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A B S T R A C T

To validate a failure-time surrogate for an established failure-time clinical endpoint such as overall survival, the
meta-analytic approach is commonly used. The standard correlation approach considers two levels: the in-
dividual level, with Kendall's τ measuring the rank correlation between the endpoints, and the trial level, with
the coefficient of determination R2 measuring the correlation between the treatment effects on the surrogate and
on the final endpoint. However, the estimation of R2 is not robust with respect to the estimation error of the trial-
specific treatment effects.

The alternative proposed in this article uses a prediction error based on a measure of the weighted difference
between the observed treatment effect on the final endpoint and a model-based predicted effect. The measures
can be estimated by cross-validation within the meta-analytic setting or external validation on a set of trials.
Several distances are presented, with varying weights, based on the standard error of the observed treatment
effect and of its predicted value. A simulation study was conducted under different scenarios, varying the
number and the size of the trials, Kendall's τ and R2. These measures have been applied to individual patient data
from a meta-analysis of trials in advanced/recurrent gastric cancer (20 randomized trials of chemotherapy, 4069
patients).

The distance-based measures appeared to be robust with respect to different values of simulation parameters
in several scenarios (such as Kendall's τ, size and number of clinical trials). The absolute prediction error can be
an alternative to the trial-level R2 for evaluation of candidate time-to-event surrogates.

1. Introduction

The main objective of confirmatory phase-III clinical trials is to
determine whether a new treatment is effective. In oncology, the final
endpoint of randomized phase-III clinical trials is often the overall
survival (OS). However, the use of a final endpoint like OS requires a
large number of patients, a long follow-up period, and high research
and development costs to achieve the statistical power required in
phase-III trials. It is therefore interesting to use intermediate criteria
that can be evaluated earlier and used as a surrogate for the final
endpoint. Surrogate endpoints may allow shorter trial duration, smaller
number of patients, and reduced costs. A surrogate endpoint can also be
of interest if it can be measured in a simpler, more reproducible and
accurate or less invasive way for patients compared to the reference
endpoint.

Before using a surrogate endpoint as a substitute for the reference

endpoint, it must be validated. The clinical conclusions must be con-
sistent between the two criteria. In this perspective, several methodo-
logical works have been developed in the last twenty years within the
meta-analytical approach, which is based on the correlation between
the surrogate endpoint and the final endpoint [1–3]. The meta-analy-
tical approach considers two levels of validation for a surrogate end-
point: the individual level and the trial level. Validity at the individual
level means that, for each patient, the surrogate endpoint is correlated
to the final endpoint. Individual surrogacy is straigthforward to verify
and requires only data from a single trial. Validity at the trial level
means that, for each trial, the treatment effect on the surrogate end-
point correlates with the treatment effect on the final endpoint. At the
individual level, the Kendall's τ can be used as a measure of validation.
At the trial level, for time-to-event endpoints, Burzykowski et al. [4]
developed a two-stage copula-based approach, with an adjusted trial-
level surrogacy measure R2 calculated in the second stage, which takes
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estimation error of the treatment effects at the first stage into account.
This approach can also provide, for a new trial, a prediction of the effect
of the treatment on the final endpoint on the basis of the intermediate
endpoint. However, the estimation of the coefficient of determination
R2 is not robust with respect to the estimation error of the trial-specific
treatment effects, is sensitive to trials with extreme treatments effects,
has some convergence issues and often comes with a large standard
error [5,6].

Recently, Gabriel et al. [7] have proposed to use an absolute pre-
diction error instead of R2 to compare trial-level surrogates in a binary
setting and formalized the use of cross-validation in this case. In the
time-to-event context, Baker and Kramer [8] used the difference in
survival at a given time as outcome and proposed a prediction error
estimate using leave-one-out cross-validation.

In this paper, we propose the use of an absolute prediction error as
an alternative measure to the trial level R2 for the case of two failure-
time endpoints. The new surrogacy measures proposed here are based
on the distance between the effect of the treatment observed on the
final endpoint in each trial and its predicted value obtained from the
effect observed on the surrogate endpoint, based on the prediction
model fitted using data from the other trials. We present several
weights for distance measurement based on the standard error of the
observed treatment effect and the standard error of its predicted value.
A leave-one-trial-out cross-validation scheme is used to estimate the
prediction error in the context of an internal validation. The potential
benefits of this type of measure are twofold: first, it avoids computing
the R2, for which convergence problems are frequently encountered;
second, it uses metrics directly measured on the scale of the treatment
effect and quantifies the error of its prediction.

2. Methods

The meta-analytic approach allows estimating the relation between
the effect of the treatment on the surrogate endpoint and on the final
endpoint. A valid surrogate endpoint must predict the final effect pre-
cisely, and the difference between the predicted and the observed final
effects quantifies the predictive value of the surrogate.

2.1. Two-step surrogacy model

The proportional hazard model [9] is often used in the analysis of
survival data to evaluate the effect of various covariates on the event of
interest. Let Sij and Tij be the surrogate and final endpoint time vari-
ables, respectively, for patient = …j n1, , i in trial = …i N1, , . Burzy-
kowski et al. [4] proposed the following two step model to validate S as
surrogate of T:

=
=

=

h s Z h s Z
h t Z h t Z
S s t Z C S s Z S t Z

( ; ) ( )exp{ },
( ; ) ( )exp{ },

( , ; ) ( ( ; ), ( ; )),

Sij ij Si i ij

Tij ij Ti i ij

ij ij Sij ij Tij ij (1)

with trial-specific baseline hazards h s( )Si and h s( )Ti , treatment effects i
and i and the treatment indicator Z (0 for the control arm, 1 for the
experimental arm). The copula function C S s S t( ( ), ( ))Sij Tij [10] is used
to model the individual dependence, with S s( )Sij and S t( )Tij the survival
functions of Sij andTij. In our work, we choose to use the Clayton Copula
[11].

= +C u v u v( , ) ( 1) ,1/ (2)

with > 0 and Kendall's = +/( 2) [12]. The marginal survival
functions are based on the proportional hazards assumption for each of
the two endpoints, with a Weibull parametric baseline hazard function.

The estimation of this model is carried out in two steps and consists
in: estimating the treatment effects on both endpoints for each trial
using the copula model (1) and thus calculating the Kendall's τ; then,
performing a linear regression that possibly takes into account the

estimation errors at the first step, to estimate the relationship between
the treatment effect on the surrogate endpoint and the treatment effect
on the final endpoint. Indeed, the estimates of the treatment effects
obtained in the first stage are assumed to follow the mixed model
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The measure of the surrogacy at the trial level is then the de-
termination coefficient =Rtrial trial

2 2 , obtained by fixing the estimation
errors i at their values estimated in the first step [13]. In real-life
examples often the algorithm used to estimate the coefficients of the
model does not converge and an “unadjusted” model is used in which

i is fixed to zero. We denote the model which fully accounts for
measurement error as “adjusted”.

2.2. Cross-validation

In the meta-analytic context, we have previously proposed to
compare the observed treatment effect on the final endpoint with an
independent prediction through leave-one-(trial)-out cross-validation
(LOOCV) [14]. LOOCV consists in excluding one trial at a time, esti-
mating the two step model (1) from the remaining trials, and then
applying this prediction model to the excluded trial. This last step
consists in plugging the observed treatment effect on the surrogate
endpoint in the left-out trial into the prediction model in order to obtain
the predicted treatment effect on the final endpoint for the left-out trial.

2.3. Motivating example

Our motivating example was the advanced GASTRIC meta-analysis
[15], which included individual data of 4069 patients with advanced/
recurrent gastric cancer from 20 randomized trials of chemotherapy.
The main endpoint was OS and the candidate surrogate was progres-
sion-free survival (PFS). In previous works [6,16], the individual-level
association between PFS and OS, as measured by the rank correlation
coefficient, was given by a value of Kendall's τ of 0.85 (95% confidence
interval [CI]: 0.85–0.85). The association at the trial level between the
treatment effects on OS HRlog( )OS and on PFS HRlog( )PFS was moderate,
with a coefficient of determination, R2, adjusted for the estimation er-
rors, of 0.61 ([CI]: 0.04–1.00). As in many applications, the width of the
confidence interval suggests that there was a large uncertainty in the
prediction model and that conclusions should be drawn with great
caution. Fig. 1 shows, for this example, the cross-validated prediction
intervals for the treatment effect of each trial in the advanced GASTRIC
meta-analysis, together with the observed effects.

3. Proposed distance measures

Fig. 1, which was obtained by LOOCV, prompted us to propose new
measures based on the distance between the observed value

= HRˆ log( )observed and the predicted value = HR˜ log( )predicted to vali-
date a surrogate endpoint, in the context of internal or external vali-
dation. In particular, we assume that the prediction error in terms of the
distance between the predicted and observed values is the most im-
portant measure. At the same time, trials with narrower prediction
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intervals and more precise ˆ should have a greater weight than those
with less precise estimates and predictions. In the next section, we
propose novel measures based on different weighted prediction errors
in which the weights are inspired from this figure.

3.1. Weighted prediction errors

Let ˆ i( ) and ˆ
i( ) be the treatment effects on the surrogate and final

endpoints estimated separately in the two marginal proportional hazard
models for trial i. Let ˜

i( ) be the prediction of ˆ
i( ) obtained by injecting

the observed effect on the surrogate endpoint ˆ i( ) in the prediction
model estimated on the N 1 remaining trials. The prediction of the
effect on the final endpoint can be obtained as

= +˜ ˜ ˜ ˆ ,i i( ) 0 1 ( ) (3)

with
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where Saa and Sab are the sample variance and covariance of the esti-
mates ˆ i( ) and ˆ

i( ) in the N 1 trials used for estimating the prediction
model [17].

Let diffi denote the absolute difference between the observed effect
on the final endpoint ˆ

i( ) in the trial i and its prediction ˜
i( ):

=diff ˆ ˜ .i i i( ) ( ) (6)

We defined different weighted averages of the (cross-validated)
absolute distances to account for the accuracy of the predicted and of
the observed treatment effects, which can be different across trials:
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with wi the trial-specific weight. We considered the following possible
weights:

• 1, to calculate the mean absolute distance;
• ni, to give more importance to bigger trials;
• SE1/ ( ˆ )i

2
( ) , the inverse of the squared standard error of ˆ

i( ), to give
more weight to the trials with more precise estimation of the ob-
served treatment effect;
• SE1/ ( ˜ )i

2
( ) , the inverse of the squared standard error of ˜

i( ), to give

more weight to the trials with more precise predictions of the
treatment effect;
• +SE SE1/( ( ˆ ) ( ˜ ))i i

2
( )

2
( ) , the inverse of the sum of the squared

standard errors of the distance diffi, to take into account the preci-
sion of both the prediction and the observed value;
• SE SE1/( ( ˜ )/ ( ˆ ))i i( ) ( )

2, this weighting represents the precision of the
prediction with respect to the estimation precision [8].

For each estimator, the standard error was defined as

=
×=

=
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diff diff w w
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N
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i
N

i

1
2
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4. Simulation study

We conducted a simulation study under different scenarios to
evaluate the operational characteristics of the distance measures pre-
sented in Section 3. All the methods for model fitting and data gen-
eration are implemented in the R package surrosurv, publicly available
from the CRAN [18].

4.1. Simulation of data

The individual data of the surrogate and final endpoints were gen-
erated from exponential distributions with baseline rates fixed to
4/log(2) and 8/log(2), in order to obtain median survival times of 4
years and 8 years respectively. We generated treatment effects with
mean = = log(0.75), variance equal to = =d d 0.12 2 and various
correlations trial depending on the scenario (see below). Independent
administrative censoring at 15 years was added and data was generated
from a mixed proportional hazard model and from a Clayton copula
model as in [6].

4.2. Simulation scenarios

In our simulations, we varied the following parameters: R2, the trial-
level coefficient of determination between the effects of the treatment;
N, the number of trials; ni, the number of patients per trial; and
Kendall's τ, the dependence at the individual level between the two
criteria.

We generated databases, each containing a meta-analysis of =N 10,
20, or 40 randomized trials of average size =n 400, 200, or 100. The
actual size of each trial ni was randomly generated from a uniform
distribution between n0.5 and . These various choices allowed us to
study the possible effect on the distance measures of the number of
trials included in a meta-analysis and their size.

Four scenarios were considered in terms of dependence at the

Fig. 1. Leave-one-(trial)-out cross-validation results
for the advanced GASTRIC meta-analysis. The black
squares and the vertical gray lines are the predicted
values of the treatment effect on overall survival
(OS), with the 95% prediction intervals (PI). Dots are
the observed treatment effects on OS (green=within
the PI, magenta= out of the PI). (For interpretation
of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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individual level and at the trial level (see Table 1): a moderate ( = 0.4)
and a high value ( = 0.6) of individual dependence and a low
( =R 0.22 ) and a high value ( =R 0.82 ) at the trial level. Thus we took
two extreme settings with a poor trial-level surrogate and a very good
trial level-surrogate.

We generated 500 databases per scenario and we computed the
proposed mean distances using the two-step model with and without
adjustment for estimation error in the second step. To summarize the
results, we reported the mean distances, the empirical standard error
(ESE), and the average standard error (ASE) across the 500 distances
obtained for each scenario.

4.2.1. Results
Table 2 summarizes the results for the adjusted Clayton copula

models in all the trials, where the term adjusted is intended for ac-
counting for estimation error in the first-step copula model (see end of
Section 2.1). Fig. 2 illustrates the empirical distribution of the mean
distances according to the correlation at the trial level (R2) and the
correlation at the individual level (Kendall's τ).

Comparing scenarios 1 vs. 3 or scenarios 2 vs. 4 ( =R 0.22 vs.
=R 0.82 ) shows that the prediction was more accurate (i.e. the mean

distances were smaller) and precise (i.e. the standard errors were lower)
with a high correlation at the trial level ( =R 0.82 ). Furthermore, the
comparison of scenarios 1 vs. 2 or scenarios 3 vs. 4 ( = 0.4 vs. = 0.6)
indicates that the distances were largely independent of the correlation
at the individual level. In addition, the comparison of the three lines of
plots does not suggest any impact of the number and size of trials on the
distance measures.

For a high correlation at the trial level =R 0.82 (scenarios 3 and 4)
the mean distances were around 0.2 and for a low correlation at trial
level =R 0.22 (scenarios 1 and 3) the mean distances were around 0.3.
These values mean that if, for instance, the estimated HRˆ is 0.75 and the
prediction error is ± 0. 2, the average prediction is

=0.75 exp( 0.2) 0.61 (equivalent to =~ =log(0.75) 0.2 log(0.57))
or =0.75 exp(0.2) 0.92 (equivalent to =~ + =log(0.75) 0.2 log(0.92));
on the other hand, if the estimated HRˆ is 0.75 and the prediction error
is ± 0. 3, the average prediction is 0.56 or 1.01.

The ASE was often higher (in general two-fold higher) than the ESE,
suggesting that the standard error of these distances was overestimated,
which means that the estimated confidence intervals are expected to be
too wide.

The mean distance weighted by the sum of the standard deviations
diff (1/ +SE SE( ( ˆ ) ( ˜ ))i i

2
( )

2
( ) showed in general the highest difference

of all distances between =R 0.22 and =R 0.82 , especially for =N 10
and =n 400 (equal to 0.137 for = 0.6). Nevertheless, the results are
not very different across the weighting schemes.

The results obtained using unadjusted copula models remained
barely unchanged (Supplementary Table A1 and Figure A1). The mean
distances and the standard errors were generally smaller than for the
adjusted copula models.

5. Application

Table 3 reports the distance measures estimated on individual data
from the advanced GASTRIC meta-analysis presented in Section 2.3.

These distances were all around 0.2. Although these distances are not
intended to be a means to recalculate R2, comparing these results with a
similar simulated scenario ( = 0.6, =N 20 and =n 200) shows that the
mean distances fall between the two scenarios =R 0.22 and =R 0.82 .
This suggests a moderate correlation at the trial level in the advanced
GASTRIC meta-analysis data, which is consistent with the previously
published estimate of =R 0.62 [6] but which came with a confidence
interval covering almost the entire range from 0 to 1. In order illustrate
the magnitude of a prediction error of 0.2 on the treatment effect scale,
for an estimated HRˆ =0.70 and a mean absolute distance diff w( )i
=0.2, the predicted HR will be on average about =0.57 0.7 exp( 0.2)
(equivalent to a ) in case of overprediction, or =0.85 0.7exp(0.2)
(equivalent to a = = +~ log(0.85) log(0.7) 0.2) for underprediction of
the treatment effect.

6. Discussion

The meta-analytic approach to surrogate endpoint validation is in-
tended for estimating a determination coefficient at the trial level.
Nevertheless, it also provides the researcher with a prediction model for
the treatment effect on the final endpoint of new trials for which the
effect on the surrogate endpoint has been estimated. In the context of
leave-one-(trial)-out cross-validation, the estimated and the (in-
dependently) predicted effects can be compared for each trial.

In previous works [14,19], we reported the rate of trials with the
observed treatment effect falling within its prediction interval as a
measure of goodness-of-prediction. It can be noted that the simple fact
that the observed value falls in the prediction interval or not is im-
portant, but it does not summarize all the information concerning the
coherence between the prediction and the final estimate. As mentioned
in the introduction, the standard adjusted copula approach does not
converge in many applications and, when it does converge, confidence
intervals of the estimated R2 are often extremely wide, which prompted
us to propose alternative measures based on an absolute prediction
error.

The distance measures presented in this article allow measuring the
correlation strength between failure-time endpoints in terms of the
prediction error, i.e. the mean difference between the observed effect
and the predicted effect of treatment on the final endpoint.

The results of the simulations show that the proposed distances are
rather independent of the correlation at the individual level (Kendall's
τ) across scenarios (number of trials =N 10, 20, 40 and size of trials

=n 400, 200, 100), which is a desirable property. They are lower and
more accurate for a high correlation at the trial level ( =R 0.82 ) than
with a low correlation ( =R 0.22 ). Overall, there is not much difference
between the results of the adjusted and unadjusted copula models.

The weighting of distances with SE1/ ( ˆ )i( ) gives more importance to
big trials with more precise estimations of the treatement effect.
Weighting with SE1/ ( ˜ )i( ) gives more weight to trials with more precise
prediction, which can mean those trials with an effect on surrogate
nearer to the mean across trials but can also mean more weight on small
trials for which the prediction model is estimated by leaving out fewer
patients. Based on the results of the simulation study, there is no ob-
vious difference between the weighting strategies, but the inverse of the
sum of the standard squared errors +SE SE1/( ( ˜ ) ( ˆ ))i i

2
( )

2
( ) seems the

most discriminating between high and low trial-level correlation.
Our simulation study has some limitation. We studied two main

scenarios in the simulation study: a small number of large trials and a
large number of small trials. We did not study a scenario with small
number ( 10) of small trials ( 100 patients) because it would be very
uninformative and could be scarcely useful for the evaluation of sur-
rogacy, we also did not consider meta-analyses with a large number (
40) of big trials ( 400 patients) because simulations would be too
computationally intensive. Also, we did not vary the variance of
treatments effects as we did not expect a major impact of this parameter
on the findings.

Table 1
Simulation scenarios. N and n are the number and average size of the trials,
respectively.

Scenario 1 2 3 4

R2 0.2 0.2 0.8 0.8
Kendall's τ 0.4 0.6 0.4 0.6
N (n) 10 (400) 10 (400) 10 (400) 10 (400)

20 (200) 20 (200) 20 (200) 20 (200)
40 (100) 40 (100) 40 (100) 40 (100)
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Note that, the precision of both the R2 and the proposed prediction-
error metrics is often low. This issue largely reflects the inherent scar-
city of information due to the limited number of trials that are usually
available in practice. We have illustrated the correlation between the
estimation uncertainty (Empirical Standard Error (ESE)) of the R2 and

the proposed distances for the adjusted copula models across all sce-
narios (see figures in the supplementary appendix). We did not observe
a clear correlation between the two uncertainty measures.

The sample size of a new trial (much larger or smaller than his-
torical trials) may have an impact on the SE of the estimated α and thus

Figure 2. Boxplots of distances according to the different scenarios with the data generated with the adjusted Clayton copula. N: number of trials; n: average size of
trials; The box bounds the interquartile range (IQR) and contains a horizonatal line corresponding to the median; outside of the box, the Tukey-style whiskers extend
to a maximum of 1.5*IQR beyond the box. The white diamonds are the mean distances.
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on the prediction precision. This potential issue is common to surrogacy
measures such as the surrogate threshold effect [20] which is usually
provided for a new trial of infinite size (e.g. as in Mauguen et al. [21]).

Despite consistent results across scenarios, recommending thresh-
olds for final decision is as difficult as for the R2. Nevertheless, the
obtained mean distance can be interpreted more easily and mean pre-
dicted HR’s can be computed and compared to the mean estimated
ones. In addition, our proposed alternative measures are more stable
and more easily interpretable for a clinician than the coefficient of
determination R2. In our experience, clinicians find it difficult to in-
terpret the amount of explained variation to validate a surrogate end-
point. Our proposed distance metrics are measured on the scale of the
treatment effect and we propose to illustrate to clinicians the prediction
error for an estimated hazard ratio in terms of average values for over-
or underprediction of treatment effects.

The purpose of this article is to propose an alternative method to
evaluate failure-time surrogate endpoints based on prediction error for
time-to-event outcomes. Although this framework is the most common
in oncology, these metrics can be applied more generally, whatever the
type of the marginal distributions.
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