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Introduction: Although robot-assisted task-oriented upper limb (UL) motor

training had been shown to be e�ective for UL functional rehabilitation after

stroke, it did not improve UL motor function more than conventional therapy.

Due to the lack of evaluation of neurological indicators, it was di�cult to

confirm the robot treatment parameters and clinical e�cacy in a timely

manner. This study aimed to explore the changes in neuroplasticity induced

by robot-assisted task-oriented UL motor training in di�erent degrees of

dysfunction patients and extract neurological evaluation indicators to provide

the robot with additional parameter information.

Materials and methods: A total of 33 adult patients with hemiplegic motor

impairment after stroke were recruited as participants in this study, and a

manual muscle test divided patients into muscle strength 0–1 level (severe

group, n = 10), 2–3 level (moderate group, n = 14), and 4 or above level (mild

group, n = 9). Tissue concentration of oxyhemoglobin and deoxyhemoglobin

oscillations in the bilateral prefrontal cortex, dorsolateral prefrontal cortex

(DLPFC), superior frontal cortex (SFC), premotor cortex, primary motor cortex

(M1), primary somatosensory cortex (S1), and occipital cortex were measured

by functional near-infrared spectroscopy (fNIRS) in resting and motor training

state. The phase information of a 0.01 −0.08Hz signal was identified by

the wavelet transform method. The wavelet amplitude, lateralization index,

and wavelet phase coherence (WPCO) were calculated to describe the

frequency-specific cortical changes.

Results: Compared with the resting state, significant increased cortical

activation was observed in ipsilesional SFC in the mild group and bilateral

SFC in the moderate group during UL motor training. Patients in the mild
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group demonstrated significantly decreased lateralization of activation in

motor training than resting state. Moreover, the WPCO value of motor

training between contralesional DLPFC and ipsilesional SFC, bilateral SFC,

contralesional, S1, and ipsilesionalM1 showed a significant decrease compared

with the resting state in the mild group.

Conclusion: Robot-assisted task-oriented ULmotor training couldmodify the

neuroplasticity of SFC and contribute to control movements and continuous

learningmotor regularity for patients. fNIRS could provide a variety of real-time

sensitive neural evaluation indicators for the robot, which was beneficial to

formulating more reasonable and e�ective personalized prescriptions during

motor training.

KEYWORDS

robot-assisted task-oriented motor training, functional near-infrared spectroscopy,

neuroplasticity, cerebral activation, lateralization, functional connectivity, stroke

Introduction

A stroke could cause the death of brain cells and

consequently the loss of abilities controlled by the interested

area of the brain, which was the leading cause of a patient’s

long-term disability (Morone et al., 2020). Most stroke survivors

have acute-stage upper limb (UL) dysfunction and only 10–

18% of stroke survivors obtain complete UL functional recovery

after 6 months post-stroke (Aprile et al., 2020; Morone et al.,

2020). In the remaining patients, UL motor deficits persist with

a negative impact on their physical and social activities (Harvey,

2015; Waddell et al., 2016). Therefore, an adequate and timely

rehabilitation of ULmotor function after stroke for a patient was

a fundamental demand, while all the new technologies available

should also be utilized.

Robot-assisted task-oriented UL motor training had been

shown to be effective for UL functional rehabilitation after stroke

(Rensink et al., 2009). The previous fMRI neuroimaging had

proven that integrating arm training into tasks could induce

a broader range of brain activation than usual therapy, such

as the visuospatial, visual, and sensory regions, as well as the

primary auditory cortex (Wu et al., 2020). However, several

studies (Mehrholz et al., 2018; Morone et al., 2020), including

the Lancet (Rodgers et al., 2019), had shown that robot-assisted

training and advanced therapy did not improve UL motor

function more than usual therapy in patients after stroke due

to the lack of clear therapy dose studies, such as treatment

duration and strength, frequency of sessions, and possible side

effects (Morone et al., 2020). Given that the optimal plan of

therapy needed for patients after stroke was not exactly known,

it was fundamental to identify the parameters of robotic therapy

according to an individualized neurorehabilitation program for

each specific patient, as well as verify its efficacy using a valid

objective assessment.

For task-oriented UL motor training, a single movement

could be performed many times always in the same manner, and

robots could evaluate UL functions through these objectively

physical parameters, such as muscle strength, muscle tension,

and joint range of motion (Duret et al., 2019), rather than

neural indicators. However, understanding the neuroplastic

changes during UL training was crucial in rehabilitating

stroke patients, which would directly affect the parameter

selection and clinical effectiveness of robot-assisted task-

oriented UL motor training (Cramer et al., 2012; Pekna et al.,

2012). Functional near-infrared spectroscopy (fNIRS), as a

recently developed neuroimaging technology, had the unique

advantages of millisecond temporal resolution, 2–3 cm spatial

resolution, portability, and low disturbance by movement

(Kato et al., 2002; Liu et al., 2015; Chao-Chen et al.,

2018), which was suitable for non-invasive assessment to

determine the change of neuroplasticity in patients with

subcortical and cortical stroke during UL motor training.

Current robots needed to be more intelligent and more

reliable in clinical practice (Ai et al., 2021). Combining

neuroimaging information with machine learning algorithms

could enable robots to identify and predict the future

rehabilitation direction from neural data, which was conducive

to improving the accuracy and effectiveness of robot-assisted

UL rehabilitation.

Neuroplasticity referred to the brain’s ability to undergo

functional and structural changes in response to external or

internal stimuli from the environment or organs in the body,

and could also be comprehended as an obligatory adaptation

in response to each neurobiological process (Pascualleone et al.,

2005; Smith, 2013; Patrice et al., 2017). Long-term potentiation

(LTP) was the process of neuroplasticity, which could be

divided into early and late LTP. Early LTP produced a rapid

and short-lasting alteration of neuroplasticity changes and
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TABLE 1 Characteristics of participants with UL motor dysfunction.

Patients Sex Age Etiology Hemiplegia side Site of lesion Time (month) MMT

Pt 1 Male 54 Infarction Left Frontotemporal-parietal 0.9 0

Pt 2 Male 45 Hemorrhage Right External capsule 2.77 1

Pt 3 Female 78 Infarction Left Internal capsule 0.4 1

Pt 4 Female 80 Infarction Right Pons 2.27 4

Pt 5 Male 84 Infarction Left Cerebellum 1.13 2

Pt 6 Female 43 Infarction Right Basal ganglia 0.5 4

Pt 7 Male 62 Infarction Right Temporal lobe 0.67 5

Pt 8 Male 62 Infarction Right Frontoparietal 0.9 4

Pt 9 Male 70 Infarction Left Basal ganglia 1.33 1

Pt 10 Male 58 Hemorrhage Right Basal ganglia 1.07 2

Pt 11 Male 33 Infarction Right Middle cerebral artery 2.43 2

Pt 12 Male 50 Infarction Left Frontoparietal lobe 2.3 5

Pt 13 Male 64 Infarction Left Vertebral artery 3.97 1

Pt 14 Female 64 Infarction Right Pons 1.63 2

Pt 15 Male 68 Infarction Right Basal ganglia 1.43 2

Pt 16 Male 45 Infarction Right Basal ganglia 4.9 2

Pt 17 Male 43 Hemorrhage Left Pons 1.43 4

Pt 18 Female 62 Hemorrhage Left Parietal lobe 4.01 1

Pt 19 Male 89 Infarction Left Pons 2.5 2

Pt 20 Male 32 Hemorrhage Left Parietal lobe 2.53 4

Pt 21 Male 65 Infarction Left Basal ganglia 2.37 2

Pt 22 Female 63 Infarction Right Pons 0.7 4

Pt 23 Male 55 Hemorrhage Left Basal ganglia 0.6 0

Pt 24 Male 60 Hemorrhage Left External capsule 0.67 2

Pt 25 Male 50 Infarction Right Basal ganglia 0.43 3

Pt 26 Female 73 Infarction Right Corona radiata 1.2 1

Pt 27 Male 44 Infarction Right Basal ganglia 1.27 2

Pt 28 Male 50 Infarction Right Vertebral artery 0.4 0

Pt 29 Male 42 Hemorrhage Left Basal ganglia 0.27 2

Pt 30 Female 55 Infarction Right Basal ganglia 5.8 2

Pt 31 Male 54 Hemorrhage Left Basal ganglia 2.07 3

Pt 32 Female 72 Infarction Right Internal capsule 2.33 2

Pt 33 Male 35 Hemorrhage Left Basal ganglia 4.8 1

continuously transitioned to late LTP that produces slower

and longer-lasting plasticity (Loprinzi, 2019; Bandeira et al.,

2021). With neuroimaging technology, the early neuroplasticity

process could be evaluated by real-time detection of the

specific task, while the late neuroplasticity process needed

to be obtained by comparing resting states in a long-

term follow-up study. In this study, we hypothesized that

patients with different degrees of dysfunction would have a

variety of patterns of brain network reorganization during

UL rehabilitation training. Therefore, the current study aimed

to (1) explore the specific changes of neuroplasticity during

rehabilitation induced by robot-assisted task-oriented ULmotor

training in patients with different degrees of dysfunction, and

(2) extract neurological evaluation indicators that could be

identified by machine learning, so as to provide the robot

with additional neurological parameters information other than

physical parameters.

Materials and methods

Participants

A total of 33 (n = 33) right-handed adult patients with

hemiplegic motor impairment after stroke were recruited as

participants in this fNIRS study through inpatients of the

Third Affiliated Hospital of Sun Yat-sen University, and the

patient’s clinical baseline characteristics as shown in Table 1.
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The inclusion criteria were (1) the First stroke, confirmed by

cranial CT or MRI. (2) Time of onset between 1 week and

6 months. (3) Presence of mild, moderate, or severe motor

dysfunction. (4) Patients without significant cognitive and verbal

dysfunctions (MMSE > 21 points). Participants were excluded

from the study if they had: (1) Prior history of stroke, traumatic

brain injury, or brain tumor. (2) Complicated severe cardiac,

pulmonary, hepatic, or renal dysfunction or other serious

physical illness. (3) Previous epilepsy and family history of

epilepsy. (4) Metals implanted in the body such as pacemakers,

metals in the skull, etc. (5) Those with new infarct foci or

secondary hemorrhages that have worsened. (6) Those with

severe cervical spine lesions including severe cervical canal

stenosis and cervical instability. The trial was registered under

the Chinese Clinical Trial Register no. ChiCTR2100054527

(Registered 19 December 2021). Ethical approval was granted

by the Ethics Committee of the Third Affiliated Hospital, Sun

Yat-sen University.

Procedures

All patients received a robot-assisted task-oriented UL

motor training (ArmGuider, ZD Medtech Co., Ltd., China),

and the robot automatically adjusted the resistance or assist

parameters according to the manual muscle test (MMT) results

of the patient’s hemiplegic UL post-stroke. In detail, muscle

strength at 0–1 level corresponds to the passive motor (severe

group, n = 10), at level 2–3 correspond to the assistive

motor (moderate group, n = 14), and at level 4 or above

corresponds to activities including resistance motor (mild

group, n = 9). The patient’s distal hand was fixed on a robotic

arm, and training directions included horizontal shoulder

adduction and abduction, elbow flexion, and extension. Each

stroke patient received 20min per day, 5 days per week of

robot-assisted task-oriented UL training. The experiment was

conducted by a professional therapist in a silent treatment

room. Before the experiment, all participants were required to

sit for 5–10min to eliminate existing hemodynamic reactions

induced by their activity. Because FNIRS signal should include

at least five low-frequency periods (0.01Hz) to ensure the

effectiveness of phase correlation analysis (Bandrivskyy et al.,

2004), patients were asked to complete a 10-min resting state

and a 10-min motor training state in a sitting position. In

the resting state, the patient was asked to relax the brain

and avoid random movements and speech. In the motor

training state, patients were seated in front of the training

table, and their hands and forearms were fixed on the

movable arm of the robot. Then, the maximum range of

motion of the hemiplegia UL was set. Patients were asked to

complete a dynamic task of catching butterflies on a screen

through the robot’s movable arm. The fNIRS was implemented

continuously throughout the experiment and the set-up is

shown in Figure 1.

Functional near–Infrared spectroscopy
measurement

A multi-channel tissue oxygenation monitor with

continuous wave (NirSmart, Danyang Huichuang Medical

Equipment Co., Ltd., China) with wavelengths of 740

and 850 nm (Nieuwhof et al., 2016) was used in fNIRS

measurements. Each sensor of the instrument consisted of

a light emitting diode and a detector optode with a distance

of 30mm and the sampling rate was 10Hz. The calibration

function of the instrument and the corresponding template was

used to ascertain the channels to fill exactly in correspondence

of the 10/10 electrode positions according to different head sizes.

A total of 38 measurement channels, including 18 light source

probes and 16 detector probes, were symmetrically positioned

over the regions of the ipsilesional and contralesional prefrontal

cortex (IPFC/CPFC), ipsilesional and contralesional dorsolateral

prefrontal cortex (IDLPFC/CDLPFC), ipsilesional and

contralesional superior frontal cortex (ISFC/CSFC), ipsilesional

and contralesional premotor cortex (IPMC/CPMC), ipsilesional

and contralesional primary motor cortex (IM1/CM1),

ipsilesional and contralesional primary somatosensory cortex

(IS1/CS1), and ipsilesional and contralesional occipital cortex

(IOC/COC), as shown as Figure 2.

Data pre-processing

The pre-processing method of fNIRS data had been

elaborated in our previous studies (Tan et al., 2015, 2016; Xu

et al., 2017; Xie et al., 2019). The absorbance signals recorded by

fNIRS were first bandpass filtered at 0.0095–2Hz (zero-phase,

six-order Butterworth filter) to reduce the uncorrelated noise

components and low-frequency baseline drift. Then principal

component analysis (PCA) and independent component

analysis (ICA) were performed on delta oxygenated hemoglobin

(O2Hb) and deoxygenated hemoglobin (HHb) signals of each

channel to identify and eliminate the components that might

be related to noise and artifacts, including cardiac pulsations,

respiratory signals, and blood pressure changes (Zhang et al.,

2010; Santosa et al., 2013). According to the criteria that the

associated time course should have a significant 0.01–0.08Hz

frequency spectrum, the components of interest were visually

identified and retained, indicating the functional hemodynamic

response in the brain. Finally, a moving average filter was used

to eliminate the obvious abnormal points in the signal, and the

time window of the moving average filter was 3 s. The artifact

portion was removed by cubic spline interpolation.
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FIGURE 1

Experimental protocol. The fNIRS technique was used to detect the real-time hemodynamic signal of patients with three di�erent degrees of UL

dysfunction during motor training. Activation, lateralization, and brain network as neural parameters were used to evaluate fNIRS signals.

Wavelet transform and amplitude

Continuous wavelet transformation could project time

series from the time domain to the frequency domain and

enable us to continuously derive the frequency content in

time by adjusting the length of wavelet windows. The specific

frequency interval distinguished by the wavelet transform had

different physiological sources, and 0.01–0.08Hz indicated the

neural activity hemodynamic response in the spontaneous

cerebral oxygen signal (Lu et al., 2007). The results of the

wavelet transform were averaged over the time domain to

obtain the wavelet amplitude (WA) of each delta O2Hb

and HHb signal at each time and frequency, which reflects

the magnitude of the fluctuation of the original signal at

a certain frequency. WA of the delta O2Hb and HHb

signal represents the changes in regional cerebral blood flow

with the activity of the cerebral cortex during different

conditions. Functional hyperemia or neurovascular coupling

could increase regional cerebral blood flow by activating

local neurons to match the needs of blood and nutrients of

local brain cells in the task state (Willie et al., 2014). Thus,

WA was characterized by the intensity or activation of the

cerebral cortex.

Lateralization index

The lateralization index (LI) could evaluate the degree

of hemispheric activation balance during robot-assisted task-

oriented ULmotor training. LI for a given contralesional (C) and

ipsilesional (I) hemispheric activation was calculated by the sum

of theWA values, and the definition was as follows (Calautti and

Baron, 2003):

LIregion =

(
∑

WAC−region −
∑

WAI−region
)

(
∑

WAC−region +
∑

WAI−region
)

The value of LI ranges from 1 (contralesional activation

only) to−1 (ipsilesional activation only).
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Wavelet phase coherence

The functional connectivity was calculated using

wavelet phase coherence (WPCO), which was a method

of using the phase information of the signal to evaluate

the correlation between two signals. The WPCO value was

between 0 and 1, and the value quantitatively represents

the instantaneous phase of the two signals at a consistent

degree throughout the continuous process of the time

series to identify possible connectivity (Bernjak et al.,

2012). The high WPCO value indicates that an agreement

between the two cortical regions exists, otherwise it

indicates weaker relationships between the two existing

delta signals (Han et al., 2014).

To identify significant coherence, the amplitude–adaptive

Fourier transform method was applied to perform the

WPCO test. A total of 50 surrogate signals with the

same mean, variance, and autocorrelation functions as the

original signal but without any phase correlation were

produced. The phase coherence level of the original signal

was verified by calculating the substitute signals. When the

WPCO value of the original signal was higher than two

standard deviations above the mean of the surrogate signal,

the connectivity in the frequency interval was considered

significant (Tachtsidis et al., 2004).

Statistical analysis

Data were analyzed using the Kolmogorov–Smirnov test and

Levene test to ensure that the assumptions of normality and

homogeneity of variance required to analyze the parameters

were satisfied. One-way ANOVA was used to evaluate the

significant differences in region-wise WA, LI, and WPCO

values among the intra-group comparisons, including resting

state vs. UL motor training state in the severe, moderate,

and mild groups, the adjusted p-value threshold was set at

p < 0.0167 (0.05/3).

FIGURE 2

Schematic diagram of the fNIRS. Configuration of 18 source probes, 16 detector probes, and 38 measurement channels.
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FIGURE 3

Comparative results for WA values between resting and training states in mild (a), moderate (b), and severe (c) groups (*p < 0.05).
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FIGURE 4

Changes in the LI value in each region under resting state and motor training state in patients with mild (red), moderate (green), and severe

(blue) motor dysfunction (* p < 0.05).

Results

Di�erences in cerebral activation

Compared with the resting state, the WA changes in the

robot-assisted task-oriented UL training of mild (a), moderate

(b), and severe (c) groups are shown in Figure 3. We found

that the WA values of all regions in the three groups showed

different degrees of change. In detail, the WA value of ISFC (F

= 9.092, p = 0.011) showed a significant increase in the mild

group in motor training compared to the resting state. In the

moderate group, the region’s activation was generally higher

than in the other groups, and a significant increase of WA was

observed in ISFC (F = 5.938, p = 0.023) and CSFC (F = 5.425,

p = 0.029). However, although the motor training in the severe

group could induce a wide range of activation increases, there

were no significant changes compared with the resting state.

Di�erences in brain lateralization

Compared with the resting state, the results of the LI value

showed a significant decrease in SFC (F = 9.122, p = 0.001) in

the motor training state in the mild group. However, there was

no evidence that the LI values showed significant differences in

robot-assisted task-oriented UL motor training compared with

resting in moderate and severe groups, as shown in Figure 4.

Moreover, the result observed that activation in M1, PMC,

and S1 was lateralized to the contralesional hemispheric. In

contrast, the LI of DLPFC, PFC, and SFC showed a decrease

in mild and moderate groups, while showing an increase in the

severe group.

Di�erences in brain network connectivity

We examined changes in WPCO values in motor training

compared to the resting state in three groups. A significant

difference in the WPCO values related to the UL motor training

was found in the mild and moderate groups, and the significant

change was shown in a visual connectivity map, as shown in

Figure 5A. In detail, the functional connectivity result showed

that the WPCO value of motor training between CDLPFC and

ISFC (F = 9.572, p = 0.009), CSFC and ISFC (F = 13.694,

p = 0.003), and CS1 and IM1 (F = 6.167, p = 0.029) were

significantly lower than resting state, as shown in Figure 5B, and

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.957972
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xie et al. 10.3389/fnins.2022.957972

FIGURE 5

The functional connectivity visual map (A). The connectivity line indicates a significant WPCO value between the two regions. Line color

indicates the connectivity intensity, and the brighter color represents higher strength. The result of significant changes of WPCO values in motor

training compared with resting state (B) (*p < 0.05; ** p < 0.01).
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there was no significant difference in theWPCO value was found

between resting and motor training in the severe group.

Discussion

This study mainly observed the changes in neuroplasticity

in patients after stroke with different degrees of UL motor

dysfunction during the robot-assisted task-oriented UL motor

training. The main finding was that robot-assisted task-oriented

UL motor training could significantly increase the nerve

activation response of SFC in mild and moderate patients. In

addition, the lateralization and brain function network related

to ISFC had significantly changed in patients with mild motor

dysfunction. However, there was no evidence that robot-assisted

task-oriented UL motor training could significantly change

the neuroplasticity of patients with severe motor dysfunction

after stroke.

Previous studies had shown an association between

improved clinical efficacy and brain activation. A recent

quantitative meta-analysis found that better motor performance

was associated with the likelihood of greater activation in

the ipsilesional hemisphere (Hubbard et al., 2015). In detail,

the finding that increased brain activation in motor-related

and attentional regions was associated with recovery of UL

function in those that received motor training during stroke

rehabilitation was clinically relevant. We contended that the

robot-assisted task-oriented ULmotor training had the potential

to increase opportunity for attentive and task-specific of motor

function in patients with partial motor ability. This process

would be expected to include brain regions involved with

motor learning and attention (Hubbard et al., 2015), such as

SFC, which is consistent with our findings and with learning-

dependent plasticity.

Evidence increasingly identified that the supplementary

motor area, located in the middle and posterior SFC, was

important to UL recovery in the first 6 months post-stroke

(Kokotilo et al., 2010; Carey et al., 2011). The current study’s

findings supported the theory that stroke recovery might be

associated with the recruitment of spared motor and attention

regions (Barch et al., 2000; Kokotilo et al., 2009; Buma

et al., 2010). There had been wide discussion on the role

of contralesional hemispheric compensation in the functional

rehabilitation of the paralyzed UL. The ipsilesional pathway

had great potential for controlling both hands using the

contralesional hemisphere, which could account for 10–20%

of all corticospinal projections (Riecker et al., 2010; Hua

et al., 2016). Therefore, enhanced contralesional hemisphere

activation might successfully compensate for motor control for

patients after stroke. In addition, we realized that other regions

of the brain might also be making a functional contribution,

but did not show a significance in this study. Although robot-

assisted task-oriented UL motor training could affect multiple

brain regions in patients with different degrees of motor

dysfunction, the magnitude of the neural activation changes

seemed to depend on the intensity of motor training.

One of the primary interests of this study was to assess

the hemispheric activation balance. The different activation

intensities of regions determine the distribution of brain

resources, and the lateralized activation pattern of the cortex

was a known factor determining the degree of motor function

recovery in patients after stroke. In this study, the lateralization

of most brain regions was consistent in patients with different

degrees of motor dysfunction. It was worth noting that the

function of ipsilesional hemispheric SFC was dominant during

motor training in mild patients, which might be an important

sign of UL functional rehabilitation. In addition, IPFC and

IDLPFC exhibited an increasing trend of laterality in mild and

moderate patients during UL motor recovery. Although PFC

and DLPFC were not considered primary motor regions, the

activation of the IPFC and IDLPFC might be beneficial to

enhance the management of the cognitive load required for

motor performance (Buckner et al., 2008; Hussar and Pasternak,

2013; Nee and D’esposito, 2016). However, the laterality

trend of these regions was opposite in patients with severe

motor dysfunction, which might reflect the differences in the

mechanism of brain network reorganization between different

degrees of dysfunction patients. Neuroimaging studies had

shown that the grasp of motor regularity in hemiplegia patients

depended on the activation degree of the CDLPFC region

(Calautti et al., 2010). Robot-assisted task-oriented training

could force severely affected patients to invest extra conscious

attention to continue learning and follow the cues, which was

thought to be an effective way for them to gain insight into their

own behavior and regain a reactive strategy to achieve optimal

task performance. Therefore, adequate CPFC and CDLPFC

engagement appeared essential for stroke survivors to recover

UL motor function. Although the existing evidence in this

study did not show that robot-assisted task-oriented UL motor

training had a significant effect on the LI change in moderate

and severe patients, this trend was still worthy of attention.

The results of the brain network showed significantly

decreased functional connectivity between the ISFC-CDLPFC

and ISFC -CSFC in mild dysfunction patients, which

reflected the emergence of a dyssynchrony phenomenon

in interhemispheric corticocortical connections involved in

cognitive-motor function during dynamic brain network

reorganization. On the one hand, as mentioned above, the

contralesional frontal region was involved in the continuous

and repetitive learning of motor regularity. On the other hand,

the previous study had been demonstrated that increasing task

difficulty results in greater ipsilesional motor-related activation

(Horenstein et al., 2009). Taken together, it seemed reasonable

to assume that robot-assisted task-oriented training plays a key

role in activating motor memory to control skilled movements

in patients with preserved UL muscle strength, as well as in
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continuously learning motor regularities in patients with severe

motor dysfunction.

In addition, we found that the evidence of inducing

significant differences in neuroplasticity was diminishing with

the severity of the dysfunction. Therefore, it seemed to be the

correct selection to transition from relying solely on external

assistance to a more challenging UL motor training by reducing

assistance or even increasing resistance in a timely manner

according to the changes in the patient’s muscle strength during

the rehabilitation of UL function. Although the passive motor

was generally addressed to decrease the muscular tension and

increase the active range of motion in the early rehabilitation

stage (Pan et al., 2012), it was more important to highlight

changes in neuroplasticity in the rehabilitation of patients after

stroke, which determined the ability of the nervous system

to alter its structure and function to adapt to changes in

the internal and external environment. There was increasing

agreement that the number of neurons and the strength of the

neural networks involved in a task were directly related to the

intensity and amount of practice that had been done (Koes

et al., 2001; Lindberg et al., 2004). Therefore, the robot-assisted

task-oriented UL training should be of such an intensity to

drive structural and functional changes in the central nervous

system. It is obvious that our UL motor training did not have

sufficient intensity to improve large-scale neuroplasticity in this

study, especially for patients with severe UL motor dysfunction.

One of the most obvious advantages of robotic therapy over

conventional therapy was the reduction in personnel resources

for a similar amount of practice time (Bustamante Valles et al.,

2016; Jakob et al., 2018), which means that increasing the

intensity of training within the patient’s tolerance would be easily

achievable in the future. Even though there was consensus that

patients with stroke should receive early and more intensive

training, uncertainty remains about how much additional

intervention was required to ensure that neuroplasticity could

be induced. Further investigation with neuroimaging tools

is required.

Our study has several limitations. First, short channels were

not used in this study. Althoughwe currently employ an effective

pretreatment method combining PCA and ICA to separate

out scalp blood pressure, skin blood interference, and non-

evoked hemodynamic components and remove unnecessary

sources from the hemodynamic response (Scholkmann et al.,

2014; Pfeifer et al., 2017), the short channel should be used

as a standardized step in future studies. Second, there was

no classification of cortical and subcortical stroke. The lesion

locations of cortical stroke mainly included frontal, parietal and

temporal lobes, while subcortical stroke mainly included corona

radiata and basal ganglia. Patients with different lesions might

have different sensitivity to UL rehabilitation, and it is valuable

to further analyze the influence of different lesion locations

on neuroplasticity during motor training. Third, this study did

not focus on the effects of neuroplasticity of long-term UL

training. In the future, more participants need to be recruited

and followed up in order to compare the different changes in

the clinical efficacy of robot-assisted task-oriented UL motor

training based on neuroimaging motor evaluation indicators.

In conclusion, this study used fNIRS to examine specific

changes in cortical reorganization in patients with different

degrees of motor dysfunction during training intervention. Our

findings demonstrate that the robot-assisted task-oriented UL

motor training could modify the neuroplasticity of SFC in

patients with mild and moderate motor dysfunction. During

training, brain network connections in patients with mild

motor dysfunction were altered, which could improve the

patient’s ability to control movement. The LI of patients

with severe motor dysfunction had a tendency to lateralize

the contralesional region, which might indicate relearning

of motor regularity. In addition, it was also necessary to

continuously reduce external assistance in a timely manner

with the progress of rehabilitation training and increase the

intensity of training within the patient’s tolerance. These

findings suggested that fNIRS could provide a variety of real-

time sensitive neural evaluation indicators for UL training,

which would be beneficial for robots to intelligently formulate

accurate and effective personalized motor training prescriptions

based on the obtained physical parameters and combined with

neural parameters.
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