returns the indices of the new ex-

tended string in a suffix array. If the string exists in the query and

the database, then the returned sp(sp0) is smaller than the returned

ep(ep0).

In order to accelerate this seed search step, we pre-calculate the

indices of the strings whose length is shorter than l for a database se-

quence in the database construction step. The results of the short se-

quence search are used on the database sequences. Therefore, this

binary search of the suffix array is needed only for the search of

query sequences or long strings in the database sequence.

2.5 Extension
After the seeds are found in the query and the database, RIblast tries

to extend interactions from both end points of these seed regions.

The gapless extension is first conducted, and then the gapped exten-

sion is performed in a similar way to BLAST, LAST and GHOSTX.

RIblast first extends interactions without a gap from seed re-

gions. If extended interactions have lower interaction energies than

the present minimum interaction energy in this extension step, then

RIblast updates the minimum interaction energy. Otherwise, exten-

sions are repeated. If RIblast extends Y nucleotides from the length

that requires the minimum interaction energy in this extension but

the energy has not been updated, then RIblast terminates the gapless

extension. In this step, we assume that the possible complementary

bases always interacts with each other. After the gapless extension

step, if two interactions fSq i; j½ �; Sdb k; l½ �g and fSq i0; j0½ �; Sdb k0; l0½ �g
satisfy the conditions i � i0; j � j0; k � k0 and l � l0, then we ex-

clude the later interaction. In addition, if the interaction energy of

an interaction exceeds threshold T2, then we remove the interaction.

Next, RIblast tries to extend interactions with a gap. Like the

gapless extension step, if the interaction energy of extended inter-

actions is lower than the present minimum interaction energy in this

extension step, then the minimum interaction energy is updated.

If RIblast extends X nucleotides from the length that requires the

minimum interaction energy in this extension but the energy has not

been updated, then RIblast terminates the gapless extension. The

calculation of the interaction energy of extended interactions is as

follows (Supplementary Fig. S3 shows the schematic illustration).

Here, we regard fSq i; j½ �; Sdb k; l½ �g as an interaction after gapless ex-

tension. In the extension towards the 50 end of the query sequence

(and 30 end of the database sequence), RIblast calculates Eint a; bð Þ,
which is the minimum interaction energy for sequences Sq a; j½ � and

Sdb b; l½ �, as the following equation.

Eint a; bð Þ ¼
if Sq a½ � and Sdb b½ � can pair :

min
c;d

Eloop a; b; c; dð Þ þ Eint c;dð Þ

� ~Eacc c; jð Þ � ~Eacc n� 1� l;n� 1� dð Þ

þ ~Eacc a; jð Þ þ ~Eacc n� 1� l; n� 1� bð Þ

0
BBBBBB@

1
CCCCCCA

otherwise :

1

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

where Eloop a; b; c; dð Þ indicates the free energy of the loop consisting

of base pairs (a, b) and (c, d) and n is the sequence length of the

database sequence. Here, a < c � i < j and b < d � k < l are

satisfied. In addition, the internal loop size c� aþ d � b is restricted

to within X. This formula is the same as the calculation formula of

interaction energy in RNAup and IntaRNA. The extension in the

opposite direction is calculated in the same manner. Dangling ener-

gies are added only after gapped extensions are finished.

2.6 Evaluation method
We assessed the performance of RIblast using three evaluation

methods: base pair prediction performance, bacterial sRNA target

prediction performance, and lncRNA TINCR target prediction

performance.

2.6.1 Method for evaluating base pair prediction performance

To evaluate the base pair prediction performance, we used 109 vali-

dated bacterial sRNA-mRNA pairs and 52 validated fungal

snoRNA-rRNA pairs as datasets, which were constructed by Lai

and Meyer (Lai and Meyer, 2016). The bacterial sRNA-mRNA

interaction dataset was composed of 64 E.coli and 45 Salmonella

enterica interactions as well as 18 query sRNAs and 82 target

mRNAs. Following the benchmark research of Lai and Meyer (Lai

and Meyer, 2016), we used the sequences between 150 bp upstream

and 150 bp downstream of each start codon as the target sequences.

All fungal snoRNA-rRNA interactions in the dataset were S. cerevi-

siae C/D box interactions, and these interactions were between 43

snoRNAs and 2 rRNAs. For target rRNAs, full rRNA sequences

were used. We selected IntaRNA and RNAplex-a as the software to

compare with RIblast although there are many programs to predict

RNA–RNA interactions. This is because both these programs con-

sider accessible energies as with RIblast and show the best prediction

performance in current tools (Lai and Meyer, 2016). The command

line options used for IntaRNA and RNAplex-a were the same as

those used by previous benchmark research (Lai and Meyer, 2016).

As the energy parameter characterizing RNA secondary structures,

we used two energy parameters, Turner’s 2004 parameter (Mathews

et al., 2004) and Andronescu’s BL* parameter (Andronescu et al.,
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2010). Because IntaRNA did not have an option to change the en-

ergy parameter, we used only the default Turner’s 1999 parameter

(Mathews et al., 1999) in the IntaRNA evaluation. TPR, PPV and

MCC were calculated for each RNA–RNA interaction, and the aver-

aged scores were evaluated. The definitions of these three scores are

as follows: TPR¼TP/(TPþFN), PPV¼TP/(TPþFP), and

MCC ¼ TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p

We only evaluated the minimum energy interactions.

2.6.2 Method for evaluating sRNA target prediction performance

We evaluated the sRNA target prediction performance by predicting

all-to-all interactions between 18 sRNAs and all 4319 E.coli

mRNAs. This evaluation method was originally proposed by

Richter and Backofen (2012). As target mRNA sequences, we used

sequences between 150 base-pairs (bp) upstream and 50 bp down-

stream from each start codon. This sequence length setting is the

same as that used by Terai et al. (2016). The sequence data were

downloaded from NCBI (http://www.ncbi.nlm.nih.gov/nuccore/

NC_000913). We used 64 experimentally validated interactions as

positive data, which were also used to evaluate base pair prediction

performance. As negative data, we used all non-positive interactions

in all-to-all interactions between 18 sRNAs and all 4319 E.coli

mRNAs.

2.6.3 Method for evaluating lncRNA target prediction accuracy

To evaluate the human lncRNA target prediction performance, we

used an RIA-seq-based TINCR interaction dataset (Kretz et al.,

2013). We used the same dataset and evaluation method as Terai

et al. (2016). The dataset was composed of 5195 target RNAs and

1062 RNAs among them that interact with TINCR at one or more

interacting segments. The target RNAs that have more interacting

segments are more likely to be TINCR-interacting RNAs. As posi-

tive data, we used RNAs that at least had a threshold number of the

interacting segments. When this threshold was set to 1, 2, 3, 4 and 5

interactions, the numbers of positive data were 1062, 434, 191, 104

and 65, respectively. Instead of comparing RIblast to IntaRNA or

RNAplex-a, we compared the performance of RIblast with those of

the Terai et al. pipeline (Terai et al., 2016) and LAST (Kiełbasa

et al., 2011), a fast local alignment tool. This is because lncRNA tar-

get predictions by IntaRNA and RNAplex-a have heavy computa-

tional costs. As LAST alignment parameter, we used the parameter

settings used by Szcze�sniak and Makalowska (2016). We regarded

the alignment score� (–1) as the interaction energy. The simple re-

peat regions were masked by TANTAN (Frith, 2010) with the de-

fault options. In order to match our study with previous research by

Terai et al., we excluded masked regions in the seed search step but

considered them in the RIblast extension step. The short summary

of the Terai et al. pipeline is as follows. First, accessible energies

were calculated by Raccess, and inaccessible regions were removed.

Second, pairs of complementary gapless subsequences were detected

as interaction regions by LAST. Finally, the interaction energies of

the interaction regions were calculated by IntaRNA.

2.7 Assesment of parameter settings
RIblast uses multiple parameters in the algorithm, and the appropri-

ate parameters have to be set in order to predict RNA–RNA inter-

action accurately and efficiently. Because the influence of these

parameters on the performance is not independent, the simultaneous

optimization of all parameters is desirable. However, there are too

many parameters in RIblast, it is difficult to optimize all parameters

simultaneously. Therefore, we determined parameter settings as fol-

lows. First, we fixed lengthmax, which is the parameter of a max-

imum seed length, to 20 because this parameter does not influence

software performance when the value is sufficiently large. Second, l,

which is the parameter for pre-search of seed in the database con-

struction step, was fixed to 8. This is because this parameter influ-

ences only the calculation speed of seed search step and the

calculation time of this step is very short compared to the total cal-

culation time. Third, we investigated the influence of parameter T1

and X on the base pair prediction performance of the bacterial

sRNA-mRNA dataset with the other parameters fixed. T1 is a

threshold energy for seed detection, and X is a threshold length for

extension termination. We adopted the parameter combination that

yielded the highest MCC score. If there were several parameter com-

binations with the best performance, we adopted the smallest X and

largest T1 parameter combination in order to accelerate the compu-

tation. In this step, W, d, Y and T2 is set to 70, 5, 5, and 0, respect-

ively. The parameter setting of W is the same as that of a benchmark

research for RNA–RNA interaction prediction tools (Lai and

Meyer, 2016). Fourth, we assessed the effect of parameter W, d and

Y on the base pair prediction performance of the bacterial sRNA-

mRNA dataset with determined X and T1 values. Fifth, to deter-

mine values for the parameter T2, we examined the dependence of

lncRNA target prediction accuracy decreases from area under the re-

ceiver operating characteristic curve (AUROC) scores of

SUMENERGY on T2. We used AUC scores of -16 kcal/mol and -

8 kcal/mol as interaction energy thresholds for SUMENERGY when

the energy parameters were Turner and Andronescu parameters,

respectively.

3 Results

3.1 Evaluation of basepair prediction performance
We investigated base pair prediction performance by evaluating

whether programs predict correct base pairs between two RNAs

with experimental interaction evidence.

We firstly determined the values of the parameter T1 and X in

RIblast based on the base pair prediction performance of the bacter-

ial sRNA-mRNA dataset. The performances of various T1 and X

values were investigated, and the parameter set that yielded the best

performance was adopted (Supplementary Tables S1 and S2). These

determined values of T1 and X were used in the following analyses.

T2 was set to 0 kcal/mol in this evaluation. As a result, we set X and

T1 to 18 and -10.0, respectively, when we used Turner’s model, and

we set X and T1 to 16 and -6.0, respectively, when we used

Andronescu’s model. Next, we assessed the effect of parameter W,

d, and Y on the base pair prediction performance with determined X

and T1 values. (Supplementary Tables S3–S5). In consequence, we

set W, d and Y to 70, 5 and 5, respectively.

Tables 1 and 2 show the evaluation results of base pair predic-

tion performance. For the bacterial sRNA-mRNA dataset, RIblast

with Andronescu’s parameter achieved the best PPV (0.73) and

MCC (0.67) performance. The best TPR score was obtained by

IntaRNA (0.66). For the fungal snoRNA-rRNA dataset, RNAplex-a

with Andronescu’s parameter was the best performing tool accord-

ing to all three accuracy measures (TPR, 0.74; PPV, 0.69; MCC,

0.71), and was followed by RIblast using Andronescu’s parameter

(TPR, 0.66; PPV, 0.60; MCC, 0.62). In both datasets, tools using

Andronescu’s parameter showed superior performance to the same

tool with Turner’s parameter.
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3.2 Evaluation of sRNA target prediction accuracy
Although the information of interacted base pair is useful for design-

ing experiments for further functional analyses of the RNAs, what

most of the users would like to know may be whether an RNA is a

target or not. Therefore, we evaluated bacterial sRNA target predic-

tion performance by validating whether the predicted interaction

energies of positive sRNA-mRNA interactions are lower than those

of negative sRNA-mRNA interactions. After all-to-all interaction

between mRNAs and sRNAs were predicted by each software, we

sorted mRNAs for each sRNA by the minimum interaction energy.

Then, we plotted ROC-like curves whose x- and y-axes were the

number of true positive predictions and the total number of target

predictions per sRNA, respectively. The parameter T2 was also set

to 0 kcal/mol in this evaluation.

Figure 2 shows the bacterial sRNA target prediction perform-

ance. The best performing tool was RNAplex-a with Andronescu’s

parameter. The prediction performance of RIblast with Turner’s

parameter was slightly lower, but RIblast with Andronescu’s param-

eter showed similar performance to the other programs.

3.3 Evaluation of lncRNA TINCR target prediction

accuracy
Third, we validated human lncRNA target prediction performance

by comparing predicted interactions of human lncRNA TINCR

with interactions experimentally validated by RIA-seq (Kretz et al.,

2013). After all interactions between TINCR and target RNAs were

calculated, we sorted target RNAs based on the minimum inter-

action energy among all predicted interactions in the target RNA

(denoted by MINENERGY) or the sum of the interaction energies

that are lower than some threshold value in the target RNA (denoted

by SUMENERGY). Then, we calculated AUROC scores using the

pROC R package (Robin et al., 2011).

Supplementary Table S6 shows AUROC results for

MINENERGY sorting. LAST, Terai et al. pipeline and RIblast ex-

hibited performances that were similar to each other in this case. On

the other hand, Figure 3 and Supplementary Tables S7–S9 show

AUROC scores for SUMENERGY sorting. This result illustrates

that SUMENERGY sorting performs better than MINENERGY

sorting among all methods. This result is consistent with at least one

previous study (Terai et al., 2016). In addition, for SUMENERGY

sorting, RIblast achieved higher AUROC scores than the other

methods for any threshold number of interacting segments. Unlike

the evaluation of base pair prediction or sRNA target prediction per-

formance, there was no difference in performance between Turner’s

and Andronescu’s parameters. Finally, to obtain the appropriate

parameter T2, we investigated the influence of T2 on TINCR target

prediction accuracy (Supplementary Tables S10–S11). Although

lower T2 values cause faster computation speed with lower predic-

tion accuracy, the accuracy was robust to the T2 parameter setting.

We set T2 to -6 and -4 when the energy models were Turner’s and

Andronescu’s parameters, respectively.

3.4 Evaluation of running time
We finally evaluated the computational speed of RIblast by compar-

ing its run time with the times required for IntaRNA, RNAplex-a

and Terai et al. pipeline. We excluded joint secondary structure

Table 1. The base pair prediction performance on the bacterial

sRNA dataset

Program TPR PPV MCC

IntaRNA 0.66 0.61 0.62

RNAplex-a (Turner) 0.63 0.56 0.58

RNAplex-a (Andronescu) 0.60 0.68 0.63

RIblast (Turner) 0.58 0.66 0.61

RIblast (Andronescu) 0.63 0.73 0.67

Note: The columns correspond to the three evaluation criteria. The rows

indicate the performance of each program. The bold values are the highest

scores in each column.

Table 2. The base pair prediction performance on the fungal

snoRNA dataset

Program TPR PPV MCC

IntaRNA 0.61 0.53 0.56

RNAplex-a (Turner) 0.56 0.49 0.52

RNAplex-a (Andronescu) 0.74 0.69 0.71

RIblast (Turner) 0.57 0.49 0.53

RIblast (Andronescu) 0.66 0.60 0.62

Note: The columns correspond to the three evaluation criteria. The rows

indicate the performance of each program. The bold values are the highest

scores in each column.

Fig. 2. The performance of bacterial sRNA target prediction. The x- and

y-axes represent target prediction numbers per sRNA and true positives,

respectively.

Fig. 3. The performance of human lncRNA TINCR target prediction. The x-axis

represents the threshold number of interacting segments in the positive data.

The y-axis represents the AUROC score.
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prediction using RactIP (Kato et al., 2010) in the Terai et al. pipeline

(Terai et al., 2016) because this step does not affect prediction

accuracy. The calculation time for RNAplex-a included the run time

of accessibility calculation by RNAplfold (Bernhart et al., 2006).

The query and target sequences were randomly selected from

human lncRNAs and mRNAs in Gencode version 24, respectively

(Harrow et al., 2012). Then, all-to-all interaction predictions

between query and target sequences were conducted. The computa-

tion was performed on an Intel(R) Xeon E5 2670 2.6GHz CPU

with 4 GB of memory. Table 3 and Figure 4 show the computational

times depended on the dataset size for each software tool. In all

cases, RIblast was much faster than the other programs. As the

dataset size increased, the speed advantage over the other pro-

grams became quite large. In particular, when the dataset

consisted of 500 lnRNAs and mRNAs, RIblast was 64-fold and 73-

fold and faster than the Terai et al. pipeline and RNAplex-a,

respectively.

4 Discussion

In this study, we developed RIblast, which is an RNA–RNA inter-

action prediction algorithm based on the seed-and-extension ap-

proach. RIblast is the fastest software that can be applied to large-

sclae lncRNA datasets.

We used an interaction energy cutoff to exclude likely incorrect

predictions, but this method may be highly arbitrary. As such, we

should determine the reliability of the predicted interactions based

on a statistical score like the e-values generated by BLAST.

Rehmsmeier et al. developed a calculation method for the statistical

significance of predicted RNA–RNA interactions (Rehmsmeier

et al., 2004). However, their calculation method cannot be applied

to our software directly because the method did not consider the ef-

fect of accessible energies. Therefore, we need to develop an e-value

calculation method for RIblast’s predicted interactions.

While the previous benchmarking paper of bacterial sRNA tar-

get prediction found that IntaRNA shows the superior performance

to RNAplex (Pain et al., 2015), these two programs show almost the

same performances in our evaluation. This difference of evaluation

may be caused by the difference of some experimental conditions

such as the benchmark dataset or the version of software.

Specifically, the difference of energy parameter can cause large dif-

ference of evaluation results. The previous paper uses Turner’s 1999

parameter for the energy parameter in RNAplex, but we use

Turner’s 2004 parameter for that. Therefore, RNAplex in our evalu-

ation should show high performance than RNAplex in the previous

paper.

Although Hajiaghayi et al. reported that the accuracy of RNA

secondary structure prediction with Andronescu’s parameter outper-

forms those that use other energy parameters (Hajiaghayi et al.,

2012), we provide the first report that Andronescu’s parameter also

delivers superior performances compared with Turner’s parameter

in small RNA–RNA interaction predictions. Currently, major

miRNA or snoRNA target prediction tools (Agarwal et al., 2015;

Betel et al., 2010; Tafer et al., 2010) utilize Turner’s parameter, and

thus the application of Andronescu’s parameter to these programs

may improve the accuracies.

RIblast efficiently predicts RNA–RNA interaction, but further

acceleration is an essential task. Considering that the seed-and-

extension approach contributes to the acceleration of RNA–RNA

interaction predictions, other acceleration techniques in sequence

homology search may be effective for RNA–RNA interaction pre-

dictions. Specifically, parallelization is a promising technique. At

present, many parallelization methods (Rognes, 2011; Suzuki et al.,

2012, 2016) have been proposed for sequence homology search and

have successfully speed up calculation.

While typical mRNAs tend to be localized in the cytoplasm, typ-

ical lncRNAs tend to be localized in the nucleus (Ulitsky and Bartel,

2013). This tendency may suggest that lncRNAs exert their func-

tions by interacting with pre-mRNAs (Engreitz et al., 2014). Thus,

interaction prediction between lncRNAs and pre-mRNAs is a fasci-

nating research topic, but the current RIblast cannot be applied to

this task. This is because the accessible energy calculation of pre-

mRNAs by the Raccess algorithm is computationally difficult for

too long RNA sequences. For this purpose, we will integrate the

ParasoR (Kawaguchi and Kiryu, 2016), which can calculate access-

ible energies for quite long RNAs, with RIblast.

Fig. 4. The results of the run time evaluation on partial human lncRNA and

mRNA datasets. The x-axis represents the number of lncRNAs and mRNAs.

The y-axis represents the runtime ratio of each program to RIblast. The dotted

line, the dashed line and the solid line represent the performances of

IntaRNA, RNAplex-a and RIblast, respectively

Table 3. The results of the run time evaluation on partial human lncRNA and mRNA datasets

The number of lncRNAs and mRNAs

Program 5� 5 10� 10 50� 50 100� 100 500� 500

IntaRNA 59 m 04 s (126.6) 3 h 30 m 17 s (252.3) � (-) � (-) � (-)

RNAplex-a 2 m 34 s (5.5) 10 m 37 s (12.8) 4 h 20 m 42 s (47.0) 17 h 56 m (63.4) 19 d 20 h 53 m (74.1)

Terai et al. pipeline 1 m 02 s (2.2) 3 m 08 s (3.8) 2 h 26 m 43 s (26.4) 14 h 50 m (52.4) 17 d 09 h 44 m (64.9)

RIblast 28 s (1.0) 50 s (1.0) 5 m 33 s (1.0) 17 m (1.0) 6 h 26 m (1.0)

Note: The columns correspond to the number of lncRNAs assessed in the dataset. The rows indicate the run times and the run time ratio of each program to

RIblast. The symbol ‘�’ indicates that we did not investigate the computational speed for a particular combination of dataset size and program because the calcu-

lation time was prohibitively long.
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The evolution of lncRNA is a hot topic (Ulitsky, 2016).

Although the majority of lncRNAs are lineage-specific, a thousand

human lncRNAs have homologs (Hezroni et al., 2015). In addition,

Ngueyn et al. revealed that experimentally validated RNA–RNA

interaction sites are evolutionarily conserved (Nguyen et al., 2016).

These results suggest that the interaction relationships between

lncRNA and RNA are widely conserved among species. We aim to

validate this hypothesis by comparing RIblast-based lncRNA inter-

actome networks between species.
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