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Abstract

Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent 

(BOLD) response to a CO2 pressure change, is a useful metric of cerebrovascular function. Both 

the amplitude and the timing (hemodynamic lag) of the CVR response can bring insight into 

the nature of a cerebrovascular pathology and aid in understanding noise confounds when using 

functional Magnetic Resonance Imaging (fMRI) to study neural activity. This research assessed 

a practical modification to a typical resting-state fMRI protocol, to improve the characterization 

of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting­

state data segments, and in data segments which added a 2–3 minute breathing task to the 

start of a resting-state segment. Two different breathing tasks were used to induce fluctuations 

in arterial CO2 pressure: a breath-hold task to induce hypercapnia (CO2 increase) and a cued 

deep breathing task to induce hypocapnia (CO2 decrease). Our analysis produced voxel-wise 

estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response to CO2 by 

systematically shifting the CO2 regressor in time to optimize the model fit. This optimization 

inherently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing 

task, compared to a resting-state scan only, increases the number of voxels in the brain that have 
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a significant relationship between CO2 and BOLD-fMRI signals, and improves our confidence 

in the plausibility of voxel-wise CVR and hemodynamic lag estimates. We demonstrate the 

clinical utility and feasibility of this protocol in an incidental finding of Moyamoya disease, and 

explore the possibilities and challenges of using this protocol in younger populations. This hybrid 

protocol has direct applications for CVR mapping in both research and clinical settings and wider 

applications for fMRI denoising and interpretation.
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1. Introduction

Brain blood flow is regulated by changes in vessel diameter, directed by changes in 

perfusion pressure and by metabolic demands of neural activity (Meng and Gelb, 2015). 

Cerebrovascular Reactivity (CVR), the blood flow response to a vasoactive stimulus, is a 

metric that reflects this regulatory ability and is a key means of assessing cerebrovascular 

health. CO2 is a potent vasodilator and the partial pressure of arterial CO2 (PaCO2) 

naturally fluctuates with changes in respiratory depth and rate. Within a certain range 

around resting PaCO2, an increase in PaCO2 will cause vasodilation and a decrease will 

cause vasoconstriction (Meng and Gelb, 2015, Harper and Glass, 1965, Brian, 1998); 

this change in vessel diameter will result in a global change in blood flow that can be 

captured by any functional Magnetic Resonance Imaging (fMRI) contrast that is dependent 

on blood flow changes. Driven by the same physiological mechanism, the influence of 

PaCO2 on fMRI signals can either provide useful information about vascular function, or 

confound our measurement of neural function, depending on how one models and interprets 

these effects. An ideal fMRI experiment should therefore include characterization of CVR, 

both to provide complementary vascular information and to better model and interpret 

any neural activity of interest (e.g., task activation, intrinsic fluctuations, and functional 

connectivity). The main focus of this paper is to assess how a practical modification of 

a typical “resting-state” protocol improves CVR mapping, focusing on regional variations 

in semi-quantitative CVR amplitude and local hemodynamic timings. Considering broader 

applications, improved modeling of PaCO2 fluctuations in any fMRI data naturally enables 

better differentiation between non-neuronal confounds and neuronally-driven effects and can 

aid in correcting fMRI analyses for variations in transit delays and vascular properties of the 

local hemodynamic response (Handwerker et al., 2007, Thomason et al., 2007, Chang et al., 

2008, Tsvetanov et al., 2015, Murphy et al., 2011, Kannurpatti and Biswal, 2008, Golestani 

and Chen, 2020).

1.1. Practical CVR mapping: modeling both amplitude and timing

Here we used the Blood Oxygenation Level Dependent (BOLD) fMRI response to represent 

blood flow changes, and the partial pressure of end tidal CO2 (PETCO2) to represent 

PaCO2 changes (Takano et al., 2003, McSwain et al., 2010). Aside from an invasive 

contrast-agent such as acetazolamide, CO2 gas inhalation methods are often seen as the 

gold standard for CVR mapping with fMRI (Liu and De Vis, 2019). Gas inhalations allow 
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more precise and repeatable PaCO2 targeting, however these experiments are more timely, 

costly and complicated to set-up, and are therefore not practical for all research and clinical 

applications. Much previous fMRI research has demonstrated that CVR mapping with 

breathing tasks (breath holding, BH, or cued deep breathing, CDB) is a promising practical 

approach that can provide useful information about cerebrovascular health (Urback et al., 

2017, Pinto et al., 2021); this has been demonstrated in a diverse set of clinical cohorts, 

e.g. (Pillai and Mikulis, 2014, Krainik et al., 2005, Pillai, 2011, Iranmahboob et al., 2016, 

Conijn et al., 2012, Wu et al., 2020, Raut et al., 2016, Van Oers et al., 2018, Zacà et al., 

2014, Tchistiakova et al., 2014, Buterbaugh et al., 2015, Prilipko et al., 2014, Churchill et 

al., 2020, Geranmayeh et al., 2015, Hsu et al., 2004). Resting PETCO2 fluctuations also have 

a significant positive relationship with BOLD fMRI signals (Wise et al., 2004). Therefore, 

an even simpler approach to CVR mapping is to measure natural fluctuations in PETCO2 

during fMRI acquisitions with no specific task, i.e., during rest (Pinto et al., 2021, P. Liu 

et al., 2017, Golestani et al., 2016). This may be favored in clinical studies where subject 

compliance with breathing tasks is hard to achieve. The utility of this resting-state CVR 

approach has also been demonstrated in clinical cohorts (Liu et al., 2017, Liu et al., 2020, 

Taneja et al., 2019, Ni et al., 2020, Secchinato et al., 2019).

Both breathing tasks and resting-state approaches produce comparable BOLD signal 

changes (Kannurpatti and Biswal, 2008, Jahanian et al., 2017, Birn et al., 2006), and are 

also comparable to those obtained with gas-inhalation techniques (Kannurpatti and Biswal, 

2008, Liu et al., 2017, Golestani et al., 2016, Kastrup et al., 2001, Biswal et al., 2007). 

There are few studies comparing breathing tasks and resting-fluctuations for CVR mapping 

normalized to a common scale, i.e., PETCO2. One study, using PETCO2 regressors in their 

CVR analysis, report that resting-state data shows poorer model fits, poorer repeatability, 

and more variable between-subject CVR estimates compared to BH data, in 14 subjects 

(Lipp et al., 2015). CVR maps showed good spatial agreement between BH CVR and 

resting-state CVR when the latter is evaluated based on the resting PETCO2 trace and the 

resting state fluctuation amplitude (RSFA), but in general their results suggest it is not 

straight-forward to replace BH designs with resting-state in the assessment of CVR. In 

terms of agreement in CVR timing, (Chang and Glover, 2009) reported a strong agreement 

between PETCO2 latency values derived from a BH dataset and resting-state dataset, in one 

subject. Also assessing timing, (Bright et al., 2017) investigated the optimal temporal shift 

between a gray matter (GM) BOLD time-series and a PETCO2 regressor, in 12 subjects, 

within a 16 second range. In the modelled resting-state data, some subjects showed negative 

correlation values, and no clear shift maximum within the temporal bounds considered. For 

the modelled BH data, all subjects showed a significant positive correlation between BOLD 

and PETCO2 that peaks at a physiologically plausible temporal shift. Further, BH derived 

optimal shift values were repeatable within two halves of the scan, whereas this was not 

the case for optimal shift values derived with resting-state data. Though CVR mapping 

with resting-state data is possible, there exists intrinsic low-frequency oscillations, driven by 

neural activity or other physiological processes (Murphy et al., 2013, Liu, 2016, Caballero­

Gaudes and Reynolds, 2017, Tong et al., 2019, Whittaker et al., 2019) that can be of similar 

or greater magnitude to the low-frequency fluctuations induced by PETCO2, sometimes 

resulting in an fMRI time-course poorly coupled to PETCO2. Furthermore, breathing tasks 
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induce larger fluctuations in PETCO2 and therefore larger fMRI signal changes which can 

be easier to detect above noise. However, breathing tasks, as opposed to rest, can introduce 

motion confounds that are correlated with task timings (Bright et al., 2009, Power et al., 

2018, Power et al., 2017).

Correcting for the temporal offset between a PETCO2 regressor and the local fMRI response 

is an important and necessary step in estimating accurate regional CVR values. Though the 

previous literature has mixed approaches and results, robustly characterizing this temporal 

shift in resting-state data sometimes appears unreliable and less repeatable. Within the 

BOLD fMRI literature, it appears relatively common to correct for the temporal offset 

with a cross-correlation between the physiological regressor and an average fMRI regressor. 

It is less common to model this temporal offset on a voxel-wise basis, though there are 

multiple examples in the literature showing the implementation and advantages of this in 

resting-state or breathing task data (Chang et al., 2008, Geranmayeh et al., 2015, Chang 

and Glover, 2009, Bright et al., 2009, Magon et al., 2009, Pinto et al., 2016, Raut et al., 

2016, Cohen and Wang, 2019, Birn et al., 2008, Sousa et al., 2014, Tong et al., 2014, 

Juttukonda and Donahue, 2019, Donahue et al., 2016, Tong et al., 2011). This temporal 

offset is driven by both methodological and physiological factors: there is a delay between 

the CO2 exhalation inside the scanner and the recording of exhaled CO2 in the control 

room, vascular transit delays as gasses travel with the blood to arrive at each brain region 

and variability in the vasodilatory response of local arterioles and the spatio-temporal 

complexities of the BOLD response. Therefore, it is important to model CVR lag (also 

referred to as CVR timing, optimal shift, temporal offset, latency or delay) on a regional or 

voxel-wise basis. In healthy subjects, we recently demonstrated our approach to voxel-wise 

optimization of hemodynamic lag, to improve regional BOLD-CVR estimates (Moia et al., 

2020, Moia et al., 2021), and we apply this pipeline to our CVR mapping analysis in this 

paper. As well as improving model fit and more accurately characterizing CVR amplitude, 

making maps of hemodynamic lag can provide distinct regional information that is clinically 

relevant (Donahue et al., 2016, Siegel et al., 2016, Ni et al., 2017) and potentially aid in 

correcting fMRI analyses (Handwerker et al., 2007, Thomason et al., 2007, Chang et al., 

2008, Tsvetanov et al., 2015, Murphy et al., 2011, Kannurpatti and Biswal, 2008, Golestani 

and Chen, 2020).

There is always a trade-off between complexity of experimental setup and how much control 

one can have over the manipulation of blood gasses. We strive for simple and feasible 

methods that can be applied in clinical settings, without losing too much accuracy, and 

minimizing the disruption to the overall scan session. Therefore, in this study we propose 

a practical addition to a typical resting-state fMRI scan: approximately 2.5 minutes of a 

breathing task appended to the start of a resting state period. We suggest that this novel 

hybrid design (breathing task + resting state) will be useful for both mapping of CVR 

amplitude and timings, ideally still allowing for separate analysis of resting state data. We 

compare CVR maps with and without lag optimization, and CVR maps that have been 

created with resting-state data alone, resting-state data preceded by a short hypercapnic 

breathing task, and resting-state data preceded by a short hypocapnic breathing task. We 

chose two different breathing tasks to achieve these PaCO2 changes: the commonly utilized 

breath-hold (BH) task to induce hypercapnia (reviewed by (Urback et al., 2017)), and a cued 
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deep breathing task (CDB) to induce hypocapnia via hyperventilation (Bright et al., 2009, 

Sousa et al., 2014, Bright et al., 2011), both tasks reviewed by (Pinto et al., 2021).

2. Methods

2.1. Data collection

This study was reviewed by Northwestern University’s Institutional Review Board and all 

subjects gave written informed consent. Nine healthy subjects were recruited (6 female, 

mean age = 26.22±4.06 years). A tenth subject was recruited of which a potential incidental 

finding was observed, based on hemodynamic lag maps. The appropriate ethical guidelines 

were followed in reporting of this incidental finding, and it was later confirmed this subject 

had a diagnosis of Moyamoya disease. Therefore, this subject is not described alongside the 

other nine subjects in this manuscript, but as a case study in a separate section of the results.

The overall study design is shown in Fig. 1. Before scanning, subjects practiced the BH 

and CDB tasks outside the scanner with the researcher (R.C.S). Three fMRI scans were 

collected, the order of acquisition pseudo-randomized across subjects. BH and CDB timings 

were guided by previous work using these tasks (Lipp et al., 2015, Bright et al., 2009) 

including information about the BOLD time to peak and return to baseline timings in 

response to a single deep breath (Birn et al., 2008). From three fMRI scans, five data 

segments were created: BH + REST, CDB + REST, REST, RESTBH and RESTCDB, of 

which the first two contain breathing tasks and the others do not. Each data segment 

had the same number of time points, to match degrees of freedom across models. During 

scanning, inspired and expired CO2 and O2 pressures (in mmHg) were sampled through a 

nasal cannula worn by the participant, and pulse was monitored with a finger transducer. 

These physiological signals were recorded alongside fMRI volume triggers at 1000 Hz with 

LabChart software (v8.1.13, ADInstruments), connected to a ML206 Gas Analyzer and 

PL3508 PowerLab 8/35 (ADInstruments). Although pulse data were collected, they were not 

included in the modeling of fMRI data due to insufficient quality of the recordings across 

many subjects and scans.

Imaging data were collected with a Siemens 3T Prisma MRI system with a 64-channel 

head coil. The functional T2∗-weighted acquisitions run during the breathing tasks and 

resting-state protocols were gradient-echo planar sequences provided by the Center for 

Magnetic Resonance Research (CMRR, Minnesota) with the following parameters: TR/TE 

= 1200/34.4 ms, FA = 62°, Multi-Band (MB) acceleration factor = 4, 60 axial slices with 

an ascending interleaved order, 2 mm isotropic voxels, FOV = 208 × 208 mm2 , Phase 

Encoding = AP, phase partial Fourier = 7/8, Bandwidth = 2290 Hz/Px. One single-band 

reference (SBRef) volume was acquired before each functional T2∗-weighted acquisition 

(the same scan acquisition parameters without the MB acceleration factor) to facilitate 

functional realignment and masking. A whole brain T1-weighted EPI-navigated multi-echo 

MPRAGE scan was acquired, adapted from (Tisdall et al., 2016), with these parameters: 1 

mm isotropic resolution, 176 sagittal slices, TR/TE1/TE2/TE3 = 2170/1.69/3.55/5.41 ms, TI 

= 1160 ms, FA = 7°, FOV = 256 × 256, Bandwidth = 650 Hz, acquisition time of 5 minutes 

12 seconds, including 24 reacquisition TRs. The three echo images were combined using 

Stickland et al. Page 5

Neuroimage. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



root-mean-square. ASL data was also collected before the last fMRI scan, but it was not 

analyzed in the current study.

Five example datasets from a pediatric study of hemiparetic cerebral palsy and typical 

development (ages 7–21 years, all female) are included to assess the feasibility of our 

proposed method in cohorts where task compliance may be more challenging. All gave 

written informed consent or assent. Only one functional T2∗-weighted acquisition was 

collected. The functional acquisition matched the parameters explained previously, except 

for these key differences: MB factor = 8, TR/TE=555/22 ms, FA = 47°, 64 slices, 6/8 

phase partial Fourier, and FOV = 208 × 192. During this acquisition participants completed 

a CDB+REST protocol that matched the timings described previously, except auditory 

cues were used instead of visual cues (Fig. 10). Expired CO2 was collected as previously 

described.

2.2. Data analysis

The data from this study unfortunately cannot be made openly available due to restrictions 

of the ethical approval that they were collected under. However, analysis derivatives that are 

not included in this manuscript may be provided, on request, within ethical guidelines. All 

breathing task stimulus code and the main analysis code have been made available via this 

GitHub repository: github.com/BrightLab-ANVIL/Stickland_2021.

2.2.1. MRI pre-processing—A custom shell script grouped AFNI (Cox, 1996) and FSL 

(Woolrich et al., 2009, Smith et al., 2004, Li et al., 2016, Jenkinson et al., 2012) commands, 

for minimal preprocessing of the MRI data. DICOMS were converted to NIFTI format 

with dcm2niiX (Li et al., 2016). The T1-weighted file was processed with FSL’s fsl_anat, 
involving brain extraction (Smith, 2002), bias field correction and tissue segmentation (GM/

white matter/cerebral spinal fluid) with FAST (Zhang et al., 2001). Tissue masks were 

subsequently created by thresholding the partial volume estimate images at 0.75. The SBRef 

volume from the middle (second) fMRI scan was brain extracted, and eroded. The SBRef 

image was registered to the preprocessed T1-weighted image using FLIRT (Jenkinson and 

Smith, 2001, Jenkinson et al., 2002). The transformation matrix was inverted in order to 

co-register the tissue masks from T1 image space to SBRef image space. For each fMRI 

acquisition, the first 10 volumes were discarded to allow the signal to achieve a steady 

state of magnetization. AFNI’s 3dvolreg was run with the same middle SBRef scan as the 

reference volume. Six motion parameters (three translations, three rotations) were saved and 

demeaned for each acquisition. Next, the three fMRI files were masked to brain voxels using 

the SBRef mask created previously.

2.2.2. CO2 trace pre-processing—Fig. 2 gives a schematic overview of the lagged­

GLM protocol for CVR mapping. For further justification of this analysis approach see 

Appendix A. Custom MATLAB (MathWorks, R2018b) code processed the physiological 

recording to create PETCO2 regressors. A text file from the whole session was exported from 

the LabChart software and split into an output for each fMRI acquisition. Each output was 

(purposefully) slightly longer than the length of the fMRI acquisition: an additional 20.4 

seconds of CO2 data (equivalent to 17 extra TRs) both before and after each acquisition 

Stickland et al. Page 6

Neuroimage. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.github.com/BrightLab-ANVIL/Stickland_2021


was included in the exported data (Fig 2-A). This made it possible to create shifted PETCO2 

regressors in a later step. A peak detection algorithm was used to detect the end-tidal peaks 

(maximum CO2 value at the end of each exhale). The peaks were manually checked to 

ensure the end of each expiration breath was always chosen, and to remove incorrectly 

identified end-tidal values (e.g., in the case of partial breathing through the mouth, and not 

fully through the nose, not giving a true end-tidal peak). A linear interpolation between these 

peaks produced the PETCO2 trace (Fig 2-B) which was convolved with the SPM canonical 

hemodynamic response function (HRF) and exported for functional imaging analyses. For 

the breath-hold periods there is no end-tidal recording, so a linear interpolation is based on 

the last exhale before the hold and the first exhale after.

2.2.3. CVR and lag estimation—Linear modeling for CVR and lag estimation was 

carried out separately for each of the five data segments (data segments illustrated in Fig. 

1 and 3). A total of 101 shifted PETCO2hrf regressors with different temporal offsets were 

created, with a unique reference start time (Fig 2-C). The reference start time corresponded 

to the first fMRI volume to be analyzed for that segment. The same model was run for 

all shifted versions of the PETCO2hrf regressor (Fig 2-E): the fMRI variance explained 

by the demeaned PETCO2hrf regressor was modeled alongside the six demeaned motion 

parameters (as nuisance regressors) and Legendre polynomials up to the 4th degree (to 

model the mean and drifts of the fMRI signal). Including these polynomials in the model 

is approximately equivalent to a high-pass filter cutoff of 0.0076 Hz (AFNI 3dDeconvolve 
help; (Kay et al., 2008)). Least squares regression accounting for serial autocorrelation 

of residuals was applied with AFNI’s 3dREML-fit command. The beta coefficient for the 

PETCO2hrf was scaled by the fitted mean (beta coefficient for 0th order polynomial) of that 

voxel (PETCO2hrf coefficient/mean coefficient) and multiplied by 100 to create CVR maps 

in %BOLD/mmHg.

The hemodynamic lag at each voxel was identified as the shift that gave the maximum full 

model coefficient of determination (R2 ) (Fig 2-F). If a voxel with an optimal shift (lag) 

was found at or adjacent to a boundary (−15, −14.6, +14.6, +15) this was not deemed a 

true optimization and is also less likely to be physiologically plausible (Fig 2-G). Final 

hemodynamic lag maps (Fig 2-H) display values ranging from negative to positive which 

indicate earlier to later hemodynamic responses to PETCO2hrf, respectively. Two CVR maps 

were created: map with no lag optimization (No-Opt), using the unshifted PETCO2hrf as the 

regressor, and CVR maps with lag optimization (Lag-Opt). Lag-Opt CVR maps used the 

beta coefficient for the PETCO2hrf regressor from the model with the optimum shift (Fig 

2-I). Lag and CVR maps were thresholded (Fig 2-J): CVR values were deemed significant 

for absolute T-statistics greater than 1.96 (corresponding to p<0.05) and for Lag-Opt CVR 

this was further adjusted with the Šidák correction (Bright et al., 2017, Sidak, 1967) due 

to running 101 different models. Voxels with lag values at the boundary were also removed 

from thresholded parameter maps.

2.2.4. Data summaries and statistical tests—The median GM CVR and the 

percentage of significant voxels in GM was calculated for each modelled data segment. 

These values were computed for No-Opt, Lag-Opt, No-Opt with statistical thresholding 
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(p<0.05), Lag-Opt with matched statistical thresholding (p<0.05) and Lag-Opt with stricter 

statistical thresholding (p<0.05, Šidák corrected). The kernel density estimation of the 

distribution of lag values in GM (MATLAB’s ksdensity function) was also computed for 

each subject and each data segment, and the median GM lag values were outputted.

In order to provide lag values with some regional specificity across GM regions, FSL atlases 

in MNI space (MNI-maxprob-thr25–2mm and HarvardOxford-sub-maxprob-thr25–2mm) 

were used to make three GM masks: cortical GM, subcortical GM and cerebellar GM. From 

the HarvardOxford atlas, left and right cerebral cortex parcels were combined into one mask, 

and left and right subcortical regions (thalamus, caudate, putamen, palladium, hippocampus, 

amygdala, accumbens) combined into another. The cerebellum parcel was extracted from 

the MNI atlas to make a third mask. These three atlas masks (cortical, subcortical and 

cerebellar) were linearly transformed (FSL, FLIRT) to subject space, and thresholded to 

only include voxels within the subject’s GM tissue mask. Median lag values were extracted 

from each mask for BH+REST and CDB+REST data segments.

R version 3.4.1 (R Core Team, 2019) was used for data exploration and statistical testing. 

To compare parameter values across data segments and optimization schemes (No-Opt vs 

Lag-Opt), repeated measures ANOVAs were run with the R package permuco (Frossard and 

Renaud, 2019) with the ‘aovperm’ function. Null distributions were created via 100,000 

permutations of the original data, which therefore do not depend on gaussian and sphericity 

assumptions. When investigating simple main effects (‘emmeans’ package) and performing 

multiple comparisons, p-values were adjusted with the Benjamini & Hochberg approach 

(Benjamini and Hochberg, 1995) for control of false discovery rate (FDR), and then 

compared against an alpha of 0.05 to determine significance. Outliers were identified with 

boxplots. Correlation plots and statistical outputs were created with the R packages ggplot2 

(Wickham, 2016) and ggpubr (Kassambara, 2020) with the ‘ggscatter’ function. Outliers for 

the correlation analysis were identified when Cook’s distance was over 4/n, with n being the 

number of subjects, which indicates an influential single data point. The Shapiro-Wilk test 

was used to ensure normality of variables.

It can be seen from the parameter maps (Fig. 5, Fig. 6, Supplementary Figure S1) that after 

statistical thresholding, a substantial proportion of voxels within white matter do not show 

a significant relationship between PETCO2hrf and BOLD signals. Therefore, we decided 

to focus our comparison of CVR and lag parameter averages, across the different data 

segments, within GM voxels only.

2.2.5. Resting-state analyses—We performed exploratory analyses to investigate any 

residual effects on the resting-state data segments that followed the breathing tasks. BOLD­

fMRI data from each of the three pre-processed REST segments (7 minutes 48 seconds, 

first 10 volumes of each segment removed, brain extraction, volume registration) were 

detrended to remove the same motion parameters and Legendre polynomials as detailed 

in Sections 2.2.1 and Sections 2.2.3. We then created maps of resting-state fluctuation 

amplitude normalized to the mean (mRSFA), amplitude of low-frequency fluctuation 

(ALFF) and fractional ALFF (fALFF) with AFNI’s 3dRSFC function (4 mm FWHM 

blurring, filtering between 0.01 and 0.1 Hz). We also created maps of local functional 
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connectivity density (LFCD) with AFNI’s 3dLFCD function (Pearson correlation, threshold 

of 0.6, within a dilated GM mask). Spatial correlations were performed between pairs 

of single-subject resting-state parameter maps, within the GM mask, with AFNI’s 3ddot 

function. The resting-state parameter maps were linearly transformed to MNI space and 

a voxel-wise ANOVA analysis (3dANOVA, AFNI) was run to test the effect of REST 

segment on mRSFA, ALFF, fALFF and LFCD, setting a voxel-wise threshold of p<0.05 

(FDR corrected) for significance.

3. Results

Fig. 3A shows the average BOLD-fMRI signal across GM, and the corresponding 

PETCO2hrf changes, for each of the three scans. Note the three cycles of increased PETCO2 

values in blue, due to breath holds, and the two cycles of decreased PETCO2 values 

in green, due to cued deep breaths. The fMRI time-series changes as expected due to 

the CO2 manipulations. The BH task produced a maximum pressure increase of 7.4±3.1 

mmHg (mean±stdev across subjects) and CDB produced a maximum decrease of 8.1±3.2 

mmHg, relative to the mean value at rest. For the three rest segments the temporal standard 

deviation of PETCO2 was 0.9±0.4, 1.2±0.7 and 0.8±0.4 mmHg (mean±stdev across subjects) 

for REST, RESTBH and RESTCDB respectively. Fig. 3B displays framewise displacement 

(Power et al., 2012) to summarize head motion, showing increased motion during breathing 

tasks.

3.1. Hemodynamic lag values

Fig. 4 shows the distribution of hemodynamic lag values in GM tissue estimated from 

the lagged-GLM analysis, displaying both positive and negative lags. Though a positive 

lag value might be expected (CO2 pressure change in the blood leads the fMRI signal 

change) there are multiple factors contributing to this value, and in different directions. For 

example, the recording delay between CO2 exhalation inside the scanner and CO2 recording 

outside the scanner contributes to a more negative shift, whereas vascular transit delays 

and vasodilatory dynamics that eventually lead to the BOLD-fMRI signal will contribute to 

a more positive shift. Therefore, the observed lag between a CO2 recording and a BOLD 

fMRI recording will naturally vary with the experimental set-up, the participant, and their 

physiological state.

As demonstrated in Fig. 4, the BH+REST and CDB+REST data segments, plotted in solid 

blue and green lines respectively, have a more gaussian-like distribution of lag values 

(excluding the boundaries), the properties of which generally match for most subjects. REST 

data segments (dashed lines) have less physiologically plausible distributions which agree 

less with other segments and vary more across subjects. Fig. 4 also shows the percentage 

of GM voxels with lag values at the boundary condition. From the repeated measures 

ANOVA analysis, there was a significant effect of data segment on percentage of voxels 

at the boundary condition (F(4,32) = 9.86, p < 0.0001). Simple main effects analysis 

showed that group means for BH+REST (12.24%) and CDB+REST (11.79%) did not differ 

(p=0.795, FDR-corrected). However, BH+REST and CDB+REST each had a significantly 

lower percentage compared to REST (17.56%), RESTBH (17.35%) and RESTCDB (18.34%), 
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with all p-values < 0.022, FDR corrected. All REST segment pairs were not significantly 

different to each other (p>0.605, FDR corrected). This analysis was run multiple times after 

the separate removal of three data points from the RESTCDB group which were classed as 

extreme outliers based on boxplots, however the results did not change. The three REST data 

segments resulted in a greater percentage of voxels being identified at the boundaries of our 

fitting procedure; lag values at the boundary are less physiologically plausible, and indicate 

less certain lag optimization i.e., we cannot determine this is a true local maximum.

Supplementary Table S1 shows that BOLD response timing to a PETCO2hrf change is 

generally earliest in subcortical GM regions, approximately 0.4 seconds later in cortical 

GM regions, and 1.4–2.0 seconds later in GM cerebellar regions. Though specific regional 

comparisons were not a focus of this paper, lag (CVR delay) is less commonly characterized 

in the literature, compared to CVR amplitude. Therefore, these results are included in order 

to assess the agreement of our lag values with previous literature.

3.2. CVR and lag maps

Figs. 5 and 6 show maps of CVR and lag, respectively, for one subject and all thresholding 

options. CVR values increase after lag optimization, as expected. There is more spatial 

agreement in CVR and lag maps when the BH and CDB segments are included in the 

modelled data, showing a similar contrast between tissues types. Maps that only include 

REST data barely exhibit a physiologically reasonable contrast between tissues types, and 

after the final statistical thresholding (p<0.05, Šidák corrected) very few voxels remain. This 

is also seen in Supplementary Figure S1, which displays maps for all subjects. All subjects 

follow the trend described, except S7 and S8 which have CDB+REST maps that appear 

more similar to REST maps (in number and distribution of significant voxels); these are the 

same two subjects in Fig. 4 that had CDB+REST GM lag distributions that did not look 

similar to the BH+REST distributions.

3.3. Comparing GM CVR values and significant fits across data segments

Fig. 7 depicts the distribution of CVR values in GM, for No-Opt CVR and Lag-Opt 

CVR across different levels of statistical thresholding, for one subject. The same plots 

can be found for all subjects in Supplementary Figures S2-S6. In general, the No-Opt 

CVR values (row 1) follow a Gaussian- or Laplacian-like distribution when no statistical 

thresholding is applied. The REST data segments generally have the greatest number of 

negative CVR values. The Lag-Opt CVR distributions (unthresholded, row 2) change shape 

to resemble a more bimodal distribution, due to CVR estimates diverging further from 

zero in either direction (which is expected due to our method for optimizing lag). This 

effect is enhanced in the thresholded distributions for both No-Opt and Lag-Opt (rows 

3–5); CVR values closer to zero are removed after applying statistical criteria, resulting in 

distinct bimodal distributions. Interestingly, we see the proportion of negative CVR values 

to positive CVR values is much less in the BH+REST and CDB+REST data segments. 

For the REST segments, after lag optimization and statistically thresholding there are some 

cases where there is an equivalent amount of positive and negative CVR values. We expect 

predominantly positive CVR values in GM, and true negative CVR responses represent very 

different physiological mechanisms (Thomas et al., 2013, Bright et al., 2014). Considering 
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the shape of these distributions, and the considerable proportion of negative CVR values in 

the REST segments, we summarized positive and negative CVR separately when computing 

summary CVR metrics across GM, shown in Fig. 8 and Supplementary Figure S7. For ease 

of reference, group averages and standard deviations from these figures are also provided in 

Supplementary Table S2.

Fig. 8 (top panel) compares median positive GM CVR values across data segments. There 

was a significant interaction between data segment and optimization scheme (F(4,32 = 

14.2, p<0.00001) so simple effects were investigated. Positive GM CVR values increased 

after lag optimization for all data segments: BH+REST (p=0.02), CDB+REST (p=0.01), 

REST (p=0.002), RESTBH (p=0.002) and RESTCDB (p=0.002). There were no significant 

differences in median positive GM CVR values between any pair of data segments for 

No-Opt values (all p-values >0.14) but there were significant differences for Lag-Opt 

values, which drove the significant interaction. For Lag-Opt, positive GM CVR values were 

not different between: BH+REST and CDB+REST; CDB+REST and REST; CDB+REST 

and RESTBH; REST and RESTBH (all p-values >0.14), However, REST had significantly 

higher values than BH+REST (p=0.02); RESTBH had significantly higher values than 

BH+REST (p=0.006); RESTCDB had significantly higher values than BH+REST (p=0.001), 

CDB+REST (p=0.001), REST (p=0.002), and RESTBH (p=0.008). One extreme outlier 

was removed from the CDB+REST segment (Fig. 8, subject with highest values) for this 

statistical testing. All p-values are FDR corrected. Similar patterns are seen for negative 

CVR values (Supplementary Figure S7).

The previous CVR comparisons are taken using all GM voxels, and not only from voxels 

that are statistically thresholded; Fig. 8 (bottom panel) shows that the percentage of 

significant voxels in GM is noticeably lower in the REST data segments, suggesting that 

there is less confidence in these summary CVR estimates. With or without lag optimization, 

there are more GM voxels showing significant positive fits for PETCO2hrf in the data 

segments with breathing tasks, for all subjects except S7 and S8. The inverted V-shaped 

pattern shows the number of significant voxels changes with statistical thresholding in a 

similar way across the 5 data segments: more voxels are significant after lag optimization 

if the same thresholding (p<0.05) is applied, however after Šidák correction this returns 

to a similar or smaller number of statistically significant voxels as found without lag 

optimization. This shows the statistical consequence of the lagged-GLM computation 

(considered further in the discussion).

3.4. Clinical utility

An incidental finding was suspected in one of our participants due to an abnormality 

first noticed in the lag maps. Specifically, a large section of the cortex displayed a blood 

flow response to PETCO2 much later than other areas of the cortex. The area of cortex 

impacted appeared to be the vascular territory mostly supplied by the middle cerebral 

artery. The appropriate ethical procedures were followed and it was confirmed that this 

subject had unilateral Moyamoya disease. Moyamoya is a rare vascular disorder which 

typically involves blockage or narrowing of the carotid artery, reducing blood flow to the 

brain. Fig. 9 shows CVR and lag maps in this subject. The lag maps show that many GM 
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voxels in the right hemisphere are responding approximately 10 seconds later compared 

to the homologous regions of the left hemisphere. When lag is not considered, the CVR 

maps (No-Opt) show dominant negative CVR in this vascular territory, similar to what has 

been reported in previous CVR mapping studies with Moyamoya (Conklin et al., 2010, 

Poublanc et al., 2013, Dlamini et al., 2018). However, when correcting the CVR maps for 

lag (Lag-Opt) there is a striking change - the CVR within GM mostly normalizes, without a 

clear pathology. These lag-optimized maps suggest that the local CVR response is preserved 

in GM, albeit with delayed blood transits. Looking at the lag optimized CVR map alone, 

one could incorrectly conclude that this subject does not have a clear vascular pathology. 

Both maps, lag and CVR (Lag-Opt), are needed for the most accurate interpretation, and 

to determine whether there are CVR reductions, delayed blood transits, or both. Fig. 9 also 

shows CVR and lag results in REST data. Here, the pathology is much less evident, and 

these results follow the same pattern seen in the other 9 subjects presented.

In a concurrent pediatric pilot study, five individuals with typical development and 

hemiparetic cerebral palsy completed a modified version of the CDB+REST protocol. 

Fig. 10 shows PETCO2 traces and average BOLD-fMRI signal across GM. Three primary 

scenarios of task compliance were observed. In Scenario 1, participants achieved hypocapnia 

as expected, evidenced by two consecutive decreases in PETCO2 and BOLD-fMRI signals. 

In Scenario 2, PETCO2 values were unreliable for several breathing cycles (indicated by 

missing values in Fig. 10), yet there is possible evidence of two mild hypocapnia cycles in 

the BOLD-fMRI signal. In Scenario 3, PETCO2 values were more reliable but participants 

did not appear to complete the task, evidenced by a lack of hypocapnia-induced PETCO2 

and BOLD signal decreases. These trends appear to be age-related, with scenario 1 primarily 

occurring in older participants (ages 15–21 years) and scenarios 2 and 3 in the youngest 

participants (7–12 years).

3.5. Resting-state analyses

For all resting-state metrics, no significant differences were found between resting data 

segments, and therefore no clear evidence of residual effects caused by breathing tasks 

were identified. For mRSFA, group means ± stdev for spatial correlations between 

pairs of single-subject maps were: 0.92±0.04 (REST, RESTBH), 0.92±0.06 (REST, 

RESTCDB) and 0.92±0.04 (RESTBH, RESTCDB). For ALFF: 0.92±0.04 (REST, RESTBH), 

0.93±0.04 (REST, RESTCDB) and 0.93±0.03 (RESTBH, RESTCDB). For fALFF: 0.87±0.08 

(REST, RESTBH), 0.91±0.03 (REST, RESTCDB), 0.90±0.05 (RESTBH, RESTCDB). For 

LFCD: 0.62±0.21 (REST, RESTBH), 0.58±0.25 (REST, RESTCDB), 0.66±0.19 (RESTBH, 

RESTCDB). For the voxel-wise ANOVA, we observed no voxels with a significant (p<0.05, 

FDR corrected) main effect or significant pairwise comparison for mRSFA, ALFF, fALFF or 

LFCD parameter maps. The lowest FDR corrected p-value across all pairwise comparisons 

and parameter maps was 0.51.

4. Discussion

Adding a simple, 2–3-minute breathing task to the beginning of a resting-state scan vastly 

improves our ability to model CO2 effects (both amplitude and timing) in BOLD-fMRI 
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data. This modified scan protocol produces maps of physiological parameters that may 

contribute to our understanding of healthy and pathological cerebrovascular function, whilst 

maintaining an extended “resting state” period as required for studying intrinsic brain 

fluctuations and connectivity. This hybrid protocol has clear and direct applications for 

CVR mapping in both research and clinical settings, as well as wider applications for fMRI 

denoising and interpretation. Our analysis produces maps of both the amplitude (CVR) and 

timing (hemodynamic lag) of the BOLD fMRI response to CO2 by systematically shifting 

the PETCO2 regressor to optimize the model fit. In any fMRI dataset, this optimization 

inherently increases GM CVR values and fit statistics. We have shown that the inclusion of 

breathing task data further increases the number of voxels in the brain that have a significant 

relationship between PETCO2 and BOLD-fMRI signals, and improves our confidence in the 

plausibility of voxel-wise hemodynamic lag estimates.

Compared to a typical resting-state fMRI scan, this protocol requires extra equipment 

to record expired CO2 alongside scanner triggers. For the benefits gained, this cost is 

reasonable relative to typical scanning costs, and the equipment is easy to set-up and 

maintain. In our experience, healthy pediatric and adult cohorts find wearing the nasal 

cannula comfortable throughout the scanning session. It is important to acknowledge that 

previous studies have successfully mapped CVR with-out normalizing the BOLD change 

by the PETCO2 change, for example, by using an average BOLD time course in replace of 

a PETCO2 regressor (Liu et al., 2017) or using metrics such as RSFA or ALFF (Golestani 

et al., 2016) as representations of CVR function. For some applications, qualitative CVR 

metrics may be sufficient; however, we chose to normalize BOLD change by the PETCO2 

change to allow more direct comparisons with other literature and to take in account task 

compliance differences (discussed further in (Pinto et al., 2021)).

A recent study (Liu et al., 2020) followed a very similar rationale to ours: to develop 

a practical non-gas inhalation method that is largely based in a resting-state scan but 

introduces breathing modulations to enhance fluctuations in PETCO2. They compared CVR 

maps from resting-state scans, scans with intermittent breathing modulations throughout the 

scan period (for a duration of 12 seconds after 30–60 s of free breathing), a breath-holding 

scan, and a CO2 gas inhalation scan. They showed that intermittent breathing modulations 

(6 seconds per breath) had a comfort level similar to resting-state, and the resultant CVR 

maps had a sensitivity and accuracy similar to maps derived from gas inhalation methods. 

Hemodynamic lag was not a part of their assessment or comparisons. Their results are 

consistent with our conclusions that adding short periods of guided breathing is favorable 

over a resting-state scan for CVR mapping, and they have validated their design by 

comparing to a more gold standard CO2-inhalation approach. However, their breathing task 

and resting-state portion cannot be separated into two sections, precluding these data from 

being used for typical resting-state or functional connectivity analyses.

One reason that including breathing tasks benefits CVR mapping is simply that the 

induced variation in PETCO2 amplitude is large compared to the smaller fluctuations 

during undirected free breathing (see Fig. 3A). Importantly, the amplitude of these natural 

fluctuations during resting-state will vary across subjects, and potentially across study 

populations (Lynch et al., 2020). If the BOLD fluctuations related to PETCO2 changes are 
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small in amplitude, it can be hard to distinguish them from other physiological, artefactual 

or neuronally-driven fluctuations that occur at (or aliased into) the same low-frequencies 

(Murphy et al., 2013, Liu, 2016, Caballero-Gaudes and Reynolds, 2017, Tong et al., 2019, 

Whittaker et al., 2019). If these other fluctuations are of similar or greater magnitude 

to the low-frequency fluctuations induced by PETCO2, this may result in an fMRI time­

course poorly coupled to PETCO2. A study using gas inhalation as a hypercapnic stimulus 

concluded that a change of at least 2 mmHg above a subject’s baseline PETCO2 is necessary 

to evaluate hemodynamic impairment (De Vis et al., 2018). In our acquisitions, both BH 

and CDB tasks clearly produced changes above 2 mmHg, whereas this was not the case for 

all subjects during the REST segments (see Fig. 3A). Even if a subject performs the BH 

or CDB task only partially (i.e., shorter hold for the BH, shallower breaths for the CDB), 

they are likely to still surpass this 2 mmHg change. Furthermore, there is evidence that 

despite variability in BH performance, robust and repeatable CVR maps can still be obtained 

when modeling with PETCO2 regressor (Moia et al., 2021, Bright and Murphy, 2013), which 

represents what the subject actually achieved and not simply the intended stimulus.

To accurately model CVR we must account for hemodynamic lags since measurement 

delays in gas sampling, arterial transit times to the brain’s vascular territories, and 

local vasodilatory dynamics all impact the temporal relationship between our model 

of the vasodilatory stimulus (PETCO2) and the BOLD fMRI timeseries. Characterizing 

hemodynamic lag at the voxel level is both challenging and necessary for correct 

physiologic interpretation of the data. A previous study mapping CVR with resting-state 

data discussed how they were unable to obtain voxel-wise delays due to the resultant CVR 

maps being noisy, and they acknowledge that the regional CVR deficits they report in 

Moyamoya patients may reflect both reduced CVR and longer blood transits (Liu et al., 

2017). We report similar challenges in our data (Fig. 4, Fig. 6, Supp. Figure 1), showing 

more variable and less physiologically plausible lag distributions across GM in the data 

modelled with only resting-state segments. Furthermore, when simply performing a cross­

correlation between the PETCO2hrf regressor and GM BOLD-fMRI time-series, we observe 

several extreme lag values in resting-state data (see Appendix A). The incorporation of 

the short breathing tasks results in more sensible lag distributions and cross-correlation 

results. Comparing our lag values to previous literature is challenging due to the multitude 

of experimental set-ups, analysis approaches, and ways of summarizing these types of data. 

Nevertheless, it is valid to compare normalized lag values (lag values relative to a tissue 

average) and compare variability in lag, where possible. Here, we focus on BH+REST and 

CDB+REST lag distributions, considering REST distributions are challenging to summarize 

(Fig. 4). The range and variability of the lag values we report in GM show the majority of 

lag values (~68% based on one standard deviation, Supp. Table 1) are within 6 seconds of 

the GM median (Fig. 6, Supplementary Figure S1); therefore, to capture the majority of GM 

lags a range of 12 seconds from the GM median may be appropriate. This broadly agrees 

with previous work using respiration derived or PETCO2 regressors (Chang and Glover, 

2009, Bright et al., 2009, Birn et al., 2008, Sousa et al., 2014, Donahue et al., 2016, Moia et 

al., 2020, Moia et al., 2021). Many of these previous reports also see similar regional trends 

in relative lag values (Supplementary Table S1): earliest responses in subcortical GM and 

later responses in cerebellar GM and posterior brain regions.
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Despite much previous literature reporting a summary CVR value, our results clearly 

show that analysis choices in summarizing voxel-wise CVR values are not trivial. The 

distributions of GM CVR values with and without lag optimization, and with different 

levels of statistical thresholding (Fig. 7, Sup. Figures S2-S6), illustrate that it is not strictly 

valid to extract a central tendency value from a distribution of positive and negative CVR 

values together, after lag optimization or any statistical thresholding. We therefore chose 

to summarize positive and negative CVR values separately, not least because true negative 

CVR responses represent very different physiological mechanisms (Thomas et al., 2013, 

Bright et al., 2014). We expect positive CVR values in GM, and it is noteworthy that 

the three resting-state segments show a greater number of negative CVR values compared 

to the segments that include BH or CDB tasks, possibly suggesting a greater relative 

contribution of noise sources and a less successful CVR and lag estimation. The final 

summative CVR value across a tissue type will also depend on whether one has applied 

lag optimization and/or applied statistical thresholding. Therefore, we chose to display CVR 

values resulting from multiple analysis options in Fig. 8 and Supplementary Figure S7. With 

no statistical thresholding, the positive GM CVR amplitudes for No-Opt and Lag-Opt (Fig. 

8 and Supplementary Table S2) agree with the range seen in previous literature modeling 

CVR with breathing tasks or resting-state, when expressed in units of %BOLD/mmHg (Liu 

et al., 2020, Lipp et al., 2015, Pinto et al., 2016, Sousa et al., 2014, Moia et al., 2020, Bright 

and Murphy, 2013, Bright et al., 2011). Unexpectedly, the REST segments showed higher 

GM CVR values than the task segments after lag optimization and following the strictest 

thresholding, particularly for RESTCDB (Fig. 8, Supplementary Figure S7). However, a 

higher CVR value will not always suggest a more accurate or more representative tissue 

estimate. Low frequency fluctuations other than PETCO2, motion artifacts and large vessel 

signals may influence the lagged fitting procedure, as discussed. There were generally 

more negative CVR values in REST segments, so positive GM CVR estimates are also 

summarized over a smaller number of voxels that do not fully describe GM tissue. It is also 

important to note that the Sidák correction is likely too strict of a correction for multiple 

comparisons as it assumes independence, which is not the case when running the GLM 

multiples times with slightly shifted PETCO2 regressors.

4.1. Choice of breathing task

This study was not designed for an effective comparison between BH or CDB, yet some 

trends can be noted upon. Adding either a short BH or CDB task to a resting segment brings 

clear advantages for CVR mapping, with similar CVR and lag results. Direct comparison 

of these two tasks is potentially biased due to the BH task being slightly longer, including 

3 cycles of hypercapnia versus 2 cycles of hypocapnia for the CDB task. It is difficult to 

match both the length of the breathing task, and the number of cycles: the ways in which we 

achieve hypocapnia (increasing the rate and depth of breathing) and hypercapnia (apnea) are 

very different, and the timing dynamics of the resulting blood gas changes can be different, 

particularly in sustained challenges (Kasprowicz et al., 2012, Poulin et al., 1996, Poulin et 

al., 1998). A small amount of previous evidence shows that more transient CO2 modulations 

induced by CDB and BH tasks generally lead to comparable CVR amplitudes and timings 

(Bright et al., 2009), however possibly not in all brain regions (Bright et al., 2011) and they 

can be modulated differently by baseline vasodilation (Bright et al., 2011). Furthermore, 
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these tasks induce different motion confounds (Bright et al., 2009) (Fig. 3B) and potentially 

different subject compliance demands. In general, our results suggest that these tasks may be 

used interchangeably in healthy controls. However, we recommend BH because it leads to 

plausible lag distributions and significant CVR effects more consistently, and there is more 

extensive literature using this task for CVR mapping (Urback et al., 2017, Pinto et al., 2021). 

Importantly, vasoconstrictive and vasodilatory responses can be differentially affected in 

pathology (Zhao et al., 2009) and therefore different tasks may be appropriate for different 

clinical populations and research questions. Furthermore, while all subjects in this study 

were able to adequately perform both breathing tasks, pediatric, elderly or clinical cohorts 

may comply better with the CDB task considering the simplicity of instructions. A more 

thorough comparison of the pros and cons of these breathing tasks, in larger healthy and 

clinical cohorts, is a worthwhile focus for future research.

It is important to discuss the general limitations of using breathing tasks to model CVR, 

compared to resting-state. They do require more compliance from subjects, introduce neural 

activity due to the need for visual or auditory stimuli, and often exhibit motion effects 

correlated with task timings (Fig. 3B) (Bright et al., 2009, Power et al., 2018, Power et 

al., 2017, Moia et al., 2021). We performed volume realignment and included the resultant 

motion parameters within the GLM, but there is evidence this is not sufficient to remove 

motion effects (Power et al., 2017, Moia et al., 2021, Power et al., 2014). Further research 

should look into optimizing breathing task designs to minimize task induced motion artifacts 

whilst still maintaining PETCO2 changes of sufficient amplitude. Collecting multi-echo 

BOLD fMRI data, and applying spatial ICA-denoising analyses, is one widely adopted 

strategy that can be applied to remove motion artifacts and has been applied to the modeling 

of CVR effects in BH paradigms (Cohen and Wang, 2019, Moia et al., 2021). A final 

consideration is the choice of HRF in breathing task data; here we used a canonical HRF 

to convolve with all the PETCO2 time-series, before creating the multiple shifted PETCO2 

regressors. There is evidence that the BOLD signal may have a different shape and timing 

response depending on whether the PETCO2 is resting fluctuations, or within a hypocapnic 

or hypercapnic range and that physiological response functions can vary across subjects, 

brain regions and sessions (Chang and Glover, 2009, Birn et al., 2008, Kassinopoulos 

and Mitsis, 2019, Golestani et al., 2015). By shifting the PETCO2hrf in time with the 

lagged-GLM approach, variation in latency will be well accounted for but not variation in 

the shape of the response. Therefore, it is likely that a single response function will not be 

optimum for capturing all the PETCO2 induced BOLD changes during rest, deep breaths and 

breath-holds, a potential limitation when modeling these segments together.

4.2. Clinical applications

We chose to analyze and present our results in single subject space, partially to demonstrate 

the potential utility of this method for individual subjects, such as clinical cases, or 

individual fMRI denoising. We report an incidental finding of unilateral Moyamoya disease, 

which was first identified during inspection of the hemodynamic lag maps constructed from 

our lagged-GLM approach. This pathology was only visually obvious when modeling lag 

and CVR with breathing task data. Regional deficits in CVR are used to guide surgical and 

treatment decisions in cases of Moyamoya (Bacigaluppi et al., 2009), with normalization 
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of CVR often seen after surgery. Delayed blood transits are also widely reported in cases 

of Moyamoya (Donahue et al., 2016, Poublanc et al., 2013, Schubert et al., 2009) which 

is expected due to the narrowing of blood vessels. Consistent with our non-optimized 

results, negative CVR responses are often observed in cases of Moyamoya (Conklin et 

al., 2010, Poublanc et al., 2013, Dlamini et al., 2018) and commonly interpreted as the 

vascular steal phenomenon. In the case of vascular steal, negative CVR is the result of 

a redistribution of blood flow from regions without remaining cerebrovascular reserve to 

regions with preserved vasodilatory capacity. Previous work with cases of Moyamoya have 

shown a clear relationship between blood arrival times and CVR amplitudes, with the 

longest arrival times having the lowest and most negative CVR (e.g., (Poublanc et al., 2013, 

Schubert et al., 2009). In our data, it is possible to conclude there is no evidence of vascular 

steal, considering the normalization of CVR after lag-optimization, however other work 

suggests that negative CVR is likely a combination of a steal phenomenon and delayed local 

(positive) reactivity (Poublanc et al., 2013). We would need to apply our technique more 

systematically across a larger sample to better characterize these subtleties of Moyamoya 

pathology, yet what our case study clearly demonstrates is the importance of considering 

both amplitude and timing when modeling CVR function in pathology. CVR deficits in 

Moyamoya are most commonly investigated with gas inhalation or contrast; although there 

is a much smaller collection of literature using breath-hold or resting-state, the interest in 

these non-invasive and practical approaches is growing (Taneja et al., 2019, Donahue et al., 

2016, Dlamini et al., 2018, Liu et al., 2017, Christen et al., 2015).

Example data from a separate pediatric pilot study were included to evaluate the feasibility 

of our hybrid protocol in clinical cohorts with task compliance challenges (e.g., children). 

Breathing tasks are an attractive alternative to more invasive vasoactive stimuli; BH tasks 

have been used successfully in typically developing children (Thomason et al., 2005) and 

in those with Moyamoya (Dlamini et al., 2018). We report the first instance of a CDB task 

in a pediatric cohort and observed variable success in the quality of PETCO2 recordings 

and achieved hypocapnia. These results indicate that further optimization of the breathing 

task portion of the hybrid design may be necessary in less-compliant cohorts. Low quality 

PETCO2 traces may be caused by periods of mouth breathing and could be addressed by 

using a mask rather than a nasal cannula. It may be necessary to adapt breathing task 

instructions for clarity and utilize practice sessions, tailored to the population, to ensure 

participants understand and comply with the task before entering the scanner. There are clear 

next steps to address the feasibility limitations observed in our hybrid design and, once these 

are met, this method has promise as a practical yet robust tool to study typical and atypical 

neurovascular development.

4.3. Why should we append breathing tasks to the start of a resting-state scan instead of 
keeping them separate?

Based on the mechanism of neurovascular coupling, the BOLD contrast is widely used 

as a surrogate measure for neural activity (Glover, 2011). However, there are many non­

neural factors that can affect the BOLD signal, with multiple strategies and algorithms 

to mitigate and remove these sources of noise, (Wise et al., 2004, Murphy et al., 2013, 

Caballero-Gaudes and Reynolds, 2017, Greve et al., 2013, Bright and Murphy, 2017, Liu, 
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2013, Chu et al., 2018, Kim and Ogawa, 2012). We considered how resting-state fMRI scans 

are commonly deployed in neuroimaging research, and designed our protocol accordingly. 

Although the main focus of the work presented here is practical CVR mapping, CO2 

fluctuations have been shown to be a physiological confound in resting-state fMRI studies 

of neural activity, and it is challenging to meaningfully separate out neural connectivity 

and vascular connectivity with fMRI data (Power et al., 2018, Chu et al., 2018, Madjar 

et al., 2012, Nikolaou et al., 2015, Bright et al., 2020, Chen et al., 2020). Removing CO2 

effects from fMRI via nuisance regression is not yet routine practice, in part because it is 

challenging to robustly characterize these relationships in resting-state fMRI.

The main benefit of using overlapping data for multiple analyses (e.g., CVR and resting­

state analyses) is that it saves both scanning time and analysis time (e.g., some of the same 

pre-processing steps and creation of physiological regressors can be used for both analyses). 

By appending a short breathing task to the start of a resting-state scan, the resting-state 

portion could still be analyzed separately, gaining more outputs from one dataset, with 

improved denoising from robust modeling of CO2 effects. However, two key questions 

arise when considering the use of overlapping data: (1) are there residual effects from the 

breathing tasks that would systematically affect the resting-state portions that follow (similar 

to after effects seen after other sensory and cognitive tasks (Tung et al., 2013, Gaviria et al., 

2020))? and (2) is modeling of CVR worse by including the resting portion alongside the 

breathing task portion?

Related to (1), our exploratory resting-state analyses showed no clear systematic differences 

between the three REST segments (two with breathing tasks preceding, one without) for 

mRSFA, ALFF, fALFF or LFCD outputs, after minimal preprocessing and denoising. 

However, these analyses cannot provide direct evidence for the null hypothesis, and future 

work with study designs tailored towards this question should investigate this further. If a 

researcher is concerned about residual effects, they could put the breathing task after the 

resting-state portion and not before; we chose to put the breathing task at the start to ensure 

the participant was most alert. Another option is to keep the scans separate to avoid any 

interaction between these two data segments, but then other benefits will be lost.

Related to (2), we ran the lagged-GLM with breathing task data only, without the rest 

portion (Figs. 5 and 6, Supplementary Figure S8, Supplementary Table S3). We found more 

significant CVR effects when modeling with more data points (greater degrees of freedom in 

model fit) and no indication of worse lag or CVR estimation when rest portions are included. 

These results suggest that CVR and lag can be adequately modelled with only 2–3 minutes 

of breathing task data, particularly in the case of BH.

4.4. Recommendations and practical considerations

The proposed protocol will not be the best approach for all CVR mapping experiments; 

if CVR is your primary research focus, longer breathing tasks or gas inhalation methods 

in a dedicated scan are recommended. Our protocol aims to be a practical addition to the 

commonly collected resting-state fMRI scan, as well as being a clinically feasible approach 

to mapping CVR and lag in situations where more invasive or complicated methods are less 

desirable. In these studies, we make the following recommendations.
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• Collect continuous CO2 recordings before and after your scan window, up to the 

maximum shift you want to consider in your modeling, to avoid extrapolation or 

trimming of data after shifting.

• If deciding between a BH or CDB task, we currently recommend BH when 

studying healthy cohorts.

• If using the BH+REST or CDB+REST design as shown in Fig. 1, model CVR 

using the entire dataset. In this paper, we cut the TASK+REST segment to 8 

minutes in order to make a fair comparison with the 8–minute REST segments. 

Therefore, our CVR and lag maps are from modeling with ~2.5 minutes of task 

data and 5.5 minutes of resting data; map quality and fit statistics would likely 

improve with more data.

• Use the smallest range of shifted PETCO2 regressors as is appropriate for the 

physiology of your cohort. There are computational and statistical consequences 

to extending the shift range more than is necessary.

• If there is a large offset between the PETCO2 trace and the GM fMRI signal, 

perhaps due to a measurement delay (e.g., long sample line from scanner to 

control room), consider first performing a bulk-shift (cross-correlation between 

a mean GM fMRI time-series and PETCO2 time-series) before voxel-wise 

optimization (see Appendix A).

• When obtaining a summary CVR or lag metric for a tissue class, check the 

distributions to see if this is valid and appropriate; consider whether you need to 

characterize positive and negative CVR separately.

5. Conclusions

We have demonstrated that adding a short breathing task to the start of a resting-state fMRI 

scan improves the ability to model both the timing and amplitude of the CVR response, both 

crucially important for the accurate characterization of cerebrovascular function. This hybrid 

protocol has direct applications for CVR mapping in both research and clinical settings and 

wider applications for fMRI denoising and interpretation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Further details on creating shifted PETCO2hrf regressors

The choice of the shift range (15 seconds before & after the reference start time) and the 

shift unit (0.3 seconds), explained in Fig. 2, was not the focus of this study. However, this 

topic warrants further justification and explanation.

Shift range: Searching in a range of ±9 s (around an average value) for the optimum PETCO2 

shift is consistent with research in healthy subjects which report lag values from modeling 

with breathing task regressors (Chang et al., 2008, Chang and Glover, 2009, Bright et al., 

2009, Birn et al., 2008, Sousa et al., 2014, Tong et al., 2014, Donahue et al., 2016, Blockley 

et al., 2011). It is not always clear if it is valid to interpret lag values from previous studies 

as absolute or relative, and what they are relative to, due to differences in data acquisition, 

data analysis and the cohort studied. Therefore, in our previous work using breath-hold data 

only (Moia et al., 2020, Moia et al., 2021) we also performed an initial gross realignment (a 

“bulk shift”) before creating the multiple PETCO2hrf regressors which are shifted at the finer 

resolution, consisting of a cross-correlation between an average GM BOLD time-series and 

the original unshifted PETCO2 time-series. Performing a bulk shift in this way is likely to 

largely account for variation in measurement delays. However, global physiological delays 

may still contribute due to the way this bulk shift is estimated. Future work using such 

methods should attempt to separate out measurement contributions (e.g., delays through the 

cannula and tubes) from physiological contributions. The advantage of performing a bulk 

shift is that fewer shifted models need to be run in order to characterize the physiological 

range of voxel-wise lags, therefore reducing computation and making the Šidák corrected 

alpha value for statistical significance less stringent.

In this current work, no bulk shift was performed due to finding physiologically implausible 

optimum bulk shift values for the REST only segments (e.g., 19 and 20 seconds at the 

most extreme, see Fig. A1, y-axis), which could introduce substantial timing errors near 

the start of the analysis protocol that would propagate to the final parameter maps. We 

hypothesize that this could be due to the intrinsic low-frequency oscillations associated with 

neural activity that can be of similar or greater magnitude to the low-frequency fluctuations 

induced by PETCO2, resulting in a GM fMRI time-course poorly coupled to PETCO2. 

Motion and other physiological noise could also contribute. Therefore, instead of applying 

a bulk shift, we chose to apply our voxel-wise lag optimization method with a larger shift 

range, searching within ±15 s from the reference start time. This 15 second range was 

based on a 9 second range plus the largest bulk shift seen across subjects for the BH+REST 

and CDB+REST data segments, which was −5.45 seconds. Fig. A.1 also shows how well 

this bulk shift agreed with the GM median lag from the voxel-wise lagged-GLM analysis, 

two different methods of characterizing a representative GM lag value. Data segments 

with breathing tasks show the strongest significant positive correlations. The RESTBH 

and RESTCDB segments also show strong significant positive correlations, though with 

more extreme values for the cross-correlation method. The REST segment did not show a 

significant correlation between methods. These results indicate that there is clear consistency 
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between different methods of summarizing a GM lag value when including either breathing 

task; this consistency is present in some, but not all, REST segments.

Shift unit: The true CVR response time (lag) will not be physiologically constrained to the 

sampling rate of the fMRI scan or of the breathing rate. Despite only sampling end-tidal 

CO2 pressure at the end of each breath, a linear interpolation between these values is 

performed to give an estimate of how the pressure of arterial CO2 is likely to be changing 

at a finer temporal scale. Therefore, we chose to shift the high resolution PETCO2hrf 

time-series at 0.3 seconds (4 times the resolution of the imaging TR) to reflect this, although 

more validation for the choice of this shift unit is needed.

Fig. A1. 
Correlation between two methods of identifying GM lag: the median lag over GM voxels 

from the voxelwise lagged-GLM analysis (x-axes) and a lag obtained from cross-correlation 
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between the average GM-BOLD time-series and the PET CO2hrf time-series (y-axes). Each 

dot represents one subject, and correlations are shown for each data segment. The gray 

shaded regions around the fit line indicate the 95% confidence interval of the correlation 

coefficient. Data points were classed as outliers (indicated by red dots) when a Cook’s 

distance was over 4/n, with n being the number of subjects. Outliers are not included 

in the correlation, but shown for reference. Note the different axes limits across plots. 

P-values are FDR corrected. Considering the shape of the lag distributions in Fig. 4, it is 

important to acknowledge that the use of the median as a summary metric may not be 

completely valid for all subjects and data segments. BH = breath holding, CDB = cued deep 
breathing, PETCO2 = Partial pressure of End Tidal CO2, GM = Gray Matter, BOLD = 

Blood Oxygenation Level Dependent.

Abbreviations:

No-Opt No Optimization

Lag-Opt Lag Optimization

HRF/hrf Hemodynamic Response Function

PaCO2 Partial pressure arterial CO2

PET CO2 Partial pressure of End Tidal CO2

BH Breath Holding

CDB Cued Deep Breathing

GLM Generalized Linear Model

SBRef Single Band Reference image

GM Gray matter

CVR Cerebrovascular reactivity
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Fig. 1. 
(A) Five scans collected during the whole session (40 minutes). The ASL scan is not 

analyzed in this manuscript. (B) From 3 fMRI scans, 5 data segments were extracted, each 

with the same number of time points: 3 segments were REST only and the other 2 segments 

involved a breathing task (BH/CDB) followed by REST. Visual instructions for each task 

were displayed on a monitor during scanning. (C) BH task: IN and OUT instructions 

alternated for 3 s each, with a countdown from 24 s. Subjects ended on an exhale before 

holding, and were instructed to do another exhale after holding. ‘Recover’ is a period of 

free breathing. CDB task: IN and OUT instructions alternated for 2 s and subjects were told 

to take fast, deep breaths. REST: fixation cross shown. T1-w = T1-weighted, BH = breath 
holding, CDB = cued deep breathing, CB = cued breathing.
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Fig. 2. 
The main steps of the lagged-GLM analysis. (A) expired CO2 from the participant is 

recorded alongside fMRI volume triggers. A high sampling rate of 1000 Hz is more than 

strictly necessary; a sampling rate that adequately resolves the shift unit (C) is the required 

minimum. (B) a peak detection algorithm and linear interpolation creates the PET CO2 trace, 

which is convolved with a hrf. (C) multiple shifted versions of the PET CO2hrf regressor 

are made, with a shift range of ±15 seconds and a shift unit of 0.3 seconds, creating 101 

regressors (30/0.3 plus the unshifted regressor). (NB: see Appendix A for more details 

on the choice of shift range and shift unit.) The regressors are down-sampled (D) and 

included in a linear model (E) to assess how they explain the BOLD signal. (F and G): 

the optimal shift is found for each voxel, allowing lag maps to be made (H). Lag maps 

relative to the GM median are also made, which allow for a more consistent color scale 

for visualizing results across data segments and subjects. This normalized map may also 
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help when comparing across studies. Lag-optimized CVR maps are made (I) as well as 

thresholded maps (J). PETCO2 = Partial pressure of End Tidal CO2, hrf = hemodynamic 
response function, GM = Gray Matter, BOLD = Blood Oxygenation Level Dependent, CVR 
= Cerebrovascular Reactivity.
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Fig. 3. 
(A) Unshifted PET CO2hrf traces (mmHg change from baseline) and GM-BOLD traces (% 

change from mean) for each of three fMRI acquisitions. Thick lines represent group means 

and thin lines represent each subject. The key at the bottom describes the five data segments 

that are compared in this manuscript. The first 10 volumes at the start of each data segment 

are not used (discarded to allow steady-state to be reached) resulting in 390 volumes for 

each data segment. (B) Framewise displacement, created with FSL’s ‘fsl_motion_outliers’ 

command is plotted for each scan, including blue and green boxes to indicate the time the 

participant was cued to hold their breath (blue) or take deep breaths (green). The line for 

each scan represents the mean across subjects and the shading around this line represents 

the standard deviation. PETCO2 = Partial pressure of End Tidal CO2, hrf = hemodynamic 
response function, GM = Gray Matter, BOLD = Blood Oxygenation Level Dependent, BH = 

breath holding, CDB = cued deep breathing.

Stickland et al. Page 32

Neuroimage. Author manuscript; available in PMC 2021 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Distributions of lag values, across GM voxels. Distributions for all subjects (S1-S9) are 

shown, and for all data segments. Negative to positive lag values indicate earlier to later 

BOLD responses to PET CO2hrf. The percentage (per) of GM voxels with optimal shift 

values at the boundary condition is compared across data segments in the bottom right-hand 

corner. The group mean is shown as a thick horizontal line and each subject is represented 

as a black dot. Lag values are not relative to GM median. BH = breath holding, CDB = cued 
deep breathing, GM = Gray Matter, pde = probability density estimate.
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Fig. 5. 
Maps of CVR for one example subject (S4). The five main data segments are displayed, as 

well breathing task only segments (BH only and CBD only) for completeness. No-Opt CVR 

maps (top row for each data segment) are shown thresholded with the PET CO2hrf regressor 

at p<0.05. Lag-Opt CVR maps are shown thresholded with the PET CO2hrf regressor at 

p<0.05 with (middle row) and without (bottom row) Sidak correction, with voxels at lag 

boundaries removed. BH = breath holding, CDB = cued deep breathing, BOLD = Blood 
Oxygenation Level Dependent, CVR = Cerebrovascular Reactivity, Opt = Optimization.
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Fig. 6. 
Maps of hemodynamic lag for one example subject (S4). The five main data segments are 

displayed, as well breathing task only segments (BH only and CBD only) for completeness. 

For each data segment, lag maps are shown with no statistical thresholding but voxels at the 

boundaries removed (top row for each data segment) and shown thresholded with the PET 

CO2hrf regressor at p<0.05 with (middle row) and without (bottom row) Sidak correction. 

Values are relative to the GM median. Negative to positive lag values indicate earlier to later 

BOLD responses to PET CO2hrf. BH = breath holding, CDB = cued deep breathing, GM = 

Gray Matter.
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Fig. 7. 
Distributions of CVR values in GM for one example subject (S4). The y-axes show the 

frequency count. The same scaling is used for rows 1 and 2 because no thresholding is 

applied and therefore all GM voxels are included. When statistical thresholding is applied 

(rows 3, 4 and 5), different numbers of GM voxels remain for each data segment. BH 
= breath holding, CDB = cued deep breathing, GM = Gray Matter, BOLD = Blood 
Oxygenation Level Dependent, CVR = Cerebrovascular Reactivity, Opt = Optimization.
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Fig. 8. 
Comparing GM summary metrics across the five data segments. Top: Median positive CVR 

across all GM voxels for No-Opt and Lag-Opt analyses. Bottom: Percentage of significant 

positive fits in GM for each data segment and level of thresholding: the [∗ ] indicates 
thresholding at p<0.05 and [∗ (s)] indicates thresholding at p<0.05 with Sidak correction. 
BH = breath holding, CDB = cued deep breathing, GM = Gray Matter, BOLD = Blood 
Oxygenation Level Dependent, CVR = Cerebrovascular Reactivity, Opt = Optimization.
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Fig. 9. 
Maps of lag and CVR for a subject with Moyamoya disease. The white box shows results 

for the BH+REST data, demonstrating clear clinical sensitivity of this protocol. In order to 

visually compare maps across the same voxels, all maps (CVR No-Opt, CVR Lag-Opt 

and Lag) are thresholded at p<0.05, Sidak corrected, based on the T statistics of the 

lag optimized analysis. The REST only results are shown for comparison at p < 0.05 

uncorrected as well as the p<0.05 Sidak corrected which displays very few significant 

voxels. Slices from the T1-weighted image transformed to fMRI space are shown for 

reference. CVR Lag-Opt maps, and all lag maps, do not include voxels with lags found 

at the boundary. Lag maps are not relative to GM median but the analysis for this subject 

is run the same was as previously presented for the 9 other subjects. Negative to positive 

lag values indicate earlier to later BOLD responses to PET CO2hrf. BH = breath holding, 
BOLD = Blood Oxygenation Level Dependent, CVR = Cerebrovascular Reactivity, Opt = 

Optimization.
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Fig. 10. 
Task compliance for an adapted cued deep breathing (CDB) protocol used in a cohort 

of controls and individuals with hemiparetic cerebral palsy (CP). Panel (A) shows the 

protocol, which had the same task timings as the other CDB datasets in the manuscript, 

but with auditory cues, instead of visual. 20 s of rest were included at the start of the 

task, and 10 volumes (5.55 s) of data were removed to account for steady-state. Panel (B) 

shows unshifted PET CO2 traces (mmHg change from baseline) and GM-BOLD traces (% 

change from mean) for 5 subjects. The missing values in the PET CO2 traces in Scenario 2 

indicate that the signal was unreliable at those times. Note the different axes limits for the 

GM-BOLD plot in Scenario 2. These subjects represent the primary age-related variations 

in task compliance observed during the CDB protocol. PETCO2 = Partial pressure of End 
Tidal CO2, BOLD = Blood Oxygenation Level Dependent, MB = Multiband, GM = Gray 
Matter.
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