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Purpose of review

Activation of the type 1 interferon (T1 IFN) pathway has been implicated in the pathogenesis of systemic
sclerosis (SSc) by an increasing number of studies, most of which share key findings with similar studies in
systemic lupus erythematosus (SLE). Here we will focus on the evidence for T1 IFN activation and
dysregulation in SSc, and the rationale behind targeting the pathway going forward.

Recent findings

An increased expression and activation of T1 IFN-regulated genes has been shown to be present in a
significant proportion of SSc patients. TI IFN activation markers have been found to predict and correlate
with response to immunosuppressive treatment as well as severity of organ involvement. As inhibition of the
IFN-a receptor has been proven to be effective in active SLE, benefit may be seen in targeting the IFN
pathway in SSc.

Summary

The role played by T1 IFN and its regulatory genes in SSc is becoming increasingly evident and strikingly
similar to the role observed in SLE. This observation, together with the benefit of type 1 IFN targeting in
SLE, supports the notion of a potential therapeutic benefit in targeting T1 IFN in SSc.
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INTRODUCTION

Systemic sclerosis (SSc) is a progressive, heteroge-
nous multisystem autoimmune disease, which is
characterized by autoimmune activation as well as
a pathognomonic tissue and vascular fibrosis [1,2].
It has the greatest mortality amongst the major
rheumatic diseases [1,3,4

&&

]. Genetic predisposition
combined with triggers activating a persistent
immune response at the level of the tissue is thought
to drive the pathogenetic process in SSc. Type 1
interferons (T1 IFNs) are a family of cytokines play-
ing a key role in response to viruses and a variety of
danger and damage signals, triggering innate
immune activation. The dysregulation in T1 IFN
signalling has now been implicated in the patho-
genesis of certain autoimmune diseases, including
SSc and systemic lupus erythematosus (SLE)
[4

&&

,5,6]. Clinical evidence of the harmful effects
of T1 IFN in SSc, is provided by a randomized,
placebo-controlled trial of IFN-a, in patients with
early diffuse SSc, where the trial had to be stopped
early because of a deleterious effect seen in the
lung function of the treatment group. The with-
drawal and serious adverse event rates were also
uthor(s). Published by Wolters Kluwe
greater in the treatment group than in the placebo
group [7].

Here we will focus on the evidence for T1 IFN
activation in SSc, the potential mechanisms leading
to its dysregulation, the predictive role on disease
progression and the rationale to target the pathway
going forward.
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KEY POINTS

� The activation of T1 IFN has been implicated in the
pathogenesis of SSc and SLE, with inhibition of the
IFNa receptor being recently shown to be effective in
active SLE.

� An increased serum concentration of ISGs is detectable
in a variable proportion of patients with SSc, even at
the very early stages of the disease, before onset of
clinically detectable damage.

� The origin and triggers of T1 IFN, and how the
interactions between genetic and environmental factors,
leads to dysfunction in the T1 IFN response
remains unclear.

� IFN activation markers have been found to predict and
correlate with response to immunosuppressive treatment
as well as in the severity of organ involvement.

� Clinical trials of T1 IFN antagonists in carefully selected
SSc patients would lead to a better understanding of
the role T1 IFN plays in SSc pathogenesis, potentially
improving outcomes in certain SSc patients.

Raynaud phenomenon, scleroderma, overlap and fibrosing syndromes
FROM DANGER SENSORS TO
INTERFERON-STIMULATED GENES: A
MULTIFACETED DEFENSE MACHINERY
THAT CAN LEAD TO IMMUNE-MEDIATED
TISSUE DAMAGE

T1 IFNs are a heterogenous family of cytokines,
which provide a robust first line of antiviral defence.
Type 2 and 3 interferons have partially different
roles, which are outside the scope of this review
and have been summarized elsewhere [8,9].

T1 IFN can be divided into five classes in
humans: a, b, v, e and k. All five, T1 IFN classes
signal through the same type 1 IFN heterodimeric
receptor complex constituting IFN-a receptor 1
(IFNAR1) and IFNAR2 subunits.

Secretion of T1 IFN in the extracellular space is
the terminal event of an ‘innate’ response mecha-
nism to a variety of danger and damage stimuli. The
detection of repetitive molecular patterns displayed
by a pathogen (pathogen-associated molecular pat-
terns or PAMPs) is one of the stimuli, which is
‘sensed’ by the pattern recognition receptors (PRRs)
[10]. There are four classes of PRRs – the Toll-like
receptors (TLRs), the nucleotide-binding oligomeri-
zation domain-like receptors (NLR), the retinoic
acid inducible gene I (RIG-I) and the C-type lectin
receptors [11]. They all differ in ligand recognition,
signal transduction and cell localization.

TLRs are the most extensively studied class of
PRRs and consist of 10 types (TLR 1–10) [10,12,13].
TLRs are expressed on most nucleated cells, and
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once they are engaged with their ligand, they lead
to T1 IFN pathway activation. While this is true in
most cells, plasmacytoid dendritic cells (pDCs) are
the cells that are ‘professionally’ differentiated to
secrete vast amounts of T1 IFN in response to TLR
engagement. For this reason, they are believed to
play a central part in the T1 IFN-mediated immune
response and their role has been implicated both in
the pathogenesis of SLE [14] and SSc [15

&

,16].
The first indirect evidence of a putative involve-

ment of pDC in the aberrant T1 IFN activation in SSc
was suggested by a proteome-wide analysis showing
that CXCL4 in the plasma of SSc patients was sub-
stantially higher than healthy controls, and it pre-
dicted the presence and worsening of lung fibrosis
and pulmonary hypertension. In the same study, the
authors implicated pDC as one of the potential sour-
ces of CXCL4 [17]. More recently, CXCL4 has been
found to function as a Damage AssociatedMolecular
Pattern (DAMP) sensor. Lande et al. observed that
CXCL4 organiszdmicrobial and self-DNA into liquid
crystalline complexes that amplified TLR9-mediated
IFN-a production in pDCs. Importantly, CXCL4-
DNA complexes were present in vivo, and correlated
with T1 IFN in SSc blood and skin, revealing a direct
link between CXCL4 overexpression and T1 IFN pro-
duction in patients with SSc [18]. Another study also
indicated the infiltration of SSc skin by pDCs, where
they were chronically activated, producing high lev-
elsof IFN-aandCXCL4.CXCL4wasunderthecontrol
of phosphatidylinositol 3-kinase d, which was linked
to the aberrant presence of TLR8 on pDCs in SSc
patients. CXCL4 was also found to potentiate the
activities of TLR8-induced and TLR9-induced IFN
production in SSc pDCs [16].

Importantly, Ross et al. [15
&

] have shown that
functional inhibition of pDCs was effective in pre-
venting skin activation and fibrosis in preclinical
models of SSc, similar to what has been observed in
SLE [14].

In another study, anti-CXCL4 antibodies were
shown to be present in at least half of SSc patients
and correlated with serum/plasma IFN-a levels.
Recently, CXCL4 itself was found to behave as a
self-antigen, maintaining a vicious cycle by promot-
ing T1 IFN activation via pDCs and anti-CXCL4 anti-
bodiesbyBcells, sustainingtheSSc IFNsignature [19].
Further work with CXCL4 has interestingly shown
that the anti-CXCL4 antibodies were present in
patients with VEDOSS (very early diagnosis of sys-
temic sclerosis), suggesting that this mechanism can
intervene very early in the pathogenesis of disease,
before clinically apparent tissue damage [20].

Activation of TLRs have also been found to play
a role in interstitial lung disease (ILD). TLR3 activa-
tion by poly I:C has been reported to increase lung
Volume 34 � Number 6 � November 2022
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inflammatory proteins including the cytokines
CCL3, CCL5 and CXCL10, in airway epithelial cells.
Importantly, TLR3 knockout mice showed protec-
tion against the inflammatory response [21]. TLR4
has also been implicated in pulmonary and skin
fibrosis, with the ability to activate IRF5 [22].

Pathogens have long been proposed as a trigger
for autoimmune illnesses, and one mechanism for
this is ‘molecular mimicry’ between self-derived and
pathogen-derived molecules. Another mechanism,
occurs through the inability to clear the pathogen,
resulting in infection persistence, and repeated
stimulation of the innate immune cells via TLRs
[23,24]. Farina and colleagues have shown evidence
of infectious Epstein–Barr virus (EBV) in monocytes
triggering SSc. Induction of EBV viral lytic genes
resulted in the induction of TLR8 expression in both
healthy control and SSc monocytes infected with
EBV [25]. Further, Farina et al. [26] have shown that
EBV can infect endothelial cells and fibroblasts in
SSc skin, leading to an aberrant TLR activation. A
novel mechanism has also now been demonstrated
bywhich humanmonocytes bound to EBV recombi-
nant virus are capable to transfer EBV to the endo-
thelial cells. In the same study, EBV lytic antigens in
scleroderma dermal vessels were detected, suggest-
ing EBV could target endothelial cells in SSc skin,
activating TLR 9 in the process and possibly contri-
buting to the vascular injury seen in SSc [27].

Beyond classic pathogens, there is increasing evi-
dence for an important role played bymitochondria,
in the events driving T1 IFN activation and subse-
quent autoimmunity. It is widely accepted that frag-
mentation inmitochondrial DNA (mtDNA), can lead
to the activation of T1 IFN pathway, through cGAS
(cytosolic cyclic GMP-AMP synthase), a specific cyto-
solic receptor for free DNA, which, in turn, activates
the endoplasmic reticulum membrane protein,
stimulator of interferon genes (STING). cGAS-STING
activation by mtDNA was shown to be positively
associated with T1 IFN and IL-6 expression in SSc as
well as in SLE [28,29]. Consistentwith these findings,
mtDNA has been found to be at increased concen-
tration in SSc plasma, with the ability to function as
DAMPs and interact with PRRs [30]. This is one of the
putativemechanismsbywhichnecrotic cells or those
under stresshavebeenfoundtoactivateTLR9andthe
double-stranded DNA sensor, cGAS.

Interestingly, it has been also proposed that
mtDNA could be damaged as a consequence of
oxidative stress because of high exposure to reactive
oxidative species (ROS) produced by the mitochon-
dria itself [28].

Regardless of the source of its secretion, T1IFN
signal through IFNAR1 and IFNAR2, which in turn
activate Janus kinase (JAK)-signalling pathway
1040-8711 Copyright © 2022 The Author(s). Published by Wolters Kluwe
downstream [4
&&

,8]. This consists initially with
phosphorylation of pre-associated JAK1 and tyro-
sine kinase 2 (TYK2), which triggers kinase activity
of signal transducers and activators of transcriptions
1 and 2 (STAT1 and 2) via cross-phosphorylation.
This leads, in turn, to the recruitment of IFN-regu-
latory factor 9 (IRF9), a member of the family of
transcription factors called IFN Regulatory Factors
(IRFs), for their ability to regulate the expression of
T1 IFN and its effects on target gene expression. IRF9
together with STAT1 and 2 form a complex known
as the IFN-stimulated gene factor 3 (ISGF3). This
complex translocates to the nucleus to bind to IFN-
stimulated response elements (ISRE) in order to
induce a family of genes that for this reason are
called interferon-stimulated genes – ISGs [4

&&

,8]. A
summary of the different pathways and key factors
mentioned above leading to T1 IFN activation is
shown in Fig. 1.
GENETICS AND EPIGENETICS OF TYPE 1
INTERFERON DYSREGULATION IN
SYSTEMIC SCLEROSIS

Familial association studies have previously shown
that family history appears to be the strongest
known risk factor for SSc. It was found that amongst
first-degree relatives of SSc patients, the prevalence
of the disease was 0.33%, with a relative risk factor of
13 when compared with the general United States
population, which had a prevalence of 0.026% [31].
A twin study including 42 twin pairs (24 monozy-
gotic and 18 dizygotic), found that the overall con-
cordance of SSc was only 4.2% (1 out of 24) in
monozygotic twins and 5.6% in dizygotic twins.
The concordance, however, of antinuclear antibod-
ies (ANAs) was significantly higher in monozygotic
twins vs. dizygotic twins (90% vs 40%), suggesting
that concordance for autoimmunity was much
higher than the one for clinical disease phenotype.
Consistent with these findings, a study in 4612 first-
degree relatives of 1071 probands revealed an
increased risk for familial autoimmunity among
subtypes of SSc, with thyroid diseases and SLE show-
ing the most significant increased prevalence when
compared with control families, together with Ray-
naud’s phenomenon and ILD [32].

The most frequent form of genetic variation in
humans is the single-nucleotide polymorphism
(SNP), which influences protein function and is
key to personalized medicine [33]. In a recent
meta-analysis of Genome-Wide Association Studies
(Meta-GWAS),which included26679 individuals, 27
independent genome-wide associated signals were
identified, which included 13 new-risk loci, and
nearly doubled the number of genome-wide hits
r Health, Inc. www.co-rheumatology.com 359



FIGURE 1. Different pathways and key factors leading to T1 IFN activation and ISG release.

Raynaud phenomenon, scleroderma, overlap and fibrosing syndromes
previously reported inSSc [34].Thismeta-analysishas
suggested a variety of IFN-signalling loci, including
T1 IFN regulatory factors IRF4 [35], IRF5 [36,37], IRF7
[34,38] and IRF8 [34,39,40]. (Fig. 1) Interestingly,
apart from SSc, the genes have also shown an associ-
ationwithSLE [41–44].Tyrosinekinase2 (TYK2) [45],
and STAT4 [34,46] are genes that have also been
linked to SSc genetic susceptibility.

A shared genetic background of autoimmune
diseases is clearly seen in GWAS, but additionally
a vital role played by environmental factors (air
pollution, infection and chemical substances, such
as silicon) [47], and epigenetic influences in the
pathogenesis of SSc has been suggested. Links to
the pathogenesis of SSc have been previously
reported for all the major epigenetic alterations,
including DNA methylation [48–50], histone mod-
ifications [51,52], noncoding small (miRNA) and
long (lncRNA) RNA transcript expression [53–56].
For instance, MiR-618 was found to be significantly
overexpressed in SSc pDCs, causing an IRF8-depend-
ent inhibition of pDC differentiation and activa-
tion, as well as increased production in IFN-a
upon TLR9 stimulation [57]. LncRNAs are a larger
class of transcribed RNA molecules, that are not
translated but regulate gene expression [58]. It has
recently been shown that a group of lncRNAs were
modulated in a T1 IFN-dependent manner in
human monocytes in response to TLR4 activation
[59]. Among the lncRNAs, the negative regulator of
the IFN response (NRIR) was found significantly
upregulated in-vivo in SSc monocytes, and affected
360 www.co-rheumatology.com
the expression of the ISGs, CXCL10 and CXCL11.
Therefore, dysregulation of NRIR in SSc monocytes
may play a part in contributing to the aberrant IFN
response present in SSc patients [59].
EVIDENCE OF INCREASED TYPE 1
INTERFERON ACTIVATION IN SYSTEMIC
SCLEROSIS

Due to the difficulty of directly measuring T1 IFN
levels from human samples, an ‘interferon signa-
ture’ including the levels of expression of the tran-
script levels of multiple known ISGs has been widely
used for this purpose. This method established the
presence of increased T1 IFN in SLE, and more
recently in other rheumatic diseases [60]. The first
reported finding of an IFN signature in SSc dates
back to 2006 [61]. Since then, it has been shown that
an IFN signature in blood is found in a large pro-
portion of SSc patients [5,62,63]. It has been also
shown that activated monocytes and macrophages
can be a potent source of T1 IFN and other profi-
brotic factors, stimulating the proliferation of fibro-
blasts and extracellular matrix accumulation [64].
An IFN signature inmonocytes has even been found
at the earliest phases of SSc, before overt fibrosis,
suggesting of this being an early event in SSc patho-
genesis [10].

A higher IFN signature in SSc whole blood or
plasmahas been found to correlatewith the antibody
profiling, where antitopoisomerase and anti-U1-RNP
antibodies were associated with a higher IFN
Volume 34 � Number 6 � November 2022
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signature [5,65]. Correlation of this higher IFN sig-
nature was also seen in more severe vascular mani-
festations and lung involvement [65–68]. Organs
known tobe targeted in SSc such as the skin and lung,
have also demonstrated an overexpression of ISGs in
SSc patients [69,70].

Upregulation of ISGs in the skin of SSc patients
was also demonstrated in skin biopsy gene expres-
sion studies [70,71]. A study performingmicroarrays
from lung tissue revealed upregulation of ISGs in
addition to TGF-b-regulated genes in SSc patients
with ILD, with an increased expression of ISGs,
associated with a higher rate of progression in ILD
[69]. Interestingly, a recent multiomic comparative
analysis of the serum profile, peripheral blood cells
and skin ISG expression in SSc patients showed that
the serum protein profile correlated more closely
with the transcriptome of the skin than that of the
PBMCs. This may be because of a spill-over effect
from diseased end organs and suggests that IFN-
inducible chemokine concentration may be a better
predictor of tissue IFN activity than PBMC ISG
expression levels [72,73

&

].
Apart from the trial in IFN-a mentioned in the

introduction of this review, case reports have been
documented of the development of SSc in individ-
uals treated with T1 IFN for other conditions. Inter-
estingly, Anifrolumab (anti-IFNAR1 monoclonal
antibody) in a phase 1 trial of SSc patients led to
the suppression of the IFN signature and TGFb
signalling in SSc skin [74]. Additionally, in a graft-
versus-host disease (GVHD) mouse model of SSc,
neutralization of IFNAR1, and consequent normal-
ization in the overexpression of T1 IFN-inducible
genes, led to a marked reduction in the dermal
fibrosis [75]. Consistent with these findings, in SSc
patients treated with high-dose cyclophosphamide
followed by rescue autologous hematopoietic stem
cell transplantation, clinical response strongly cor-
related with normalization in T1 IFN module by
RNAseq of peripheral blood cells [76].

The close mirroring of disease activity of T1 IFN
activation has also been shown in the analysis of the
SLS2 trial. Assassi et al. [77

&&

] have shown that higher
serum IFN-inducible chemokine score predicted a
better clinical response in both the cyclophospha-
mide and the mycophenalate mofetil arms. Impor-
tantly during the second year of the study, higher
serum IFN score predicted worse clinical course in
patients put on placebo, supporting the notion that
IFN activation in SSc is deleterious, unless immuno-
suppressive treatment is initiated.

Vascular injury plays an important role in organ
dysfunction in SSc, and it is the main driver of
disease in patients with the limited cutaneous subset
(LcSSc) of SSc. T1 IFN has been implicated in the
1040-8711 Copyright © 2022 The Author(s). Published by Wolters Kluwe
dysregulation of the vascular remodelling process in
SSc. Myxovirus-resistance protein A (MxA), which is
induced by T1 IFN, was found to correlate with
digital ulcerations and lower pulmonary forced vital
capacity in SSc [78]. T1 IFN has also been shown to
contribute to the increased vascular permeability in
SSc through downregulation of Fli1 (friend leukemia
integration 1 transcription factor) and vascular
endothelial cadherin (VE-cadherin) in endothelial
cells and fibroblasts [79]. Features of SSc vasculop-
athy were also seen in mice with conditional dele-
tion of Fli1 in endothelial cells confirming that T1
IFN-mediated downregulation of Fli1 enhanced the
development of SSc [80].

Consistent with these observations, IFN-induci-
ble chemokines were found to predict progression of
patients with LcSSc as far as a multi-morbidity score
including skin, lung, vascular and gastrointestinal
progression [81

&

].
Taken together, these observations suggest that

T1 IFN is involved in both tissue and vascular fib-
rosis in SSc, strongly supporting the rationale for a
direct therapeutic approach targeting the pathway.
CURRENT EXPERIENCE IN TYPE 1
INTERFERON TARGETING FOR DISEASE
MODIFICATION

Dysregulation in theT1 IFN responsehasbeen shown
to contribute to the development of autoimmunity.
Although the clinical manifestations vary amongst
the different types of autoimmune diseases, T1 IFN
protein or transcript signatures have now been iden-
tified in many of them (SSc, SLE, dermatomyositis
and Sjogren’s disease) [5,10,82–85].

In SLE, up to 80% of patients were shown to
have a T1 IFN signature, with around 50% having
chronically elevated T1 IFN levels, detectable in
blood [86,87]. SLE patients with high T1 IFN activ-
ity, also tend to have higher disease activity scores
with a greater tendency to relapse whilst in remis-
sion and a lower response rate to placebo medica-
tion [88–90]. Similarly to what has been observed in
SSc, deranged pDC activation also occurs in SLE, and
monoclonal antibodies against pDC have recently
shown benefit on cutaneous and musculoskeletal
lupus [91–93].

The effectiveness of blocking IFNAR,which plays
a critical role in T1 IFN signalling, has now been
concretely demonstrated in SLE patients with the
monoclonal antibody Anifrolumab. The phase III
Tulip-2 trial met its primary end-point, with an
improvement in overall disease activity vs. placebo
[94], leading to Food andDrug Administration (FDA)
and European Medicine Agency (EMA) approval for
treatment in SLE.
r Health, Inc. www.co-rheumatology.com 361
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The similarities of T1 IFN activation in SSc,
therefore, informs the rationale to block IFNAR in
SSc and determine its therapeutic effectiveness [4

&&

].
As mentioned above in this review, early phase 1
study of 34 SSc patients, showed that anifrolumab
was well tolerated and showed peak inhibition of
the T1 IFN signature in blood [95]. A follow-up
mechanistic study showed that treatment with ani-
frolumab led to the reduction of the T1 IFN signa-
ture in whole blood and skin biopsy samples,
demonstrating the suppressive effects of the anti-
IFNAR1 antibody [74]. These findings provide fur-
ther support for future larger double-blind, placebo-
controlled trials of Anifrolumab in early SSc.
CONCLUSION

Over the past few years, substantial progress has
been made in deconvoluting the immune complex-
ity of SSc, which has led to identify key molecular
and cellular components of T1 IFN signalling
involved in disease pathogenesis. In spite of the
progress made, many unanswered questions in the
pathogenesis of SSc remain. The origin and triggers
of T1 IFN, and the interactions played between
genetic and environmental factors, leading to dys-
function in the T1 IFN response still remains a grey
area. However, newly discovered function of mole-
cules such as CXCL4, start to lead towards a better
understanding of the connections between pDCs,
the IFN continuum and the fibrotic process. Further
studies are also needed to elucidate downstream
processes linking the T1 IFN activation to the exag-
gerated fibrotic response in fibroblasts and other key
effector cells implicated in SSc pathogenesis.

Specifically, the identification of specific ligands
and signalling pathways driving T1 IFN signalling in
SSc will need further investigation with in-vivo and
in-vitro studies. This will improve our understand-
ing of SSc pathogenesis, and will increase the arma-
mentarium of the therapeutic targets that could be
exploited to improve patient outcome.
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