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A novel synthesis of nucleotide sugars was conducted to prepare UDP-α-D-xylose

and UDP-β-L-arabinose without utilizing protection strategies or advanced purification

techniques. Sugar-1-phosphates of D-xylose and L-arabinose were synthesized

from their β-glycosylsulfonylhydrazides and evaluated as substrates for recombinant

UDP-sugar pyrophosphorylases from Arabidopsis thaliana or Bifidobacterium infantis

to furnish the biologically active nucleotide. The facile, three-step procedure takes

advantage of substrate diversity available through chemical synthesis followed by the

selectivity of enzyme catalysis. This approach increases the substrate scope of enzymatic

preparation and expands access to stereopure nucleotide sugars on preparative scale.

Increased production of both sugars has implications for glycoengineering and glycan

production using glycosyltransferases.

Keywords: UDP-xylose, UDP-arabinose, nucleotide sugar, chemo-enzymatic synthesis, UDP-sugar

pyrophosphorylase

INTRODUCTION

The nucleotide sugars UDP-α-D-xylose (UDP-Xyl) and UDP-β-L-arabinose (UDP-Ara) are
required substrates in the corresponding glycosyltransferase (GT)-catalyzed synthesis of
polysaccharides comprising important biopolymers in animal and plant species. For example,
UDP-Xyl is essential for the xylosylation of Notch signaling receptors (Lee et al., 2013), and initiates
the core protein linkage in the proteoglycans heparin, chondroitin and dermatan sulfate (Esko et al.,
2009; Beahm et al., 2014). UDP-Ara is a donor molecule for structural extensin glycoproteins in
plant cell walls (Chen et al., 2015), and arabinose chains on therapeutic antibodies expressed in
plant-based systems (Dicker et al., 2016). Despite their role in diverse and health-related processes,
convenient preparations of UDP-Xyl andUDP-Ara are still not generally well-established and ready
to meet the needs of a growing glycoscience community (Pauly et al., 2000; Kotake et al., 2009;
Damerow et al., 2010; Yang and Bar-Peled, 2010; Gu et al., 2011).

In our own studies of glycan maturation and glycoengineering, we have developed a
need for diverse nucleotide sugars. Nucleotide sugars have been prepared by chemical
synthetic methods, including those based on Khorana’s use of phosphoromorpholidates
for pyrophosphate formation (Roseman et al., 1961), and Chi–Huey Wong’s work with
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FIGURE 1 | Biosynthesis of UDP-α-D-Xylose and UDP-β-L-Arabinose.

dibenzyl N,N-diethylphosphoramidite as a phosphitylating agent
(Sim et al., 1993). Specific to the current study, UDP-Xyl
has previously been prepared using a phospho-imidazolidate
activation method (Ishimizu et al., 2005), and both UDP-Xyl
and UDP-Ara have been produced using 1,2-anhydro sugars
(Ernst and Klaffke, 2003). However, chemical methods for the
preparation of nucleotide sugars are widely reviewed as difficult
to reproduce, multi-step procedures with advanced purification
requirements and low to moderate isolated yields (Wagner et al.,
2009). Additionally, chemical synthesis of nucleotide sugars often
requires protection strategies in order to selectively obtain the
biologically useful anomer of the activated sugar (Zhang and Liu,
2000; Ernst and Klaffke, 2003; Wolf et al., 2011).

Advances in the enzymatic synthesis of nucleotide sugars
by our group and others have expanded access to a wide
range of nucleoside-diphosphate (NDP) sugars (Guan et al.,
2009; Li et al., 2015; Muthana et al., 2015; Yu and Chen,
2016). These preparations utilize enzymes from sugar recycling,
salvage pathways, typically a sugar-1-phosphate kinase and a
promiscuous NDP-sugar pyrophosphorylase, to give high yields
of anomerically pure nucleotide sugars in a one-pot multi-
enzyme (OPME) system (Muthana et al., 2012; Li et al.,
2013). However, these preparations are generally limited by
the substrate specificity of available enzyme combinations, and
particularly by kinases reported to bemore substrate specific than
the promiscuous NDP pyrophosphorylases (Errey et al., 2004).

In the case of UDP-Xyl, a salvage pathway for recycling
of D-xylose into stereopure nucleotide sugars has not been
established, and the existence of a kinase responsible for
biosynthesis of an intermediate xylose-1-phosphate is currently

hypothetical (Geserick and Tenhaken, 2013). For this reason
attention has focused on the de novo biosynthetic pathway
(Figure 1), starting with the two-step oxidation of UDP-Glc
to UDP-GlcA by UDP-glucose dehydrogenase (UGDH), and
subsequent oxidative decarboxylation by UDP-Xyl synthase
(UXS, a.k.a. UDP-GlcA decarboxylase) (Harper and Bar-Peled,
2002). However, unlike the salvage pathway, a OPME strategy
using UGDH/UXS requires exogenous NAD+ cofactor, and
is complicated by diverse inhibition mechanisms, including
hysteresis, and competitive and allosteric inhibition of UGDH
(Kadirvelraj et al., 2011, 2013; Sennett et al., 2011), and
production of UDP-4-keto-xylose byproduct by UXS (Polizzi
et al., 2012). Recent strategies to overcome these undesired
outcomes during OPME UDP-Xyl production have introduced
an additional three step enzymatic redox cascade and quinone
reagent (Eixelsberger and Nidetzky, 2014), which may increase
the cost to scale beyond the reported 5mg purified yield.

An alternative natural pathway for stereopure UDP-Xyl
production is possible through the arabinose salvage pathway
(Figure 1). In plants, arabinose can be phosphorylated by a
substrate specific sugar-1-kinase (arabinokinase), followed by
addition of a nucleotide by a broad substrate UDP-sugar
pyrophosphorylase (USP), to form UDP-Ara (Dolezal and
Cobbett, 1991). UDP-Ara can be further epimerized at the
C4 position to form stereopure UDP-Xyl, in a reaction that
maintains cytosolic concentrations of both sugars for plant cell
wall anabolism in vivo (Kotake et al., 2004). However, similar
to the drawbacks of other de novo biosynthetic approaches, this
strategy produces structurally related sugars that are notoriously
difficult to separate using scalable purification techniques.
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SCHEME 1 | Chemo-enzymatic synthesis of UDP-α-D-xylose and UDP-β-L-arabinose.

FIGURE 2 | 1H NMR of (A) xylose-1-phosphate and (B) UDP-α-D-xylose showing the high selectivity of enzyme for the α anomer.
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Herein, we report an efficient chemoenzymatic method
for producing stereopure UDP-α-D-xylose and UDP-β-L-
arabinose (Scheme 1) that addresses reported obstacles to
scalable production and separation. Our method: (1) Chemically
converts monosaccharides to sugar-1-phosphate anomers,
bypassing chemical protection steps, the more substrate
specific kinases, and advanced purification techniques; (2)
enzymatically performs asymmetric induction to exclusively
generate the biologically relevant anomer, (3) avoids expensive
redox cofactors and cascade enzymes, and (4) enables the
production and purification of the structurally related UDP-
α-D-xylose and UDP-β-L-arabinose epimers. The method has
rapid applicability to the preparation of nucleotide sugars
and may fill important gaps in leading enzymatic methods by
mimicking the salvage pathway of nucleotide sugar biosynthesis
in cases that a suitable kinase for a sugar or derivative is
not available.

CHEMICAL SYNTHESIS OF PENTOSE-1-
PHOSPHATE ANOMERIC MIXTURES

For those monosaccharides which are not substrates for sugar
kinases, chemical methods can be employed to produce the
sugar-1-phosphates. We prepared xylose-1-phosphate and
arabinose-1-phosphate separately from the corresponding
monosaccharides in two steps (see Supplementary Methods)
following the procedure reported by Edgar et al. (2012). Briefly,
free sugars and p-toluenesulfonyl hydrazine (TSH) were reacted
to generate glycosylsulfonylhydrazide adducts. These were
further oxidized by anhydrous CuCl2 in the presence 2-methyl-
2-oxazoline and an excess of crystalline phosphoric acid to
give mixed anomers of the corresponding sugar-1-phosphates.
Reaction mixtures were precipitated from dichloromethane
(DCM), and solids were simply collected and extracted with
water. Extractions were then treated dropwise with barium
hydroxide to remove excess phosphate as the insoluble barium
salt (Wood, 1968). Barium salts of sugar-1-phosphates remain
soluble in water and can be precipitated from ethanol to
provide convenient separation. However, the barium salts of
the products are not biologically useful due to the low solubility
of the compounds and possible effects of the counter-ion on
the conformation and activity of enzymes. The precipitates
were collected again, dissolved in water, and treated with
1M Na2CO3 to precipitate barium in its carbonate form,
giving D-xylose-1-phosphate or L-arabinose-1-phosphate as
disodium salts.

In order to determine the anomeric configuration of each
sugar-1-phosphate, we performed NMR analyses to estimate the
relative α and β proton signals. Taking D-xylose-1-phosphate
for example, we observed that both α and β proton signals
were present in 1H NMR experiments (Figure 2A). The α

anomer showed a chemical shift at 5.39 ppm with the coupling
constant J = 3.4Hz. The β anomer appeared at 4.83 ppm with
higher coupling constant J = 7.6Hz, although the β proton
was not fully resolved from the solvent spectrum. Therefore,
we roughly estimated the α/β anomer ratio using 13C NMR,

which revealed a 2.1:1 proportion, respectively (see Supporting
Information). NMR analysis of the L-arabinose-1-phosphate
sample also revealed an anomeric mixture (α/β: 1/5.7; see
Supporting Information).

Our results are consistent with Edgar et al. (2012), who
reported an enhancement of glycosyl-1-phosphate anomers
bearing phosphate in the axial orientation. Although we report
an enhancement of β-L-arabinose-1-phosphate, inspection of
the α-D-xylose-1-phosphate and β-L-arabinose-1-phosphate
structures shows both anomeric phosphate groups are in
the same axial orientation (Figure 1). By convention, it is
the relative configurations between the anomeric and C-4 of
pentoses that determine the assignment of the alpha or beta
anomer. Of more importance for our aims, we observe that
both D-xylose-1-phosphate and L-arabinose-1-phosphate were
predominantly composed of the desired, biologically active
anomers.

ENZYMATIC SELECTION FOR
STEREOPURE UDP-PENTOSES

In previous work, our lab has characterized USPs from
Arabidopsis thaliana (AtUSP) and Bifidobacterium infantis
ATCC15697 (BiUSP) and found significant activity toward a
broad range of substrates (Liu et al., 2013; Guo et al., 2015).
In this study, AtUSP was codon optimized and cloned into
pQE80L vector following our previous procedure. AtUSP and
BiUSP were expressed in soluble form with His6 tag and
purified by one step Ni-NTA affinity chromatography. Both
enzymes were purified to approximately 90% purity by SDS-
PAGE (Figure S1), with yields of 20mg AtUSP/L and 10mg
BiUSP/L of LB culture. Approximate molecular weights of 70 and
60 KDa were observed, respectively, consistent with theoretical
values.

With enzymes in hand, reactions containing anomeric
mixtures of the corresponding sugar-1-phosphate substrates,
AtUSP or BiUSP, MgCl2, uridine triphosphate (UTP), and Tris-
HCl were incubated at 37◦C overnight. Based on an initial
sample of 10mg of α/β-D-xylose-1-phosphate, we observed
a good conversion to UDP-α-D-xylose in the presence of
AtUSP, which was detected by thin layer chromatography
(TLC) plates and purified with Bio-gel P-2 gel chromatography.
After having established the feasibility of the preparation on
small scale, a larger scale of 100mg D-xylose-1-phosphate was
conducted under the same conditions to provide 88mg of the
stereopure UDP-α-D-xylose with 45% yield (Table 1). Based on
the anomeric ratio of the α/β-D-xylose-1-phosphate mixture,
the yield was approximately 66%. The 1H-NMR spectrum of
the UDP-α-D-xylose sample shows double-double peaks with
the coupling constant (J = 3.6Hz) at the chemical shift of
5.56 ppm (Figure 2B), corresponding to the anomeric proton
in the alpha configuration. No peaks were found corresponding
to a beta configuration in the final product, demonstrating the
stereospecificity of the enzyme and its asymmetric induction
effect (i.e., the preferential formation of one enantiomer or
diastereoisomer over the other in a chemical reaction). In
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TABLE 1 | Substrate specificity of AtUSP and BiUSP.

Substrate Sugar-1–P(α/β)[a] Enzyme Product Yield% (mass)[b]

AtUSP 45% (88mg)

AtUSP

BiUSP

39% (76mg)

49% (48mg)

[a]The ratios were determined by 13C NMR; [b]Yields were calculated after purification.

contrast to the AtUSP reaction, we did not observe any
conversion of α/β-D-xylose-1-phosphate to UDP-xylose in the
presence of BiUSP.

Following a similar procedure for the α/β-L-arabinose-
1-phosphate sample, we observed the formation of
UDP-β-L-arabinose in the presence of either AtUSP or BiUSP.
AtUSP converted 100mg of α/β-L-arabinose-1-phosphate
to 76mg UDP-β-L-arabinose, and BiUSP converted 50mg
starting material to 48mg product, generating yields of 39
and 49%, respectively (Table 1), without UDP-α-L-arabinose
contamination (see Supporting Information).

Our experiment demonstrates an expedient method of
general preparation that may be applied to other substrates at
increased scale, especially for those monosaccharide substrates
(e.g., D-xylose) which lack corresponding kinases. The initial
two steps can provide various sugar-1-phosphate derivatives
by utilizing the versatility and non-specificity of chemical
synthesis. These two steps also circumvent traditional challenges
of chemical synthesis by eliminating the need for protecting
groups. However, the synthesis of sugar-1-phosphates produced
α/β mixtures that are generally accepted as difficult to
separate. Fortunately, the natural stereo-selectivity of UDP-
sugar pyrophosphorylases can exclusively furnish the biologically
relevant anomer of a UDP-sugar in good yield from a mixture of
sugar-1-phosphates. Separation of unreacted sugar-1-phosphate
can be achieved through a single exclusion (BioGel P2, Bio-Red)
chromatography step, due to the difference in molecular weight
compared to the corresponding UDP-sugar.

CONCLUSION

The production of nucleotide sugars has long been a challenge
to the study of complex carbohydrates. The chemo-enzymatic
approach provides a number of advantages, as the versatility
available to chemical synthesis is well-complemented by the
efficiency and stereospecificity of enzymes. The helpful synergy
between chemical and enzymatic steps in our procedure extends
the application of leading biosynthetic methods to nucleotide

sugars outside of the substrate scope of multi-enzyme systems,
while providing a more facile approach to stereopure products
than traditional chemical methods. The newly developed, three-
step chemoenzymatic method is an efficient means of producing
UDP-α-D-xylose, and UDP-β-L-arabinose on an improved
scale. Furthermore, our experiment demonstrates an expedient
method of general preparation with wide implications for other
substrates, including non-natural sugar derivatives, for which a
corresponding kinase has not been identified.

A recent review of nucleotide sugar production by Yu
and Chen (2016) highlighted the use of OPME reactions to
produce diverse UDP-sugars and oligosaccharides. However,
the production of UDP-Xyl was noticeably less defined than
systems for UDP-hexose sugars, and UDP-Ara production was
absent. Further, while OPME systems were also reviewed in
terms of coupled reactions with GTs, UDP-Xyl, and UDP-Ara
applications were not discussed. One possible reason for the
disparity in descriptions may be that UDP-Xyl and UDP-Ara
have traditionally not fallen into the OPME salvage pathway
scheme of sugar kinase and nucleotidyltransferase that can be
easily coupled with a downstream GT.

In our current study, our improved chemo-enzymatic method
has positive implications for OPME systems and GT-based
technologies. We have shown that an expedient chemical
synthesis of xylose-1-phosphate or arabinose-1-phosphate
anomeric mixtures could be used as starting material for
OPME systems including AtUSP and/or BiUSP for nucleotide
sugar production. The resulting UDP-α-D-xylose or UDP-β-
L-arabinose products are the naturally occurring anomers of
each nucleotide sugar (Kotake et al., 2009), and anticipated
to be substrates for classical, Leloir-type GTs (Coutinho et al.,
2003). For example, UDP-Xyl is a substrate for multiple GTs:
XT-I in the glycosylation of proteoglycan core proteins (Schon
et al., 2006), SunS with sublancin antimicrobial glycopeptide
(Oman et al., 2011), and an OleD triple mutant with coumarins
(Williams et al., 2007). Similarly, UDP-Ara is the recognized
donor molecule for multiple GTs: RRA3 (Velasquez et al., 2011)
and EXG113 (Gille et al., 2009) in the glycosylation of O-linked
extensins, and AtUGT78D3 with flavonoids (Kim et al., 2013).
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Ultimately, the ability to produce UDP-Xyl or UDP-Ara in vitro
for purification, or in situ for coupling with GTs, may expand
the experimental space available in glycan production and
glycoengineering efforts.
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