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Large-scale comprehensive single-cell experiments are often resource-

intensive and require the involvement of many laboratories and/or taking

measurements at various times. This inevitably leads to batch effects, and

systematic variations in the data that might occur due to different

technology platforms, reagent lots, or handling personnel. Such technical

differences confound biological variations of interest and need to be

corrected during the data integration process. Data integration is a

challenging task due to the overlapping of biological and technical factors,

which makes it difficult to distinguish their individual contribution to the overall

observed effect. Moreover, the choice of integration method may impact the

downstream analyses, including searching for differentially expressed genes.

From the existing data integration methods, we selected only those that return

the full expression matrix. We evaluated six methods in terms of their influence

on the performance of differential gene expression analysis in two single-cell

datasets with the same biological study design that differ only in the way the

measurement was done: one dataset manifests strong batch effects due to the

measurements of each sample at a different time. Integrated data were

visualized using the UMAP method. The evaluation was done both on

individual gene level using parametric and non-parametric approaches for

finding differentially expressed genes and on gene set level using gene set

enrichment analysis. As an evaluation metric, we used two correlation

coefficients, Pearson and Spearman, of the obtained test statistics between

reference, test, and corrected studies. Visual comparison of UMAP plots

highlighted ComBat-seq, limma, and MNN, which reduced batch effects and

preserved differences between biological conditions. Most of the tested

methods changed the data distribution after integration, which negatively

impacts the use of parametric methods for the analysis. Two algorithms,

MNN and Scanorama, gave very poor results in terms of differential analysis

on gene and gene set levels. Finally, we highlight ComBat-seq as it led to the

highest correlation of test statistics between reference and corrected dataset

among others. Moreover, it does not distort the original distribution of gene

expression data, so it can be used in all types of downstream analyses.
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1 Introduction

Single-cell RNA sequencing (scRNAseq) is a technique that

allows the high-throughput examination of transcriptomes with

a single-cell resolution (Lee et al., 2014; Qian et al., 2022). The

transcriptome is a dynamic structure that responds rapidly in the

form of gene expression to the variety of factors that a cell is

subjected to. Moreover, the expression profile can be different in

cells of the same type which proves significant cellular

heterogeneity (Adil et al., 2021). This heterogeneity is masked

in bulk analyses where populations of cells are mixed and

sequenced together resulting in signal averages from millions

of cells. Single-cell RNA-seq overcomes this barrier and allows

the processing of millions of individual cells at a time.

In large projects that involve the processing of many cells

data are frequently generated at different times and in different

laboratories often equipped with various sequencing platforms

(Ming et al., 2022). Combining data generated separately for a

consolidated downstream analysis improves statistical power but

requires reliable data integration methods. Data integration is

also crucial in studies of different omics levels (genomics,

proteomics, metabolomics, etc.) to fully understand the

molecular complexity of different cell types (Bao et al., 2022).

The goal of single-cell data integration is to cluster together cells

of similar types; these cells should be intermingled and

indistinguishable even if they come from different

experiments. In other words, technical differences between

datasets should be removed while key biological variations

should be preserved. Data integration is a challenging task,

especially in large datasets containing highly heterogeneous

cell populations. Batch effect removal is a step in which we

want to reduce the technical variability in our data that might

occur due to differences in sample preparation, sequencing, or

processing. Thus, we want to integrate the data that could be

assigned to a known batch. Here, we are using the terms data

integration and batch correction interchangeably.

There is a variety of distinct algorithms for scRNAseq data

integration that are based on different principles and

assumptions (Haghverdi et al., 2018; Hie et al., 2019; Lin

et al., 2019; Liu et al., 2020; Zhang et al., 2020). An important

criterion of the division in terms of our study is based on the

output format which can be: (i) full expression matrix; (ii) low-

dimensional matrix of embeddings; or (iii) integrated graph. The

output type limits the potential downstream applications of

integrated data. The full expression matrix is the most

versatile format as it could be used in all downstream

analyses. On the other hand, a joint embedding is not

appropriate for some applications like differential expression

analysis or biomarker detection. Hence, the decision about the

choice of integration method is crucial and consequential.

Another key factor influencing the choice is the main

statistical approach that a particular method is based on. We

can distinguish two groups here: supervised and unsupervised.

The former requires cell-type annotations, and the latter does not

rely on data labeling.

The most recent and comprehensive evaluation of scRNAseq

integration methods was performed in (Luecken et al., 2022).

They evaluated the most popular tools on their ability to remove

batch effects while conserving biological information. Their

evaluation involved setups with and without cell identity

labels and different preprocessing combinations [with/without

scaling and highly variable genes (HVGs) selection], as well as the

diversity in output formats for each method and task. The

conclusion from this work is that there is no single, best

integration method and the performance is dependent on the

complexity of the integration task (the strength of batch effect,

the degree of confounding between batch and biological signals,

presence of nuanced biological variation, etc.) (Luecken et al.,

2022). Some methods, like BBKNN or Harmony, showed a

stronger action towards removing batch effect over

conservation of biological variation. For others, like ComBat,

MNN, and DESC the trend was in favor of bio-conservation.

Deep learning methods that use cell identity information, like

scGen or scANVI, preserved biological variation stronger than

label-free ones but require larger input data. Generally, HVG

selection improved the overall integration performance over the

full feature set, except for trajectory and cell-cycle conservation

analysis. Scaling the input data typically improved batch removal

at a cost of bio-conservation. In another evaluation of scRNAseq

data integration methods (Tran et al., 2020), they examined in

different simulation scenarios (balanced/unbalanced batches,

different dropout rates) the impact of data integration on

differential gene expression analysis (DGE analysis),

particularly whether it improves the recovery of differentially

expressed genes (DEGs). They found that MNN Correct, ZINB-

WaVE, ComBat, and scMerge were the top-performing methods.

ComBat turned out to be the best method for this task (being one

of the worst overall). scMerge had a good balance between DEGs

recovery and overall performance.

The above and other benchmarks typically cover a wide range

of evaluation aspects such as removal of batch effects and

conservation of biological variation, scalability for large

datasets, or computational requirements. Regardless of

existing comparisons of data integration methods, there is a

lack of studies that comprehensively investigate the impact of

data integration on differential gene expression analysis using

real data. In terms of DGE analysis most studies on

benchmarking methods for data integration focus only on
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overlaps of differentially expressed genes (Chazarra-Gil et al.,

2021) not providing deeper insight into the problem. This study

aims to fulfill this gap. Using two datasets, one of which requires

data integration to correct the confounded design of the study, six

integration methods that provide corrected gene expression

matrices were compared. The evaluation was done on

individual gene level using two different approaches

(parametric and non-parametric) and on gene set level (gene

set enrichment analysis).

2 Materials and methods

2.1 Data

The datasets used in this study come from two related

scRNAseq experiments aimed at investigating of the effects of

navitoclax treatment on the transcriptome of triple-negative

breast cancer cell line to better understand the process of

developing drug resistance (Marczyk et al., 2020; Patwardhan

et al., 2021). In both experiments, the same cancer cell line

(MDA-MB-231) was used as a model organism and two

biological replicates were provided (A and B). Cells were

exposed to 10 µM navitoclax and harvested at 3 time points:

before the treatment (baseline; T1), after treatment (T2), and

after recovery from the treatment (T3).

In both cases, immediately after plate harvesting, cells were

trypsinized and a single-cell suspension at a concentration of

1,000 cells/µl with viability above 90% was prepared. Chromium

Single Cell 3′ Library and Gel Bead Kit V2 (PN-120237),

Chromium Single Cell A Chip Kit (PN-120236), and

Chromium i7 Multiplex Kit (PN-120262) were used to

prepare single-cell libraries following the manufacturer’s

instructions. The same sequencer was used—HiSeq 4,000

(Illumina). In the first study (Patwardhan et al., 2021)

6,000 cells per sample were used (two samples were

multiplexed on one lane) and 25,000 reads per cell were

generated. In other study (Marczyk et al., 2020) 1,500 cells/

sample were sequenced in one lane generating 200,000 reads/cell.

To simplify the evaluation procedure only two time points

(T1 and T2) from both datasets (experiments) were considered

(Figure 1). Each experiment corresponds to a different design.

The first experiment corresponds to a balanced study design

where cells collected at different time points were split and

processed on the same chip, on the same day (Marczyk et al.,

2020). Two biological replicates termed replicate “A” and “B”

were involved. This dataset serves as a reference. The second

experiment corresponds to a confounded study design where

cells collected at different time points were processed on different

chips/batches (Patwardhan et al., 2021). This dataset termed a

test set was corrected using different data integration methods for

the removal of the batch effect.

FIGURE 1
Experimental design and benchmark procedure.
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2.2 Data preprocessing

The quality of raw RNA sequencing reads was assessed

with FastQC (Andrews, 2010) and the reads were processed

with 10x Genomics Cell Ranger 6.1.1 (Zheng et al., 2017) to

generate a gene-cell count matrix. Quality control was

performed separately for each dataset at cell- and gene-

level. Adaptive, sample-specific thresholds were chosen for

the number of UMI counts per cell, the number of genes, and

the fraction of mitochondrial counts using median absolute

deviation (MAD) from the median. Cells were considered of

poor quality if a given metric was more than 3 MADs from the

median in the wrong direction. Genes that were expressed in

less than 1% of cells for each dataset were removed. Finally,

we obtained expression matrices with the following

dimensions (cells x genes): 12,402 × 4,180 for reference set

(Marczyk et al., 2020) and 12,402 × 21,548 for test set

(Patwardhan et al., 2021). Such filtered expression matrices

were normalized separately using two approaches:

deconvolution (Lun et al., 2016) for non-parametric DGE

and transcript per million (TPM) metrics for parametric

DGE, both followed by (log2+1)-transformation.

Selection of highly variable genes (HVGs) for each dataset

was performed using the SCTransform function with variable

features. n = 5,000 (Hafemeister and Satija, 2019). A common

part of 3,620 HVGs was taken as input for data integration.

We did not want to be too restrictive with subsampling, as

high dimensionality is required for some methods (e.g., to

satisfy the orthogonality assumption in MNN detection).

2.3 Data integration methods

Since the goal of this study was to evaluate the

applicability of scRNAseq data integration methods in

terms of further differential analysis, we selected only the

methods that: (i) output full corrected expression matrix; (ii)

work in an unsupervised manner as we don’t have cell-type

labels. Thus, we benchmarked six algorithms (Table 1) and

for some of these tested two cases: (i) using all genes; (ii) using

only top HVGs.

2.3.1 ComBat-seq
ComBat-seq (Zhang et al., 2020) takes two parameters as

input: a raw, untransformed count matrix and a vector describing

the annotation of samples into batches. It is also possible to

specify biological covariates, whose signals will be preserved in

the corrected data. In our case, the technical variable associated

with the repetition was used as a batch separation vector and the

biological variable was associated with a time point. ComBat-seq

uses a negative binomial regression model to estimate batch

effects. The computed batch-effect estimators are then used to

calculate “batch-free” distributions, i.e., the expected

distributions if there were no batch effects in the data based

on the model (Zhang et al., 2020). Correction is performed by

quantile normalization to make the two distributions (empirical

and batch-free) with identical statistical properties. ComBat-seq

is the only method that preserves the integer nature of counts

making corrected data compatible with various differential

expression software (e.g., edgeR, DESeq2).

2.3.2 Limma
Limma (Leek et al., 2012) is another linear method to remove

batch effect components from the data. The correction is

performed by subtraction of the estimated component from

the original data. Limma batch-effect removal function

(removeBatchEffect) takes normalized and log-transformed

counts as an input. Similarly to ComBat-seq, it allows

addition of batch annotations and biological covariates into

the model.

2.3.3 Mutual nearest neighbor
MNN searches for mutual nearest neighbors (MNNs)

between two datasets or batches in the gene expression space.

A pair of MNNs consists of cells present in each batch set of

nearest neighbors based on Euclidean distance. These cells are

considered to be of the same type/state across batches (Haghverdi

et al., 2018). Differences in expression between identified MNNs

are used to compute the batch correction vector which is applied

to all cells. mnnCorrect function was run with two setups: with all

genes and with HVGs. In both cases normalized and log-

transformed expression values were used. merge. order,

argument was specified such as both repetitions from a given

TABLE 1 Selected scRNAseq data integration methods.

Tool Input Strategy Reference

ComBat-seq raw counts linear model Zhang et al. (2020)

limma logcounts linear model Leek et al. (2012)

MNN logcounts mutual nearest neighbors (gene expression space) Haghverdi et al. (2018)

scMerge logcounts stably expressed genes + RUV model Lin et al. (2019)

Seurat logcounts canonical correlation analysis + mutual nearest neighbors Stuart et al. (2019)

Scanorama raw counts mutual nearest neighbors (reduced space) + panoraming stiching Hie et al. (2019)
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time point were merged first and then combined. Thus, the

merging order was as follows: first T1A + T1B and T2A + T2B.

Then the summation results were added together. cos.norm.

out, was set to FALSE to disable cosine normalization before

computing corrected expression values to obtain corrected values

on the log scale, similar to the input data. The rest parameters

were set to default values.

2.3.4 scMerge
ScMerge (Lin et al., 2019) was run in the unsupervised mode

as we do not have cell-type information. In this mode, the

estimation of batch effects is performed on two levels: (i)

identification of stably expressed genes (SEGs) across batches

which serve as “negative control genes”; (ii) k-means clustering

based on the HVGs followed by the identification of mutual

nearest clusters (MNCs) from the batches based on Pearson

correlation as the dissimilarity metric. Cells belonging to a pair of

MNCs are considered to be of the same type in different batches

and serve as pseudo replicates. SEGs and pseudo replicate

information are the inputs for scMerge which uses the RUV

model to adjust the data. We ran scMerge with three setups of

kmeansK parameter: (5, 5, 5, 5), (4, 4, 4, 4) and (4, 4, 3, 3) on

(log2+1)-transformed counts.

2.3.5 Seurat v4
Seurat v4 (Stuart et al., 2019) is another method based on the

MNN concept (referred there as “anchors”). This method

includes two approaches to match anchors across datasets/

batches: Canonical Correlation Analysis (CCA) and reciprocal

Principal Component Analysis (rPCA). In both cases, the

searching of anchors is performed in a shared, reduced

subspace obtained by CCA (linear combinations of genes with

the maximum correlation between batches) or rPCA (maximum

variation between batches). The correction vector is computed

similarly to MNN (difference in expression profiles between two

cells in each anchor). The batch integration order is derived from

hierarchical clustering based on the distance between the

datasets. Seurat v4 (version 4.0) was run according to the data

integration tutorial on the web (https://satijalab.org/seurat/

articles/integration_introduction.html).

2.3.6 Scanorama
In Scanorama (Hie et al., 2019) the nearest neighbor

searching is performed in the low-dimensional subspace

obtained by randomized singular value decomposition (SVD).

The searching is performed across all batches and the priority of

dataset merging is determined based on the percentage of

matching cells in the batch. This reduces the risk of

overcorrection. Scanorama was run using the reticulate R

package following the tutorial (https://github.com/brianhie/

scanorama). Two setups were evaluated: with all genes as

input and using the top 2,000 HVGs based on data dispersion

(internally selected by the algorithm).

2.4 Evaluation of data integrationmethods

2.4.1 Visual inspection of data
UMAP (McInnes and Healy, 2018) was employed for all data

visualizations before and after data integration as it performs well

at preserving global data structure. UMAP was run with default

parameters using runUMAP function from scatter R package

(McCarthy et al., 2017).

2.4.2 Differential gene expression analysis:
Parametric and non-parametric approaches

Both datasets were processed through the same protocol to find

differentially expressed genes using two approaches: the parametric

method called MAST (Finak et al., 2015) and the non-parametric

method called EMDomics (Nabavi et al., 2016). MAST uses a hurdle

model to address bimodal expression distributions in scRNAseq data.

The bimodality is manifested in such a way that observed expression

is either strongly positive (continuous part) or non-detectable

(discrete part). The Hurdle model parameterizes both parts and

combines the information from them in the form of gene statistics to

infer changes in expression levels. DE testing is performed across the

two conditions through the LRT statistic. MAST was applied on the

log2 (TPM + 1) expression matrix without including the cellular

detection rate (the fraction of genes that are detected with non-zero

counts) as a covariate in the model. The following thresholds were

used for DEGs identification: an absolute value of log-fold change

(LFC) higher than 2, and false discovery rate (FDR) lower than 0.001

(Benjamini–Hochberg method for multiple testing correction was

used).

As an alternative when the corrected data do not fit the MAST

model, the EMDomics method was used which does not make any

assumptions about the data distribution. EMDomics uses the Earth

Mover’s distance (EMD) to measure the overall difference between

the two normalized distributions (gene expression in two conditions/

groups). This method is not restricted to finding only differences in

mean expression between two conditions but also captures the overall

difference in shape (bimodal vs. unimodal expression) between two

distributions. EMDomics was applied to log-normalized counts with

default parameters. DEGs were identified based on the following

thresholds: emd score higher than 2 and FDR smaller than 0.001. In

both cases, cells from two replicates (A and B) were compared

between two time points (T1 vs. T2).

A receiver operating characteristic (ROC) curve was created

by setting different thresholds on p-values from statistical tests

while estimating DEGs. To calculate performance metrics, a

reference dataset (with a balanced study design) was used as a

“ground truth”, and the sensitivity and specificity of each batch

correction method were calculated.

2.4.3 GSEA
Differential expression was also performed at the level of

gene sets using gene set enrichment analysis (GSEA). This step

was done using the fGSEA R package (Korotkevich et al., 2019).
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DE test statistics obtained by MAST (continuous Z-score:

C-component) were used as the ranking metrics. The

following gene sets from Molecular Signatures Database

(MSigDB) (Liberzon et al., 2015) were tested: Hallmark, Kegg,

GO, and REACTOME. The total number of considered gene sets

was 12,253; 50 gene sets for Hallmark, 186 for KEGG,

10,402 gene sets for GO, and 1,615 for REACTOME. Gene set

was identified as differentially enriched based on a p-value lower

than 0.05.

2.4.4 Correlation analysis
The correlation analysis was performed both at the level of

individual genes (DGE) and gene sets (GSEA). For each data

integration method, the previously mentioned DE test statistics

were taken: (i) MAST: continuous Z-score (C-component) (ii)

EMDomics: emd score (iii) GSEA: normalized enrichment score

(NES). The correlation between the balanced (reference) study

and the confounded dataset (test set, before correction) was

assessed and used as the benchmark for assessing the quality

of the data integration (Figure 1). Both, Pearson and Spearman

correlation coefficients were calculated.

3 Results

3.1 Comparison of datasets before data
integration

To visually examine the batch effect problem, the UMAP

algorithm was run separately for each dataset (Figure 2). In a

balanced study design (Figure 2A) there is strong segregation of

cells along time points while cells from both repetitions are

intermingled, which is desired. The opposite situation is observed

in the confounded study design (Figure 2B) where together with

separation along time points, the cells group by replicates which

proves a strong batch effect. The main cause was that the samples

in the confounded study were measured on different days.

Next, we calculated the following properties of individual

genes at the single-cell level: mean expression, the variance of

expression, and detection rate, which is a proportion of expressed

cells (Supplementary Figure S1). We observe a typical situation

that could be found in scRNAseq data: up to a mean normalized

count of around 1, variance and mean are roughly equal as

expected under a Poisson model either for balanced or

confounded (before correction) study design. Genes with a

higher average expression show overdispersion compared to

Poisson distribution (Supplementary Figure S1B,C). As

expected in scRNAseq data, in both experiments, many genes

are expressed in very few cells. All feature-level statistics were

comparable between balanced and confounded studies.

3.2 Differential analysis before data
integration

The number of DEGs identified with the parametric

approach was 965 for balanced and 191 for confounded study.

The overlap between the two datasets was 63 genes, from which

43 genes were upregulated, and 20 genes were downregulated in

the balanced study, and for the confounded study, the ratio of

upregulated to downregulated genes was equal to 20/43. The

correlation coefficients were equal to 0.16 (Pearson) and -0.21

FIGURE 2
UMAP visualization of (A) balanced study, (B) confounded study (before correction). There are strong batch effects manifested in the
confounded study.
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(Spearman) and both were significant. After using a non-

parametric approach, the number of DEGs was smaller: 80 for

balanced and 114 for confounded study. There were no common

DEGs between datasets. The correlation between test statistics

from both studies was much higher (Spearman: 0.72, Pearson:

0.75) than when the parametric method was used.

3.3 Data integration for batch effect
correction

The UMAP plots (Figure 3) show that ComBat-seq might

perform best in removing batch effects and preserving biological

variation. It produced two strong clusters separated by time

point, while the cells from technical repetitions are mixed

well. In the case of the limma method, we observe separation

by time point, but the repetitions are not mixed well—they seem

to have a small tendency to group separately. MNN algorithm

improved the separation by time point in both cases when all

genes and only the top 3,620 HVGs were taken. However, within

the time point T1 cells form characteristic subgroups are

observed. scMerge performed visually best with kmeansK =

(4,4,3,3). In other setups, there is an improvement in

separation by time point over no correction, and technical

replicates from T1 are well intermingled but not from T2

(replicate A clusters separately from replicate B). Seurat

achieved the worst result by mixing all cells together, thus it

was not evaluated in further comparisons. Scanorama achieved

little improvement no matter if all genes were used or

HVGs only.

As before, we counted the feature-level metrics after data

integration (Figure 4). Except for ComBat-seq, genes with a

higher average expression were not following the raw data

distribution after correction (Figure 4A). Moreover, for

FIGURE 3
UMAP visualization after integration.
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MNN, Scanorama negative values started to occur in the

corrected matrix. In most cases, the batch effect correction

also distorts the characteristic of the scRNAseq data mean-

variance relationship (Figure 4B). There is a sharp collapse of

the log variance in the upper range of the mean expression

(Figure 4B). The association between average expression

and detection rate is conserved only for ComBat-seq and

MNN (Figure 4C). Limma introduces small expression values

to all cells for many low expression genes (dropout rate

equal 1), while scMerge and Scanorama

consequently increase dropout rate with increased

expression of the gene.

3.4 Differential gene expression analysis
after data integration

For each method, only the best DEGs finding results were

shown from all the setups tested (Figures 5, 6): MNN and

Scanorama were run with all genes as input and scMerge with

K4444 setting. The number of DEGs identified with MAST

(parametric approach) and EMDomics (non-parametric

approach) is presented in Table 2. The intersection between

different data integration methods and approaches for DEGs

finding was small. For the confounded study, the number of

identified DEGs was almost identical between the two

FIGURE 4
Feature-level metrics for corrected study. (A) histograms of mean value, (B)mean-variance relationship - red line with intercept = 0 and slope =
1, (C) mean-detection rate relationship - red line indicates the expected distribution under a Poisson model. Individual points are colored by the
number of neighboring points.
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approaches, but the common part consists of only 62 genes

(Table 2). After data integration, only ComBat-seq gave a higher

number of DEGs than other methods, mostly when the

parametric approach was used. The non-parametric approach

identified a significantly larger number of DEGs after correction

for other data integration methods.

Based on the Pearson correlation coefficient (R), there is

an improvement in the correlation of MAST DE statistics

FIGURE 5
Correlation analysis after data integration using MAST statistics. Two correlation coefficients are shown: Pearson (R) and Spearman (ρ) and the
corresponding p values. The regression model is fitted (blue line) with confidence intervals (the grey area around the line).

FIGURE 6
Correlation analysis after data integration using EMDomics statistics. Two correlation coefficients are shown: Pearson (R) and Spearman (ρ) and
the corresponding p values. Regression model is fitted (blue line) with confidence intervals (grey area around the line).
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between the reference and the corrected study in the case of

ComBat-seq, limma, and scMerge (Figure 5). For MNN and

Scanorama, the test statistics themselves were much higher,

thus the correlation with the reference is smaller (Figure 5).

When the Spearman correlation coefficient is considered (ρ),

the correlation is higher for every integration method, and

Scanorama, scMerge, and ComBat-seq are the best. For a

non-parametric test approach, after data integration, both

correlation coefficients were smaller in all cases (Figure 6).

However, ComBat-seq and limma showed the smallest

decrease, while Scanorama gave negative correlation

values. In some cases, rank-based EMDomics gave the

same value of test statistic (dots arranged in horizontal

lines in Figure 6), which follows from assigning the same

expression values for individual genes after batch correction

using selected methods (e.g., limma, MNN).

ROC curves calculated for each method and statistical tool

(Figure 7) support the findings of correlation analysis. Only for

ComBat-seq and limma, the area under the ROC curve was

higher than 0.5 (Combat-seq: 0.72 and 0.86; limma: 0.74 and

0.65). The worst method was Scanorama (0.39 and 0.44).

3.5 Gene set analysis after data integration

The number of significantly enriched pathways for selected

gene sets is presented in Table 3. Overall, a smaller number of

enriched pathways was found after correction. Data integration

using ComBat-seq did not improve the correlation coefficients

for any of the considered gene sets (Figure 8; Supplementary

Table S1), but the dissimilarity was small. The opposite is

observed in the case of limma, where the correlation

improvement was found for all gene sets and both

coefficients. scMerge improved both coefficients for Hallmark

and GO and worsened for KEGG and Reactome. MNN and

Scanorama worsened the correlation for every gene set.

4 Discussion

We tested six scRNAseq data integration methods against two

experimentally derived datasets which, in some sense, are mirror

images of each other. Both experiments had the same biological

properties such as cell line, drug, time of harvesting, etc. The only

difference was in the technical study design; one experiment was

designed to minimize the technical variation and was our reference,

TABLE 2 Number of DEGs after correction.

Study/tool [MAST] [EMDomics] Intersection

balanced 965 328 246

confounded 191 197 62

ComBat-seq 287 115 114

limma 9 206 9

MNN 6 137 6

scMerge 0 20 0

Seurat 0 0 0

Scanorama 0 0 0

FIGURE 7
Receiver operating characteristic (ROC) curves from results of DEGs analysis using MAST (A) and EMDomics (B) tests. Color coding represents
different data integration methods or no correction (red).

Frontiers in Genetics frontiersin.org10

Kujawa et al. 10.3389/fgene.2022.1009316

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1009316


while the other manifested strong batch effects due to the difference

in capturing time of each batch. This dataset was corrected for batch

removal. Our study was not intended to evaluate many aspects of

the batch correction (accuracy, speed, scalability) as other published

benchmarks, but is focused on one unexplored so far aspect of

scRNAseq data integration which is its impact on DGE analysis in

real data scenario. Available benchmarks also address this problem,

however, based only on the simulated data scenarios. While these

evaluations can easily compute the number of true/false positive

DEGs identified in corrected datasets, they do not stress the real

challenge behind DGE analysis on batch-corrected datasets by

excluding multiple technical and biological factors occurring in

real data. For example, R package splatter (Zappia et al., 2017)

simulates the batch effect by randomly generating multiplication

factors from a log-normal distribution for each gene and group of

cells (i.e., batch). However, since all cells within a batch are modified

in the same way, parametric statistical tests can easily handle these

artificial batch effects by adding covariates to the model. Thus, our

study is unique and extends previous comparisons.

In this work, we tried to emphasize the challenge involved in

feature-level analyses on corrected gene expression matrices.

Indeed, cell-level analyses which are based on computing the

distance (clustering or trajectory analysis) are safe to apply to

corrected data because all cells are placed in the same coordinate

space, which is the idea of data integration. However, integration

algorithms give no guarantee to preserve relative differences in

gene expression space. Therefore, correction methods may

introduce artificial differential expression between cell types or

conditions. Moreover, a majority of integration tools change the

original nature of scRNAseq data: counts are no longer counts.

One exception is ComBat-seq which preserves the integer nature

TABLE 3 Number of enriched pathways for selected gene sets.

Study/tool Hallmark KEGG GO Reactome

balanced 31 19 568 219

confounded 21 14 387 51

ComBat-seq 0 0 25 13

limma 12 7 153 29

MNN 3 8 77 51

scMerge 4 3 46 16

Seurat [CCA] 15 9 326 10

Seurat [rPCA] 16 3 235 71

Scanorama 0 5 59 5

FIGURE 8
Correlation analysis (GSEA) after data integration using NES. Two correlation coefficients are shown: Pearson (R) and Spearman (ρ) and the
corresponding p values separately for each pathway/gene set.
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of counts. Counts preservation is important for the compatibility of

a corrected matrix with the available tools for differential expression

analysis which may require counts or values equivalent to counts. A

natural consequence of subtracting expression during integration

(for example in MNN or Scanorama) is negative values in the

corrected matrix which are hard to biological interpretation.

Moreover, the scale of corrected values can be much different

from the original counts which were especially apparent for

Scanorama. Therefore, corrected values can no longer be

considered as expression measures (of course still higher values

reflect higher expression). Model-based methods specifically

designed for scRNAseq DGE analysis (parametric approaches)

may not work well with corrected data given the fact that many

properties of original data are lost, and higher expressed genes are

dragged down after correction. Of course, one can attempt to apply

some transformations (e.g., Box-Cox transformation) on corrected

data, but they are computationally intensive and do not guarantee

the intended effect.

In general, gene set enrichment analysis should be more

robust against batch correction than gene level analysis but in our

case, this was not manifested. ComBat-seq which was best on

DGE analysis (in both, number of DEGs and correlation with

balanced study) did not improve correlations on the level of gene

sets, but it also did not decrease it much.

In terms of computational time, limma was the fastest

algorithm, while Scanorama used the least amount of memory

(Table 4). MNN ran on 8 processor cores, was much slower than

others (even algorithms ran on a single core) and in peaks, it

needed almost 30 GB of memory. We summarized all our

findings when comparing data integration methods in

Table 4. Our evaluations were done on a machine with Intel®

Xeon(R) CPU E5-2,650 v3 at 2.30GHz × 40 and 256 GB RAM.

Our study has some limitations. First, the analysis was done

on a set of two experiments concerning the same cancer cell line.

The results might slightly differ for other organisms. However,

since there is no other pair of experimentally derived balanced/

confounded studies, it was not possible to test it. Second, different

methods have multiple parameters to set. We have chosen default

values where possible and tested a few settings for another

method, however, we are aware that the optimal settings

might not be reached in this study.

Finally, we are rather careful with formulating overall

recommendations for the particular method as well as we do not

state that DGE analysis should not be performed at all. We rather

wanted to highlight the fact that single-cell data integration is one of

the current grand challenges (Lahnemann et al., 2020) in omics

analyses and better methods might still appear. Nevertheless, we

wanted to highlight the ComBat-seq method as it led to the highest

correlation of test statistics between reference and corrected dataset

among others and it does not distort the original distribution of

gene expression, so it can be used in all types of downstream analyses.
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