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Abstract: Mitochondrial glutathione (mGSH) is critical for cell survival. We recently reported
the localization of OGC (SLC25A11) and DIC (SLC25A10) in hRPE. Herein, we investigated the
suppression of OGC and DIC and the effect of αB crystallin chaperone peptide co-treatment on RPE
cell death and mitochondrial function. Non-polarized and polarized human RPE were co-treated for
24 h with phenyl succinic acid (PS, 5 mM) or butyl malonic acid (BM, 5 mM) with or without αB cry
peptide (75 µg/mL). mGSH levels, mitochondrial bioenergetics, and ETC proteins were analyzed.
The effect of mGSH depletion on cell death and barrier function was determined in polarized RPE
co-treated with PS, OGC siRNA or BM and αB cry peptide. Inhibition of OGC and DIC resulted in
a significant decrease in mGSH and increased apoptosis. mGSH depletion significantly decreased
mitochondrial respiration, ATP production, and altered ETC protein expression. αB cry peptide
restored mGSH, attenuated apoptosis, upregulated ETC proteins, and improved mitochondrial
bioenergetics and biogenesis. mGSH transporters exhibited differential polarized localization: DIC
(apical) and OGC (apical and basal). Inhibition of mGSH transport compromised barrier function
which was partially restored by αB cry peptide. Our findings suggest mGSH augmentation by its
transporters may be a valuable approach in AMD therapy.

Keywords: mitochondrial membrane anion transporters; GSH carriers; αB crystallin peptide;
bioenergetics; polarized RPE

1. Introduction

Age-related macular degeneration (AMD), the leading cause of irreversible visual impairment, is a
process by which the structure and function of the macula gradually deteriorate, and symptoms become
clinically evident in people 50 years or older [1]. While AMD is a complex and multifactorial disease,
the dysfunction of retinal pigment epithelium (RPE) is considered to play a key role [2–4]. RPE forms a
quiescent monolayer of non-proliferating cells, strategically located between the choriocapillaris/Bruch’s
membrane complex and the light-sensitive photoreceptors. Oxidative damage has been implicated in
AMD pathogenesis [5]. The clinical hallmark of AMD is the appearance of hard or soft drusen [6], which
are localized yellowish deposits of oxidized lipids, proteins, and inflammatory debris lying between
RPE and Bruch’s membrane. Drusen, the predominant clinical characteristic of early AMD, is derived
from RPE and interrupts the RPE monolayer. Drusen constituents are implicated in AMD pathogenesis
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such as complement factors, amyloid β, and double-stranded RNA, inducing inflammatory and
degenerative effects in RPE [6]. Much of the RPE toxicity has been attributed to reactive oxygen
species (ROS) formation [2,7]. RPE dysfunction leads to cell death of photoreceptors and consequent
irreversible vision loss.

One of the primary contributing factors for macular degeneration is oxidative stress, which refers to
cellular damage caused by ROS, a process that has also been implicated in many degenerative diseases.
Mitochondria generate ROS as a byproduct of oxidative phosphorylation, and increased mitochondrial
ROS damages mitochondria and, along with the action of cytosolic ROS, leads to mitochondrial
dysfunction [4]. The mitochondrial damage and dysfunction disrupt the bioenergetic metabolic
pathway by reducing mitochondrial energy production due to reduced oxygen consumption [4,8].
In this context, it is becoming increasingly evident that the redox status of RPE cells plays a critical role
in combating oxidant stress.

GSH is one of the most predominant antioxidant molecules in RPE cells and is present at high
concentrations in the retina and RPE [9,10]. GSH protects against oxidative damage in many tissues,
including RPE [9,11]. Exogenously administered GSH or GSH ester protects against oxidative damage
in cultured human RPE, while GSH depletion was shown to cause cell death [12]. Previous work
from our laboratory has shown that mitochondrial GSH (mGSH) plays a critical role in RPE cell
survival [9,11,13]. GSH transport mechanisms of different cellular compartments of tissues including
the retina have received considerable attention in recent years. Our laboratory demonstrated the role
of multidrug resistance-associated protein 1 (MRP1) in GSH and GSSG efflux in RPE cells [9]. However,
unlike cytosol, mitochondria do not contain the enzymatic machinery to synthesize GSH from its
constituent amino acids [14,15]. Previous studies in lung and heart tissues provided evidence that
two inner mitochondrial membrane anion transporters, the dicarboxylate carrier (DIC, SLC25A10),
and the 2-oxoglutarate carrier (OGC, SLC25A11) transport GSH into mitochondria [15–17]. However,
very little is known on the expression and regulation of mGSH transporters in RPE cells and the retina.
Very recently, our laboratory characterized and localized OGC and DIC transporters to mitochondria
in primary RPE cells [11]. Selective inhibition of OGC and DIC resulted in marked mGSH depletion
and caused significant RPE cell death [11]. This study addresses the effect of regulation of the mGSH
transporters on mitochondrial function in primary RPE cells and in polarized RPE monolayers and
explores modalities to prevent mitochondrial dysfunction by treatment with a short-chain length
20-mer peptide of αB Crystallin.

Among the small heat shock proteins, αB crystallin is highly expressed in the RPE cells [18–20].
αB crystallin acts as a molecular chaperone, inhibiting oxidative stress-induced cell death, preventing
aggregation of proteins and inflammation [19]. Many short-chain peptides from αB crystallin have
been identified [21,22]. Among them, a 20-mer functional chaperone peptide (αB cry peptide) derived
from the amino acid residues 73–92 (DRFSVNLDVKHFSPEELKVK) of αB crystallin protects RPE cells
and lens epithelial cells from oxidative stress-induced cell death by inhibiting caspase-3 activation
both in in vitro [20,23–25] and in in vivo models [25–27]. In addition, overexpression of αB crystallin
significantly increased cellular GSH in RPE and a prominent increase in mGSH [9]. In the present
study, we have investigated the mechanisms by which mGSH helps maintain RPE cell viability with
special emphasis on the mechanism relating to mitochondrial bioenergetics, biogenesis, and barrier
function. Furthermore, we have investigated the antiapoptotic rescuing function of αB cry peptide
under conditions of mGSH deficiency in RPE cells.

2. Materials and Methods

2.1. Cell Culture and Treatment

All experiments were conducted in compliance with the tenets of the Declaration of Helsinki and
ARVO guidelines. Human retinal pigment epithelium (RPE) cells were isolated from human fetal
eyes (gestational age 16–18 weeks) obtained from Novogenix Lab (Los Angeles, CA, USA). Primary
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cultures of hRPE cells and polarized RPE monolayers were established as described previously [28,29].
Second to fourth passage RPE cells were used in all experiments. In brief, the hRPE cells were grown
in Dulbecco’s modified Eagle medium (DMEM, Fisher Scientific, Pittsburgh, PA, USA) with 10%
fetal bovine serum (FBS, Laguna Scientific, Laguna Niguel CA, USA), and the cells were confluent at
the time of treatment with specified inhibitors described below. The protocol for the generation of
long-term polarized RPE cultures was described in our earlier publications [29,30].

To study the blockade of DIC and OGC expression by chemical inhibitors, confluent RPE cells
were incubated with 5 mM phenylsuccinic acid (PS) and 5 mM butylmalonic acid (BM; Sigma-Aldrich
Corp., St. Louis, MO, USA) for 24 h. To assess the effect of αB cry peptide, cells were co-treated with 5
mM PS or BM, in the presence 75 µg/mL αB cry peptide (DRFSVNLDVKHFSPEELKVK; Neo-peptide,
Cambridge, MA, USA) in serum free medium. We also studied the effect of blocking OGC and DIC in
polarized RPE monolayers. We had previously shown that polarized RPE cells are highly resistant to
stress [27,30,31] and hence in the present study we used higher doses of PS (30 mM) or BM (30 mM).

2.2. Protection of RPE by Exogenous αB Cry Peptide from PS- or BM-Induced Cell Death

The effect of co-treatment withαB cry peptide was studied in confluent human RPE cells challenged
with either BM or PS alone or together with 75 µg/mL αB cry peptide for 24 h. Cell death was detected
by the TUNEL assay following the manufacturer’s protocol (In Situ Cell Death Detection Kit; Roche,
IN, USA). In short, RPE cells were treated with inhibitors (BM or PS), in the presence or absence of αB
cry peptide for 24 h. The number of TUNEL positive cells were counted under a Keyence fluorescence
digital microscope (Keyence, Itasca, IL, USA) and presented as the percentage of dead cells [31].

2.3. siRNA-Mediated Knockdown of OGC

hRPE cells at 50–60% confluence was used for transfection studies. The siRNA targeting human
OGC sequences (HSS112214) (Invitrogen, Carlsbad, CA) and control siRNA (Santa Cruz Biotechnology,
Inc., Dallas, TX USA) were mixed with RNAi MAX transfection reagent (Life Technologies, Carlsbad,
CA)) [11]. To avoid cytotoxicity, the transfection medium was replaced with a complete medium at 6 h
after siRNA transfection. OGC mRNA and protein expression were analyzed by real-time RT-PCR and
immunoblot analysis after 24 h and 48 h post-transfection, respectively. To study the effect of OGC
knockdown and effect of αB cry peptide on mitochondrial respiration or cell death, the OGC silenced
cells were incubated with 75 µg/mL αB cry peptide 24 h and assayed for cell death and respiration.

2.4. Caspase 3/7 Activation Using IncuCyte Cell Apoptosis Assay

hRPE cells (5500 cells/well) plated in 96-well plates were used. Confluent cells were co-treated
with PS (5 mM) or BM (5 mM) or PS +75 µg/mL αB cry peptide or BM + 75 µg/mL αB cry peptide.
Caspase 3/7 reagent SYTOX Green diluted in cell culture media (1:1000 dilution) to make a total volume
of 100 µL/well. Each treatment condition was performed in 5–8 wells. Cell apoptosis was monitored
for 24 h using a live cell analysis system (IncuCyte ZOOM; Essen Bioscience, Ann Arbor, MI, USA) as
described earlier [11].

2.5. Isolation of Mitochondrial and Cytosolic Fractions and Assay for GSH

Isolation of mitochondrial and cytosolic proteins from RPE cells was carried out following the
previously described procedure [11,13]. Protein concertation was determined using a commercial kit
(Bio-Rad, Hercules, CA, USA). An equal amount of protein was loaded into 96-well plates, and the
total cellular, mitochondrial, and cytosolic GSH levels were determined with a colorimetric glutathione
assay kit following the manufacturer’s protocol (BioVision, Milpitas, CA). Cellular GSH concentrations
were expressed as microgram/106 cells and were normalized to percent of control. Data presented were
based on at least three independent experiments, and each experiment was performed in triplicate.
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2.6. Measurement of Cellular Respiration

Mitochondrial bioenergetics was determined by measuring the oxygen consumption rate (OCR) of
RPE cells with a Seahorse XFe96 Analyzer (Agilent, Santa Clara, CA, USA) as described previously [8].
Confluent RPE cells were treated for 24 h with either PS or BM alone or BM+ mini cry or PM+ αB
cry peptide (75 µg/mL). Assays were initiated by replacing the growth medium with 175 µL XF assay
medium. XF assay medium contained glucose (25 mM), sodium pyruvate (1 mM), and glutamine
(2 mM) (Agilent). The concentration of inhibitors was oligomycin (ATP-Synthase inhibitor) at 1.5µM;
carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, mitochondrial membrane depolarizer)
at 1.5µM and, a mixture of 0.5 µM of each rotenone (complex I inhibitor) and antimycin A (complex
III inhibitor). We calculated OCR-linked ATP production, maximal respiration capacity, and spare
respiratory capacity, and basal respiration. Each sample was measured in five to ten wells per condition,
and the results were averaged. The experiments were repeated three times and the mean values
averaged to achieve n = 3 to 4 per condition. RPE cells were transfected with OGC siRNA and after 48
h cells were seeded at 30,000 cells per well in Seahorse XF96 tissue culture plates. After 24 h, cells were
incubated with 25 or 75 µg/mL αB cry peptide and incubated for 24 h. The OCR data were expressed
as pmol/min/µg protein.

2.7. Western Blot Analysis

Protein was extracted from cells with RIPA buffer containing protease inhibitor and concentration
of soluble protein was measured using BSA as standard. Equal amounts of protein (30µg) were resolved
on TGX-precast gels (Bio-Rad, Hercules, CA, USA) and transferred to PVDF blotting membranes
(Millipore, Billerica, MA, USA). Membranes were probed with respective primary antibodies overnight
at 4 ◦C (see Table 1 for a list of antibodies). After incubation with the appropriate secondary antibodies
(Vector Laboratories, Burlingame, CA, USA), protein bands were visualized by a chemiluminescence
(ECL) detection system (Thermo Fisher Scientific, IL, USA). Equal protein loading was confirmed with
β-actin.

Table 1. List of antibodies used.

Antibody Source Application (s) & Dilution Vendor & Product No.

OGC (Anti-SLC25A11) Rabbit Western blotting (1:1000)
Immunofluorescence (1:100) Abcam (ab155196)

DIC (anti-SLC25A10) Rabbit Immunofluorescence (1:100) GeneTex (GTX79240)
ZO-1 Rabbit Immunofluorescence (1:100) ThermoFischer Scientific (61-7300)

mtTFA Mouse Western blotting (1:1000) Santa Cruz Biotech (sc-376672)
Total OXPHOS Antibody

Cocktail Mouse Western Blotting (1:1000) Abcam (ab110411)

Actin Mouse Western blotting (1:2000) Santa Cruz Biotech (sc-8432)

2.8. Localization of DIC and OGC in Polarized RPE Monolayers

RPE monolayers grown on Transwell filters [31]) were fixed in 4% PFA, and subsequently
permeabilized with 0.1% Triton-X 100 for 15 min. Samples were blocked in 5% normal goat serum
followed by incubating with either OGC (1:100) and DIC (1:100) rabbit polyclonal antibodies overnight
at 4 ◦C. The cells were washed and incubated with fluorescein conjugated secondary antibody (Vector
Labs, Burlingame, CA, USA) for 30 min at room temperature. Transwell membranes were cut and
removed from the inserts with a fine razor and mounted on a microslide. The specimen was viewed
on an LSM 770 laser-scanning microscope and (Carl Zeiss, Thornwood, NY, USA).

2.9. Polarity of the Expression of DIC and OGC in Polarized RPE Monolayers

Polarized RPE monolayer was fixed in 4% PFA followed by permeabilization and blocking [31].
Cells were incubated with DIC (1:100) or OGC (1:100) antibodies overnight at 4 ◦C. After the
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immunostaining procedure, membranes were removed from the inserts with a sharp, razor by inserting
it at one side of the filter and then gently moving it around the filter. Sample images were obtained
on a confocal microscope (LSM 770) with a ×40 objective. Serial (0.5 µm) x–y (en face) x–z (top to
bottom) sections were collected and processed. Images presented are representatives of confocal x–y
and x–z sections.

2.10. Transepithelial Resistance in Polarized RPE and Expression of Tight Junction Protein

We have previously described the morphologic features and evidence for the integrity of polarized
RPE monolayers that included transepithelial resistance (TER) and tight junction proteins ZO1, occludin,
and Na/K ATPase [29,31]. In the present study, we examined the effect of inhibition of GSH transporters
on highly polarized RPE cells on TER and tight junction protein ZO1. Polarized RPE monolayers were
treated with either 30 mM PS or 30 mM BM with or without cotreatment with 200 µg/mL αB cry peptide
for 24 h. TER was measured using an epithelial volt-ohm meter (EVOM; World Precision Instruments
Inc., Sarasota, FL, USA) before and after the treatment. The cells were fixed in 4% PFA, blocked with
5% goat serum followed by incubation with ZO-1 rabbit polyclonal antibody overnight. After washing,
cells were incubated with fluorescein-conjugated anti-rabbit secondary antibody (Vector Laboratories)
for 30 min. After subsequent washing, membranes were cut with a scalpel, mounted on micro slides
and samples were viewed under confocal microscopy (LSM 710, Carl Zeiss, Thornwood, NY, USA).

2.11. Statistical Analysis

All data are expressed as mean ± SEM. Data were analyzed using one-way ANOVA followed
by Tukey post-test using graphing software (GraphPad Prism, version 5; GraphPad Software, Inc.,
La Jolla, CA, USA). p < 0.05 was considered significant.

3. Results

3.1. Inhibition of Mitochondrial GSH Carrier Protein Triggers RPE Apoptosis

Mitochondrial GSH is critical for regulating the redox status of the cells and, since mitochondria
lack GSH synthetic machinery, the role of carrier proteins is crucial. Transport of GSH from the cytosol
into the mitochondrial matrix is believed to be the sole mechanism that sustains the mGSH. It has been
confirmed that, out of the eleven protein carriers that are known to reside in the inner mitochondrial
membrane, the DIC and OGC act as main mitochondrial GSH transporters [16,32,33]. To study the role
of OGC and DIC-mediated GSH transport and their role in cell protection, we examined cell death
using TUNEL assay after blocking the transporters. We found that, in comparison with untreated
cells, cells treated with inhibitors had significantly higher levels of cell death (p < 0.001 vs. control).
We had previously shown that a 20-mer (αB cry peptide) from the C-terminal of αB crystallin has
antiapoptotic properties [23]. In our experiments to test whether this peptide restores cell viability, we
co-treated cells with 75 µg/mL αB cry peptide and DIC or OGC inhibitors. As expected, cell death was
significantly reduced in the peptide-treated cells when compared to inhibitor only treated cells which
confirmed the antiapoptotic function of αB cry peptide (Figure 1A,B).

To further confirm the findings obtained with pharmacological inhibitors, inhibition experiments
after OGC silencing were performed. Cells in which OGC were silenced >75% (vs. control) were used
for this purpose. OGC silencing rendered RPE cells susceptible to cell death as observed with chemical
inhibitors (Figure 2A,B) and treatment with αB cry peptide significantly (p < 0.01) inhibited cell death
(Figure 2A,B).
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Figure 1. Increased RPE apoptosis with pharmacological inhibition of mGSH transporters OGC and
DIC and attenuation of apoptosis by αB cry peptide treatment. (A) Primary cultured hRPE cells were
treated with PS (5 mM) or BM (5 mM) with and without αB cry peptide (75 µg/mL) for 24 h. Apoptosis
was determined by TUNEL staining (red). Nuclei were stained with DAPI (blue). (B). Quantification
of TUNEL-positive cells is shown as % over controls. Co-treatment with αB cry peptide significantly
attenuated RPE cell apoptosis caused by inhibition of mGSH transporters. Data are mean ± SEM. n = 3;
**p < 0.01; Scale bar: 50 µm. mitochondrial glutathione (mGSH), human retinal pigment epithelium
(RPE), Phenylsuccinic acid (PS), Butylmalonic acid (BM).
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3/7 activation upon mGSH inhibition and effect of αB cry peptide was studied at two-time points, 
namely 6 and 13 h. The live-cell analysis system (Essen Bioscience) allows for real-time monitoring 
of cell apoptosis by determining the number of caspase 3/7 positive cells (green fluorescent labeling) 
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Figure 2. siRNA mediated knockdown of OGC augmented RPE cell death and αB cry peptide treatment
increased cell survival. (A) Primary cultured RPE cells were transfected with OGC siRNA or control
siRNA and 24 h post-transfected cells were treated with αB cry peptide (75 µg/mL) for an additional
24 h. Cell death was measured by TUNEL assay. The number of apoptotic cells increased 4-fold in OGC
silenced RPE compared to control siRNA transfected group. (B) A significant reduction in apoptotic
cells in αB cry peptide treated groups vs. inhibitor-treated groups was observed. n = 4; **p < 0.01; Scale
bar: 50 µm.
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3.2. Inhibition of mGSH Transport Activates Caspase 3/7

Since we found increased cell death after blocking mGSH carriers, real-time analysis of caspase
3/7 activation upon mGSH inhibition and effect of αB cry peptide was studied at two-time points,
namely 6 and 13 h. The live-cell analysis system (Essen Bioscience) allows for real-time monitoring of
cell apoptosis by determining the number of caspase 3/7 positive cells (green fluorescent labeling) at
various treatment intervals. As shown in Figure 3, caspase 3/7 activity increased significantly at 6 and
13 h with either OGC or DIC inhibition. Co-treatment with 75 µg/mL αB cry peptide inhibited caspase
activation which was statistically significant (p < 0.01 vs. PS or BM treated cells). No significant change
in caspase 3/7 was observed in control cells at all the time points (Figure 3).Antioxidants 2020, 9, x FOR PEER REVIEW 8 of 19 
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Figure 3. Inhibition of mGSH transporters in hRPE exacerbated caspase 3/7 activation. Real-time
analysis of the number of caspase 3/7 positive cells was performed at 6 and 13 h post mGSH transporter
inhibition with PS (5 mM) and BM (5 mM). Quantification of the activation of caspase 3/7 at 6 h
and 13 h in the treatment groups showed significantly increased number of caspase positive cells.
Coincubation with αB cry peptide (75 µg/mL) significantly inhibited caspase positive cells. Automated
real-time assessment by live-cell analysis (Essen Bioscience), measured as green object count for all cells
undergoing apoptosis have membrane compromise, and their DNA are stained with SYTOX Green
dye. Quantification of the activation of caspase 3/7 (green fluorescence) at the indicated time points
shows the suppression of inhibitor-induced caspase 3/7 activation by αB cry peptide. Data are shown
as mean ± SEM. n = 4; **p < 0.01; ***p < 0.001.

3.3. Inhibition of OGC or DIC Decreases Selectively the Mitochondrial GSH

Given the inhibition of OGC and DIC in RPE cells resulted in apoptosis and caspase 3 activation,
we next addressed how their inhibition affects mitochondrial and cytosolic GSH pools. Treatment
of RPE cells with BM or PS targeting OGC and DIC, respectively resulted in significant (p < 0.01)
mGSH depletion compared to control cells (Figure 4A), suggesting that RPE cells rely on OGC and
DIC to maintain mGSH. However, BM or PS treatment did not significantly affect cytosolic GSH levels
(Figure 4B). Cotreatment with αB cry peptide replenished the levels of mGSH to that of control cells
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under conditions of OGC or DIC inhibition (Figure 4B), suggesting the increased cell survival observed
with αB cry peptide treatment may be partly due to increased mGSH.
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Figure 4. Inhibition of mGSH carrier proteins results in the depletion of mGSH levels of RPE. hRPE
cells were incubated with OGC and DIC inhibitors in the presence or absence of αB cry peptide as
described for Figure 1. Mitochondria and cytosolic fractions were separated, and GSH levels were
measured in mitochondrial (A) and cytosolic fractions (B) by colorimetry and were normalized to
controls. mGSH levels were significantly decreased with inhibitors only in the mitochondrial fraction
while no significant changes were observed in the cytosol of RPE cells. Cotreatment with αB cry peptide
restored mGSH levels to that of control levels. Data are shown as mean ± SEM of four independent
experiments. **p < 0.01; NS = not significant.

3.4. Pharmacological Inhibition of mGSH Transporters Alters Mitochondrial Bioenergetics

Mitochondria are the sites of enzymatic reactions fundamental for life, producing most of the
cellular ATP in eukaryotic cells by oxidative phosphorylation [34]. Since inhibition of DIC and
OGC reduced mGSH pool by ∼60%, we conducted studies on the effects of mGSH depletion on
mitochondrial respiratory parameters. Furthermore, studying detailed profiling of mitochondrial
bioenergetics provides a comprehensive view of the nature of antioxidative and protective properties
of αB cry peptide. As shown in Figure 5A,B, both OGC and DIC inhibition significantly decreased
basal respiration following either OGC or DIC inhibition compared to control cells (Figure 5C). ATP
production and proton leak were also significantly decreased (Figure 5E). A decrease in ATP production
would indicate either low ATP demand or severe damage to the mitochondrial electron transport
chain (ETC) [35]. These findings support the hypothesis that a decrease in mGSH pool downregulates
mitochondrial oxygen consumption and ATP production and exacerbates cell death. Co-treatment
with αB cry peptide significantly (p < 0.01 vs. BM or PS treated cells) increased basal respiration,
maximal respiration, and ATP production. A significant decline in proton leak and rebound to control
values with αB cry peptide was also observed.



Antioxidants 2020, 9, 411 9 of 18
Antioxidants 2020, 9, x FOR PEER REVIEW 10 of 19 

 

Figure 5. Inhibition of mGSH transporters OGC and DIC by PS and BM regulate mitochondrial 
bioenergetics in RPE cells. (A) Real-time analyses of respiratory parameters in RPE cells under OGC 
and DIC inhibition with or without αB cry peptide treatment. (B–E) Analysis of basal respiration, 
spare respiratory capacity, proton leak and ATP production, maximal respiration, and ATP 
production following OGC and DIC blockade in the presence or absence of αB cry peptide. A 
significant decrease in basal respiration was observed in DIC, and OGC inhibited cells along with a 
simultaneous decrease in ATP production. αB cry peptide co-treatment significantly increased 
mitochondrial respiration and ATP production. Data are mean ± SEM. n = 10; **p < 0.01. 

We also performed the bioenergetics experiments after silencing OGC in transfecting RPE cells 
with siRNA specifically targeting OGC (Figure 6). The result obtained was similar to those obtained 
with pharmacological inhibition of OGC with significantly decreased basal respiration, ATP 
production, and maximal respiration and αB cry treatment increased all those parameters (Figure 6 
A, B, C, D, E). 

 
Figure 6. OGC knockdown in RPE caused a decline in mitochondrial oxygen consumption and ATP 
production. Mitochondrial bioenergetics analyses of RPE cells were made with or without OGC 
silencing and effect of αB cry peptide treatment was determined (A–E). SiRNA mediated OGC 

Figure 5. Inhibition of mGSH transporters OGC and DIC by PS and BM regulate mitochondrial
bioenergetics in RPE cells. (A) Real-time analyses of respiratory parameters in RPE cells under OGC
and DIC inhibition with or without αB cry peptide treatment. (B–E) Analysis of basal respiration,
spare respiratory capacity, proton leak and ATP production, maximal respiration, and ATP production
following OGC and DIC blockade in the presence or absence of αB cry peptide. A significant decrease
in basal respiration was observed in DIC, and OGC inhibited cells along with a simultaneous decrease
in ATP production. αB cry peptide co-treatment significantly increased mitochondrial respiration and
ATP production. Data are mean ± SEM. n = 10; *p < 0.1; **p < 0.01.

We also performed the bioenergetics experiments after silencing OGC in transfecting RPE cells
with siRNA specifically targeting OGC (Figure 6). The result obtained was similar to those obtained
with pharmacological inhibition of OGC with significantly decreased basal respiration, ATP production,
and maximal respiration and αB cry treatment increased all those parameters (Figure 6 A–E).
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Figure 6. OGC knockdown in RPE caused a decline in mitochondrial oxygen consumption and ATP
production. Mitochondrial bioenergetics analyses of RPE cells were made with or without OGC
silencing and effect of αB cry peptide treatment was determined (A–E). SiRNA mediated OGC silencing
caused a significant decrease in mitochondrial respiration, proton leak, and ATP production. Treatment
of OGC silenced cells with αB cry peptide for 24 h enhanced mitochondrial respiration and associated
parameters when compared to silenced controls. Data are mean ± SEM. n = 10; ***p < 0.01.
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3.5. Inhibition of GSH Transport Impairs ETC Protein Expression

Based on our bioenergetics data (Figures 5 and 6), it seemed likely that cells treated with PS or BM
have an impaired mitochondrial metabolism. To explore this in detail, we examined the expression of
complex proteins (I–V), components of the electron transport chain. As anticipated, a decrease in the
protein expression of complex proteins I and II (Figure 7A) was found with mGSH depletion and this
decrease in expression was restored in αB cry peptide treated cells. However, the changes found in
complex I protein expression have to be interpreted with caution because of the closely eluting bands
for I and IV (Figure 7A). Our findings indicate that a reduction in the expression of mitochondria
complex proteins is linked to decreased mitochondrial bioenergetics which can be attributed to mGSH
deficiency following a blockade of mGSH transporters.
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Figure 7. Effect of OGC and DIC inhibition on ETC proteins and mitochondrial morphology of RPE.
(A) RPE cells were treated with and without αB cry peptide (75 µg/mL) for 24 h and total cellular protein
was analyzed by Western blot under non-reducing conditions for ETC proteins using a commercial ETC
complex cocktail antibody. mGSH transport inhibition resulted in decreased expression of complex
proteins I and II and αB cry peptide treatment upregulated these protein subunits. Please note that the
bands for complexes I and IV appeared overlapping each other making the interpretation of changes in
complex I expression difficult. Complexes I and IV and complexes III and V are separated by dotted
white lines in the figures for easy visualization. (B) Protein expression of mtTFA was measured by
Western blot analysis. PS or BM treatment reduced mTFA expression, whereas co-treatment with
αB cry peptide upregulated mTFA expression (C). RPE cells were grown on 4-well chamber slides
and without αB cry peptide (75 µg/mL) for 24 h. At the end of the treatment, cells were incubated
with MitoTracker Red (100 nM) for 10 min. The samples were washed, fixed in 4% PFA and viewed
under LSM 770 confocal microscope. Mitotracker (Red) and DAPI (Blue) staining of RPE cells with
and without treatment. In RPE cells treated with PS (5 mM) or BM (5 mM), mitochondria appeared
fragmented while in the αB cry peptide group mitochondria are perinuclear, similar to that seen in
control cells. These data show that inhibition of either OGC or DIC results in an altered mitochondrial
arrangement. Scale bar = 5 µm.

Since there was an increase in mitochondrial bioenergetics with αB cry peptide treatment, we
investigated whether this is a result of increased mitochondrial biogenesis. Therefore, we evaluated the
protein expression of mtTFA by Western blot analysis. An upregulation of mtTFA in cells co-treated
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with PS or BM and αB cry peptide was observed (Figure 7B), suggesting increased biogenesis with
αB cry peptide. We then determined mitochondrial morphology in cells treated with PS or BM in the
presence or absence of αB cry peptide. Staining with MitoTracker showed that inhibition of OGC or
DIC resulted in a mitochondrial fragmentation phenotype (Figure 7C), which leads to an impairment
in mitochondrial function. Co-treatment with αB cry peptide inhibited this phenomenon.

3.6. Polarized Localization of OGC and DIC in RPE Monolayers

The next set of experiments were designed to examine whether OGC and DIC transporters exhibit
domain specificity in their expression. To examine the polarized cellular expression of the mitochondrial
GSH transporters, we used primary RPE monolayers grown on Transwells. Immunofluorescence
staining revealed the polarized expression of OGC and DIC in RPE monolayers in X–Y and X–Z
selections (Figure 8). As shown in Figure 8, DIC is predominantly localized to the apical domain of the
RPE, whereas OGC is distributed both at the apical and basolateral domains.
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Figure 8. Localization of DIC and OGC in polarized RPE monolayers. RPE monolayers grown on
Transwell filters were stained for OGC and DIC. The specimen was viewed on an LSM 770 laser-scanning
microscope. (A) immunofluorescence staining of DIC in RPE monolayers showing predominant apical
staining (X–Z plane). However, OGC has a wide distribution, expressed both in the apical as well as
basolateral domains (B).

3.7. Restoration of Barrier Properties of RPE Monolayers with αB Cry Peptide Treatment

We have previously demonstrated that polarized RPE monolayers are highly resistant to cell death
due to increased secretion of growth factors and antioxidants [31]. In order to study the interrelationship
between RPE junction integrity and mitochondrial GSH deficiency, we treated polarized monolayers
(TER 471 ± 45 Ω.cm2) with PS (30 mM) or BM (30 mM) for 24 h. Treatment with PS or BM resulted in a
significant (p < 0.001 vs. untreated controls) loss of TER (Figure 9A) caused by severe disruption in
the pattern and loss of the tight junction protein, ZO1 (Figure 9B) and significant cell death (p < 0.001
vs. controls) (Figure 9C,D). Co-treatment with αB cry peptide resulted in the restoration of TER and
protected RPE from apoptosis suggesting its antiapoptotic, therapeutic potential.
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Figure 9. Inhibition of mGSH carriers results in loss of TER and junctional proteins in RPE which
is rescued by αB cry peptide. (A) TER was significantly decreased when both OGC and DIC were
inhibited. Coincubation with αB cry peptide (200 µg/mL) restored TER almost close to that of the TER
of control cells. (B) Inhibiting OGC or DIC significantly decreased TER of polarized RPE monolayers.
LSM confocal microscopy images showing breaks (arrows) in ZO-1 staining with 30 mM PS or BM.
Co-treatment with αB cry peptide (200 µg/mL) prevents ZO1 damage (** p < 0.01 represents DIC or
OGC inhibited vs. αB cry peptide treated monolayers). (C). Polarized RPE cells were treated with PS or
BM (30 mM) for 24 h and cell death determined by TUNEL assay. (D) quantification of TUNEL positive
cells. Inhibition of mGSH transporters OGC and DIC significantly increased percentage of apoptotic
cells. Cotreatment with 200 µg/mL αB cry peptide significantly prevented cell death. **p < 0.001.

4. Discussion

An increasing number of pathological conditions are associated with marked depletion and or
oxidation of mGSH, suggesting the importance of this pool [36,37]. mGSH accounts for about 10–15%
of the total cellular glutathione pool. GSH enters the mitochondrial matrix via two anion transporters
DIC and OGC localized on the inner mitochondrial membrane of cells. In the present study, we have
shown that by modulating mitochondrial GSH transport through specific inhibition of DIC or OGC,
RPE cells become more vulnerable to apoptosis. This can be attributed partly to mGSH depletion and
treatment with αB cry peptide replenishes mGSH and improves cell survival. Furthermore, depletion
of mGSH by pharmacological as well as by OGC siRNA significantly affects mitochondrial respiration
and ETC proteins. In polarized RPE monolayers, mGSH depletion resulted in a significant decline in
TER due to breaks in tight junction protein which could be prevented by αB cry peptide treatment.

While RPE expresses several antioxidative proteins and enzymes [38], it is well known that GSH
is the most prominent antioxidant in RPE cells and is present at a high concentration in the retina
and RPE [13,31,39,40]. Severe effects of GSH depletion, mitochondrial dysfunction, and oxidative
stress have been implicated in the pathology of a large number of neurodegenerative disorders, such
as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease,
and Friedreich’s ataxia, and AMD [4,41]. As mentioned earlier, mitochondria lack GSH synthetic
machinery and since GSH cannot readily pass through lipid bilayer of the mitochondrial membrane,
it relies on other mechanisms to enter mitochondria. The role of anion transporters OGC and DIC
in mitochondrial GSH transport was first demonstrated by Lash and his coworkers [16] and the
two transporters were characterized in RPE cells recently by our laboratory [11]. The importance
of GSH in the suppression of mitochondrial ROS in stressed RPE cells was well established in our
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previous work [9,11,13]. Our present findings revealed that inhibition of mGSH transporters resulted
in apoptosis in RPE cells and apoptotic cell death could partly arise from decreased mGSH levels. This
is consistent with reports in multiple cell types that pharmacological inhibition or knocking down OGC
or DIC resulted in significant downregulation of mitochondrial GSH [11,16,17,34,42]. In fact, studies
have shown that cells can survive almost total loss of cytosolic GSH, but even a slight compromise in
mGSH pool sensitizes them to MPT collapses and cell death [43,44].

Genetic studies using knockout mice of either OGC or DIC on the functional modification of
tissues including the retina are lacking except for a few reports in the field of cancer. Recently, it was
shown that knockout of OGC by the CRISPR/Cas 9 approach resulted in mitochondrial dysfunction
from the inactivation of OGC leading to tumorigenesis [45]. Blocking OGC was found to reduce ATP
production in another study and the authors concluded that OGC may have an advantage in arresting
cancer growth [46]. As regards DIC, knockdown decreased NADPH production, regulated cell growth,
and it was suggested that it could be a novel target in anti-cancer strategies [47]. The phenotype
and morphology of retina under conditions of knockout of the two GSH carrier proteins remains to
be determined.

While our focus in this work is on GSH, RPE cells also express redoxins and antioxidative enzymes
such as Trx1, Trx2, Grx1, and Grx2 [38], and their contribution to cell survival cannot be overlooked.
For example, it has been reported that the inactivation of the mitochondrial thioredoxin reductase (Trr2)
causes early embryonic lethality, with increased liver apoptosis, reduced hematopoietic differentiation,
heart defects with abnormal heart mitochondria, and slow-growing embryonic fibroblasts [48]. In
Trr2-/-ic mice and in Trr2 deficient cardiac cells, GSH levels significantly decreased after oxidative
stress, and this is most likely due to the inability of mitochondria to regenerate oxidized Txn2 in the
absence of Trr2 [49]. At present, it remains unclear as to whether there is any synergistic interaction
between mitochondrial anion transporters and Trr2. We observed significant caspase activation when
mGSH transporters were inhibited and a significant reduction in mGSH levels. These findings agree
with our previous observations that caspase 3/7 activation is rapid and occurs as early as 2 h [11] with
significant change in mGSH. Furthermore, we report that co-treatment with 20-mer αB cry peptide
reduced cell death by inhibiting caspase 3/7 activation and augmenting mGSH. The mechanistic
aspects of interaction between αB cry peptide and anion transporters on mitochondrial function
are unclear. In this context, it is worth mentioning that no specific receptor for αB crystallin or its
peptide have been identified. Furthermore, our earlier functional studies have revealed that the αB
cry peptide is transported into RPE cells by SOPT1 and SOPT2, two sodium-dependent oligopeptide
transporters (SOPTs) [23]. We do not know at the present time whether or not αB cry peptide competes
for mitochondrial anion transporter inhibitor binding site which will be interesting to study.

Previous work has established the chaperone function and antiapoptotic and anti-inflammatory
properties of αB cry peptide in multiple cells and animal models [21,23,25–27,50]. It is to be noted that
αB crystallin overexpression increases GSH content and confers resistance to oxidative stress in RPE
cells, whereas silencing or knockout of αB crystallin led to GSH depletion, increasing oxidative stress
both in vitro and in vivo [9,13]. Furthermore, the increase in GSH levels in αB crystallin overexpressing
cells was found to be due to GSH biosynthesis as the gene expression of gamma-glutamyl cysteine
synthetase, and the rate-limiting enzyme for GSH biosynthesis was also increased [9]. Since the percent
GSH inhibition by chemical inhibitors of OGC and DIC is 60 to 70%, it is possible that there may be
additional mechanisms that may be operative for GSH depletion in mitochondria. In this regard, there
are some studies suggesting the role of Bcl-2 in the regulation of an essential pool of mitochondrial
GSH; this regulation may depend on Bcl-2 directly interacting with GSH via the BH3 groove [51] or
role of UCP2 in the transport of mGSH, but the mechanism is unclear [52]. It must be noted that
this anion transporters also perform other functions. DIC exchanges dicarboxylates, such as malate
and succinate, for phosphate, sulfate, and other small molecules, thereby providing substrates for
metabolic processes including the Krebs cycle and fatty acid synthesis [53,54]. DIC is inhibited by Pi
and other phosphate analogs [54] as well as substrate analogs such as alkyl malonates. Inhibition
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of DIC may also play a role in fatty-acid-mediated uncoupling [53]. OGC catalyzes the transport of
2-oxoglutarate across the inner mitochondrial membrane in an electroneutral exchange for the malate
or other dicarboxylic acids and plays an important role in several metabolic processes [54]. OGC also
may play a role in glucose-stimulated insulin secretion [55]. The OGC has also been suggested as the
porphyrin transporter necessary for the mitochondrial import of the precursor porphyrin for final
conversion to heme. Furthermore, OGC was shown to participate in the regulation of apoptosis and
the regulation of mitochondrial morphology in C. elegans [56].

We further extended our studies to determine the importance of mGSH in regulating mitochondrial
respiration in RPE cells. To the best of our knowledge, a mitochondrial anion inhibitor-induced change
in mitochondrial respiration or protein import has not been reported. Our study with human RPE cells
revealed that inhibition of OGC and DIC decreases OCR. Furthermore, the degree of restoration of
OCR by co-treatment with αB cry peptide varied between OGC and DIC (Figure 6). The evidence that
mGSH depletion negatively impacts mitochondrial respiration, ATP production, and reserve capacity
suggests an oxidative stress-dependent mechanism, consistent with previous findings in other cell
types showing the dependence of mitochondrial function and respiration on mGSH levels [57,58]. Both
OGC and DIC inhibition caused a significant change in basal respiration, maximal O2 consumption,
and respiratory reserve capacity, indicators of cellular bioenergetic resiliency. In line with previous
reports, our results support a link between mitochondrial metabolism and redox homeostasis through
mGSH status. Furthermore, our studies demonstrate the beneficial role of αB cry peptide on the
respiratory parameters in RPE. Analysis of data on ETC protein expression suggested that ETC complex
II was the main target site where both PS or BM exerted their inhibitory effect on the respiratory chain.
Treatment of RPE cells with PS or BM caused a disruption of complex II. Our results on the expression
pattern of complex I have to be interpreted with caution because of the close proximity of complex
I and IV bands in WB analysis under non-reducing conditions. It was reported under acute redox
cycling challenge to mitochondria that the complex I protein is more vulnerable [59]. However, a
complex V segment of the respiratory chain was less impacted. Furthermore, while mGSH inhibition
resulted in a significant inhibition of mitochondrial complex II expression, αB cry peptide treatment
led to a marked restoration of expression to untreated levels suggesting that inhibition of complex
II could contribute to dysregulated mito-bioenergetics in RPE cells. However, more detailed studies
will be required to establish conclusively the role of ETC proteins in GSH dependent mitochondrial
respiratory functions in RPE.

The number of mitochondria within a cell is controlled by its turnover. To explore how decreased
mGSH might modulate known components of the mitochondrial biogenesis machinery, we examined
mTFA which is directly involved in the mtDNA replication in primary RPE cultures. In cells treated
with PS or BM, mitochondrial biogenesis is greatly impaired, and this can be reversed by the addition
of αB cry peptide. Direct evidence for impaired mitochondrial biogenesis in oxidative stress-induced
RPE cells includes a significant decrease in mtDNA copy number and mTFA expression [8]. mTFA
binds mitochondrial DNA and regulates mitochondrial transcription initiation, mtDNA copy number,
packaging of mitochondrial DNA, and mitochondrial biogenesis [60,61]. Impaired mitochondrial
biogenesis was also reported in RPE cells isolated from AMD donors as evidenced by decreased
mtDNA copy number and ETC proteins [62,63].

Polarization is one of the salient features of the differentiated phenotype of the RPE monolayer
and plays a key role in the vectorial transport of molecules. Furthermore, polarized RPE cells exhibit
high TER and are mostly resistant to stress–induced cell death and only severe doses of oxidative stress
can cause a break in tight junctions and a significant decrease in TER [8,31]. In the present study, we
found polarized localization of DIC to the apical domain while OGC resides in both domains. The
significance of these findings needs to be further explored particularly with respect to the influence of
stress on vectorial distribution. As reported earlier, we used a higher concentration (>6-fold) of PS and
BM to treat polarized cells. These doses resulted in tight junction protein break and a significant drop
in TER and co-treatment with αB cry peptide restored both TER and the tight junction protein (Figure 9)
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This observation is in accordance with our recent findings in which co-treatment of stressed RPE with
a mitochondrion derived peptide Humanin restored TER and improved cell viability of RPE [8].

In conclusion, we have found that mGSH is important for RPE survival and inhibition of the mGSH
carrier proteins OGC and DIC results in mitochondrial dysfunction from impairment of mitochondrial
biogenesis and bioenergetics. We further show that a chaperone peptide of αB crystallin can restore cell
survival and may have potential as a valuable therapeutic agent in oxidative stress-induced diseases
such as AMD.
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