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Abstract: Approximately 400,000 patients are diagnosed with kidney cancer annually worldwide,
leading to approximately 170,000 deaths. Renal cell carcinoma (RCC) accounts for more than 90%
of kidney cancers. The most common histological subtype is clear cell RCC, which is found in
approximately 85% of metastatic RCC cases. The VHL-HIF-VEGF axis is well known; therefore,
targeting VEGF has been the mainstay for managing advanced clear cell RCC. Recently, the treatment
landscape for advanced clear cell RCC has changed extensively. In particular, immune checkpoint
inhibitor-based treatment showed promising results in front-line treatment and became the standard
of care. Herein, we review the current evidence on front-line treatment options and discuss the
clinical and future perspective.
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1. Introduction

Kidney cancer is diagnosed in approximately 400,000 patients annually worldwide,
leading to approximately 170,000 deaths [1]. Renal cell carcinoma (RCC) accounts for more
than 90% of kidney cancers, and the most common histological subtype is clear cell RCC
(ccRCC), which is found in approximately 85% of metastatic RCC cases [2]. ccRCC is closely
associated with a loss-of-function mutation in the von Hippel–Lindau (VHL) gene [3]. Loss
of the VHL gene leads to the upregulation of hypoxia inducible factor (HIF) and resultant
overexpression of hypoxia-inducible genes, such as vascular endothelial growth factor
(VEGF), platelet-derived growth factor-β (PDGF-β), and transforming growth factor-α
(TGF-α) (VHL-HIF-VEGF axis), which are involved in tumorigenesis and the progression of
ccRCC [4]. Therefore, targeting angiogenesis was hypothesized to be especially important
in ccRCC, and several clinical trials have shown that targeted therapies against the VEGF
signaling axis (sunitinib, pazopanib, axitinib, cabozantinib, etc.), have provided significant
clinical benefits for patients with ccRCC [5–9]. However, the duration of the antitumor
effects of these agents is not long, and resistance eventually develops during VEGF inhibitor
(VEGFi) treatment [10].

RCC is well known as an immunogenic tumor [11]. Immunotherapy such as high-
dose interleukin-2 (IL-2) and interferon-alpha (IFN-α) showed clinical activity, but it was
very modest, and only a few patients achieved a dramatic and durable response [12–14].
Recently, immune checkpoint inhibitors (ICIs) and combination strategies have changed
the landscape of treatment for patients with advanced ccRCC [15]. Herein, we discuss
the current evidence of the front-line treatment landscape of metastatic ccRCC, its clinical
considerations and future perspective (Figure 1).
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Figure 1. Current preferred treatment options and ongoing large-scale phase 3 trials in the first line 
setting of ccRCC. Axi, axitinib; BEMPEG, bempegaldesleukin; Cabo, cabozantinib; ccRCC, clear cell 
renal cell carcinoma; CTLA4, cytotoxic T-lymphocyte antigen 4; HIF2a, hypoxia inducible factor-2 
alpha; Int, intermediate; Ipi, ipilimumab; Lenva, lenvatinib; Nivo, nivolumab; Pem, pembroli-
zumab; TKI, tyrosine kinase inhibitor. 

2. Immune Checkpoint Inhibitor Combinations 
CheckMate 214 was a phase 3 trial that compared ipilimumab (fully human anti-cy-

totoxic T-lymphocyte antigen 4 (CTLA-4) monoclonal antibody) plus nivolumab (fully 
human anti-programmed death 1 (PD-1) monoclonal antibody) (Ipi+Nivo) with sunitinib 
for previously untreated ccRCC [16]. The co-primary endpoints were overall survival 
(OS), objective response rate (ORR) and progression-free survival (PFS) in patients with 
International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) intermedi-
ate or poor risk. At a median follow-up of 25.2 months in intermediate- and poor-risk 
patients, the 18-month OS rate was higher in the Ipi+Nivo than in the sunitinib group (75% 
vs. 60%). Ipi+Nivo achieved longer OS (not reached (NR) vs. 26 months) and superior 
ORR (42% vs. 27%) compared with sunitinib. The median PFS with Ipi+Nivo and sunitinib 
was 11.6 months and 8.4 months, respectively (not significant). Meanwhile, among IMDC 
favorable-risk patients, the ORR was lower with Ipi+Nivo than with sunitinib (29% vs. 
52%), and the median PFS was also shorter with Ipi+Nivo than with sunitinib (15.3 vs. 25.1 
months). In overall population, grade 3 or higher adverse events (AEs) occurred in 46% 
of the Ipi+Nivo and 63% of the sunitinib group. AEs leading to treatment discontinuation 
occurred in 22% of the Ipi+Nivo and 12% of the sunitinib group. The most common AEs 
of grade 3 or higher were increased lipase level (10%), diarrhea (4%), and fatigue (4%). In 
exploratory analyses, the benefits of OS and ORR were observed with Ipi+Nivo compared 
to sunitinib among intermediate- and poor-risk patients across tumor PD-L1 expression 
levels, although the magnitude of benefit was higher in patients that were PD-L1 positive 

Figure 1. Current preferred treatment options and ongoing large-scale phase 3 trials in the first line
setting of ccRCC. Axi, axitinib; BEMPEG, bempegaldesleukin; Cabo, cabozantinib; ccRCC, clear cell
renal cell carcinoma; CTLA4, cytotoxic T-lymphocyte antigen 4; HIF2a, hypoxia inducible factor-2
alpha; Int, intermediate; Ipi, ipilimumab; Lenva, lenvatinib; Nivo, nivolumab; Pem, pembrolizumab;
TKI, tyrosine kinase inhibitor.

2. Immune Checkpoint Inhibitor Combinations

CheckMate 214 was a phase 3 trial that compared ipilimumab (fully human anti-
cytotoxic T-lymphocyte antigen 4 (CTLA-4) monoclonal antibody) plus nivolumab (fully
human anti-programmed death 1 (PD-1) monoclonal antibody) (Ipi+Nivo) with sunitinib
for previously untreated ccRCC [16]. The co-primary endpoints were overall survival
(OS), objective response rate (ORR) and progression-free survival (PFS) in patients with
International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) intermedi-
ate or poor risk. At a median follow-up of 25.2 months in intermediate- and poor-risk
patients, the 18-month OS rate was higher in the Ipi+Nivo than in the sunitinib group
(75% vs. 60%). Ipi+Nivo achieved longer OS (not reached (NR) vs. 26 months) and superior
ORR (42% vs. 27%) compared with sunitinib. The median PFS with Ipi+Nivo and suni-
tinib was 11.6 months and 8.4 months, respectively (not significant). Meanwhile, among
IMDC favorable-risk patients, the ORR was lower with Ipi+Nivo than with sunitinib
(29% vs. 52%), and the median PFS was also shorter with Ipi+Nivo than with sunitinib
(15.3 vs. 25.1 months). In overall population, grade 3 or higher adverse events (AEs)
occurred in 46% of the Ipi+Nivo and 63% of the sunitinib group. AEs leading to treatment
discontinuation occurred in 22% of the Ipi+Nivo and 12% of the sunitinib group. The most
common AEs of grade 3 or higher were increased lipase level (10%), diarrhea (4%), and
fatigue (4%). In exploratory analyses, the benefits of OS and ORR were observed with
Ipi+Nivo compared to sunitinib among intermediate- and poor-risk patients across tumor
PD-L1 expression levels, although the magnitude of benefit was higher in patients that
were PD-L1 positive (≥1%). Meanwhile, Ipi+Nivo achieved longer PFS than with sunitinib
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in PD-L1 positive, not in PD-L1 negative group. Recent reports with extended follow-up
showed that the benefit of Ipi+Nivo was maintained to be superior to sunitinib in terms of
ORR, PFS and OS in patients with intermediate/poor risk [17,18].

3. Immune Checkpoint Inhibitor with VEGF Inhibitors

Combination with other therapies, including anti-angiogenic agents, is an impor-
tant strategy currently under investigation to enhance the clinical benefits of ICIs. Anti-
angiogenic treatment may promote T-cell priming and activation via dendritic cell matura-
tion [19,20], normalize the tumor vasculature for increased T-cell tumor infiltration [21,22],
and establish an immunoreactive tumor microenvironment by decreasing myeloid-derived
suppressor cells (MDSCs) and Treg populations [23,24]. Therefore, immunotherapy with T-
cell activation may be enhanced through the reversal of VEGF-mediated immunosuppression.

KEYNOTE-426 was an open-label, phase 3 trial that compared pembrolizumab (hu-
manized anti-PD-1 monoclonal antibody) plus axitinib (Pem+Axi) with sunitinib for pre-
viously untreated advanced ccRCC [25]. OS and PFS were primary endpoints. After a
median follow-up of 12.8 months, the 12-month survival rate was higher in the Pem+Axi
group than in the sunitinib group (89.9% vs. 78.3%). The Pem+Axi group showed signifi-
cantly extended PFS compared with the sunitinib group (15.1 vs. 11.1 months). The ORR
was higher in the Pem+Axi than in the sunitinib (59.3% vs. 35.7%) group. The benefit of
Pem+Axi with respect to OS and PFS was observed in all subgroups, including patients
with IMDC risk and PD-L1 expression. Grade 3 or higher AEs occurred in 75.8% of patients
in the Pem+Axi group and 70.6% in the sunitinib group. AEs of grade 3 or higher that
occurred in 10% or more of the patients were hypertension (22%) and increased alanine
aminotransferase levels (13%) in the Pem+Axi group. The extended follow-up analyses
demonstrated the continued clinical benefit of Pem+Axi in terms of OS and PFS [26,27].

The phase 3 trial, JAVELIN Renal 101, compared avelumab (fully human anti-PD-L1
monoclonal antibody) plus axitinib (Avel+Axi) with sunitinib in previously untreated
advanced ccRCC [28]. OS and PFS among tumor PD-L1 positive patients were co-primary
endpoints. The Avel+Axi group achieved significantly longer PFS than the sunitinib
group among patients with PD-L1-positive tumors (13.8 vs. 7.2 months) and the overall
population (13.8 vs. 8.4 months). Among the patients with PD-L1–positive tumors, there
was no difference in OS between the two groups. The Avel+Axi group showed higher
ORR than the sunitinib (55.2% vs. 25.5%) group among patients with PD-L1–positive
tumors. Grade 3 or higher AEs occurred in 71% of the patients in both groups. The most
common AEs of grade 3 or higher were hypertension (26%), diarrhea (7%), increased
alanine aminotransferase levels (6%), and palmar–plantar erythrodysesthesia syndrome
(6%). Updated efficacy results still demonstrated that Avel+Axi showed a significant PFS
and ORR benefit compared with sunitinib [29]. This benefit was observed across several
subgroups, including all patients with IMDC risk. However, OS was still not different
between the two groups.

IMmotion151 was a multicenter, open-label, phase 3, randomized controlled trial that
compared atezolizumab (fully human anti-PD-L1 monoclonal antibody) plus bevacizumab
(Atezo+Bev) with sunitinib in previously untreated metastatic RCC with a component of
clear cell or sarcomatoid histology [30]. Co-primary endpoints were PFS in the PD-L1-
positive and OS in the intention-to-treat (ITT) patients. In the PD-L1-positive patients,
Atezo+Bev achieved longer PFS than sunitinib (11.2 vs. 7.7 months). The PFS benefit of
Atezo+Bev was observed in patients across key clinical subgroups, including Memorial
Sloan-Kettering Cancer Center (MSKCC) risk groups, sarcomatoid histology, liver metas-
tasis, and previous nephrectomy. Notably, the depth of PFS benefit was very impressive
in sarcomatoid histology (HR, 0.46 in the PD-L1-positive and 0.56 in the ITT patients).
However, there was no significant difference in OS (33.6 vs. 34.9 months) in the ITT pop-
ulation. Atezo+Bev exhibited a favorable safety profile. Atezo+Bev was associated with
fewer severe treatment-related AEs and a lower regimen discontinuation rate (5% vs. 8%)
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than sunitinib. In the final analysis with extended follow-up, there was no OS difference
between Atezo+Bev and sunitinib [31].

CheckMate 9ER was a randomized phase 3, open-label trial that compared nivolumab
plus cabozantinib (Nivo+Cabo) with sunitinib alone in previously untreated advanced
ccRCC [32]. PFS was the primary endpoint. Nivo+Cabo had a superior PFS over sunitinib
(16.6 vs. 8.3 months). Nivo+Cabo showed a significant OS benefit compared to suni-
tinib. The 1-year OS rate was higher in the Nivo+Cabo group than in the sunitinib group
(85.7% vs. 75.6%). ORR was higher with Nivo+Cabo than with sunitinib (55.7% vs. 27.1%);
a CR was observed in 8.0% and 4.6% of patients in the Nivo+Cabo and sunitinib groups,
respectively. The benefits of Nivo+Cabo over sunitinib with respect to PFS and OS were ob-
served across several subgroups, including patients with IMDC risk, tumor PD-L1 positive
status, and presence of bone metastases. Grade 3 or higher AEs occurred in 75.3% and 70.6%
of the patients in the Nivo+Cabo and sunitinib groups, respectively. The most common
AEs of grade 3 or higher were hypertension (13%), hyponatremia (9%), palmar–plantar
erythrodysesthesia syndrome (8%), diarrhea (7%), and increased lipase level (6%). Patients
in the Niv+Cabo group reported statistically better health-related quality of life (QoL) than
those in the sunitinib group [33].

CLEAR was a randomized phase 3, open-label trial that compared pembrolizumab
plus lenvatinib (Pem+Lenva), lenvatinib plus everolimus (Lenva+Ever), or sunitinib alone in
previously untreated advanced ccRCC [34]. The primary endpoint was the PFS. PFS was sig-
nificantly longer in the Pem+Lenva group than in the sunitinib group (23.9 vs. 9.2 months) and
was significantly longer in the Lenva+Ever group than in the sunitinib group
(14.7 vs. 9.2 months). OS was longer with Pem+Lenva than with sunitinib but was not
longer with Lenva+Ever compared with sunitinib. The benefit of Pem+Lenva versus
sunitinib with respect to PFS and OS was generally observed across several subgroups,
including patients with IMDC risk, PD-L1 expression, and sarcomatoid features. The ORR
was 71.0% with Pem+Lenva, 53.5% with Lenva+Ever, and 36.1% with sunitinib. The CR
rate was 16.1%, 9.8%, and 4.2%, respectively, in the Pem+Lenva, Lenva+Ever, and sunitinib
groups. Grade 3 or higher AEs occurred in 82.4%, 83.1%, and 71.8% of patients in the
Pem+Lenva, Lenva+Ever, and sunitinib groups, respectively. In the Pem+Lenva group,
the most common grade 3 or higher AEs were hypertension (28%), diarrhea (10%), weight
decrease (8%), and proteinuria (8%), and AEs led to discontinuation of any drug in 37.2%
of the patients (Lenva, 25.6%; Pem, 28.7%; both drugs, 13.4%), led to dose reduction of
Lenva in 68.8% of the patients, and led to the interruption of any drug in 78.4% of the pa-
tients. A recent study on QoL demonstrated that Pem+Lenva showed similar or improved
health-related QoL and disease-related symptom scores compared with sunitinib [35].

To date, the NCCN and EAU guidelines [36,37] recommend Pem+Axi, Nivo+Cabo,
and Pem+Lenva as preferred first-line treatments in both favorable and intermediate/poor
groups. Ipi+Nivo is recommended as a preferred first-line treatment in the intermedi-
ate/poor group. We summarized the results of frontline ICI-based trials in Table 1.
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Table 1. Summary of pivotal trials of immune checkpoint inhibitor-based front-line treatments in advanced RCC.

CheckMate 214 [16,18] IMmotion151 [30,31] KEYNOTE-426 [25,26] JAVELIN Renal 101 [28,29,38] CheckMate 9ER [32] CLEAR [34]

Ipi+Nivo
(n = 550)

Sun
(n = 546)

Atezo+Bev
(n = 454)

Sun
(n = 461)

Pem+Axi
(n = 432)

Sun
(n = 429)

Avel+Axi
(n = 442)

Sun
(n = 444)

Nivo+Cabo
(n = 323)

Sun
(n = 328)

Pem+Lenva
(n = 355)

Lenva+Ever
(n = 357)

Sun
(n = 357)

Primary endpoint OS, PFS, ORR
in int/poor

PFS in PD-L1 (+),
OS in ITT OS, PFS OS, PFS in PD-L1 (+) PFS PFS

IMDC risk group (%, favor-
able/intermediate/poor) 23/61/17 23/61/61 20/69/12 # 20/69/12 # 32/55/13 31/57/12 21/64/12 23/66/10 23/58/19 22/57/21 31/59/9 32/55/12 35/54/10

PD-L1 positive (%) & 23% 25% 39% 40% 59% 62% 61% 65% 26% 25% 30% 33% 33%
Sarcomatoid feature (%) 14% 12% 15% 16% 18% 18% NA NA 11% 13% 8% 7% 6%
Median follow-up (months) 67.7 40 30.6 19.3 18.1 26.6

Median OS (months) 55.7 * 38.4 * 36.1 * 35.3 * NR 35.7 NR * NR * 1yr OS
rate: 86%

1yr OS
rate: 76%

2yr OS
rate: 79%

2yr OS
rate: 66%

2yr OS rate:
71%

HR (95% CI) 0.72
(0.62–0.85)

0.91
(0.76–1.08)

0.68
(0.55–1.85)

0.80
(0.62–1.03)

0.60
(0.40–0.89)

0.66
(0.49–0.88)

1.15
(0.88–1.50) 1

Median PFS (months) 12.3 * 12.3 * 11.2 * 8.4 * 15.4 11.1 13.3 * 8.0 * 16.6 8.3 23.9 14.7 9.2

HR (95% CI) 0.86
(0.73–1.01)

0.83
(0.70–0.97)

0.71
(0.60–0.84)

0.69
(0.58–0.83)

0.51
(0.41–0.64)

0.39
(0.32–0.49)

0.65
(0.53–0.80) 1

ORR (%) 41 34 37 33 60 40 53 27 56 27 71 54 36
CR (%) 11 2 5 2 9 3 4 2 8 5 16 10 4
PR (%) 31 32 31 31 51 37 49 25 48 23 55 44 32
SD (%) 30 41 39 39 23 35 28 44 32 42 19 34 38
PD (%) 22 16 18 19 11 17 12 19 6 14 5 7 14
Grade 3 or higher TRAE
(%) 47 64 40 54 67 62 71 72 75 71 82 83 72

Dose reduction (%) NA NA NA NA 20 30 42 43 56 52 69 73 50
Discontinuance rates
(ICI/anti-VEGF/all) $ (%) 22 12 2/5/5 8 21/20/7 12 NA/NA/8 13 7/8/6 17 29/26/13 22/25/19 14

*, the value of ITT, not primary endpoint population; #, MSKCC prognostic group; $, only to ICI+VEGFi trial; &, PD-L1 testing method and cut-off are different across trials. Atezo,
atezolizumab; Avel, avelumab; Axi, axitinib; Bev, bevacizumab; Cabo, cabozantinib; CI, confidence interval; CR, complete response; Ever, everolimus; HR, hazard ratio; ICI, immune
checkpoint inhibitor; IMDC, International Metastatic RCC Database Consortium; Ipi, ipilimumab; ITT, intention to treat; Lenva, lenvatinib; NA. not available; Nivo, nivolumab; NR, not
reached; ORR, objective response rate; OS, overall survival; PD, progressive disease; PD-L1, programmed cell death ligand-1; Pem, pembrolizumab; PFS, progression-free survival; PR,
partial response; SD, stable disease; Sun, sunitinib; TRAE, treatment related adverse event; VEGFi, vascular endothelial growth factor inhibitor.
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4. Biomarkers for ICI-Based Treatment in RCC
4.1. PD-L1 Expression

Several previous studies have suggested that high PD-L1 expression and tumor-
infiltrating lymphocytes may be associated with poor prognosis in RCC [39,40]. Increased
tumor cell PD-L1 or PD-L1 plus tumor CD8-positive T-cell counts were associated with
poor prognosis in patients with metastatic RCC receiving VEGFi [41,42]. Therefore, PD-L1
expression has been extensively studied as a predictive biomarker for ICI-based treatment
in advanced ccRCC.

In CheckMate 214 [16], additional exploratory endpoints included outcomes according
to the level of tumor PD-L1 expression (≥1% vs. <1%), as assessed at a central laboratory
using the Dako PD-L1 IHC 28-8 pharmDx test. Ipi+Nivo showed PFS benefit compared
with sunitinib among patients with PD-L1 positive tumors (PFS, 22.8 vs. 5.9 months)
but not among those with PD-L1 negative tumors (11.0 vs. 10.4 months). In contrast,
Ipi+Nivo showed longer OS and higher ORR than sunitinib among intermediate or poor-
risk patients across tumor PD-L1 expression levels, although the depth of benefit was
deeper in the patients with PD-L1 positive tumors. This result suggests that the clinical
benefit of Ipi+Nivo is prominent in PD-L1 positive tumors, but PD-L1 expression is not
a predictive biomarker because the clinical benefit of Ipi+Nivo is also observed in PD-L1
negative patients.

PD-L1 expression has also been extensively investigated in ICI with VEGFi. In
KEYNOTE-426, PD-L1 expression was assessed using the PD-L1 IHC 22C3 pharmDx
assay (Agilent Technologies) and was characterized according to the combined positive
score (CPS) [25]. A total of 60.5% of patients had a CPS of 1 or higher. In PD-L1 posi-
tive (CPS 1 or higher) patients, Pem+Axi showed higher 1-year OS rates than sunitinib
(90.1% vs. 78.4%). This benefit of Pem+Axi in terms of 1-year OS rates in the PD-L1 nega-
tive group was also consistent (91.5% vs. 78.3%). Median PFS was longer with Pem+Axi
than with sunitinib in PD-L1 positive groups (15.3 vs. 8.9 months) and in PD-L1 negative
groups (15.0 vs. 12.5 months). Therefore, the benefits of Pem+Axi with respect to OS and
PFS were consistent across the PD-L1 expression.

In IMmotion151, PD-L1 expression was evaluated using the VENTANA PD-L1 SP142
assay [30]. Tumor-infiltrating immune cells expressing PD-L1 (1% or higher) were defined
as positive. Atezo+Bev showed PFS benefit in the PD-L1 positive group, but not in the
PD-L1 negative group. The PFS of the Atezo+Bev group showed a gradient of increasing
benefit with increasing PD-L1 expression.

In CheckMate 9ER, PD-L1 expression was defined as the percentage of positive tumor
cells based on the Dako PD-L1 IHC 28-8 pharmDx assay [32]. PD-L1 positive tumors were
defined as tumor cells ≥ 1%. Clinical benefit of Nivo+Cabo with respect to PFS, OS and
ORR was consistent across PD-L1 status. Interestingly, the median PFS of Nivo+Cabo was
longer in the PD-L1 negative than in the positive group (17.7 vs. 11.9 months).

In the CLEAR study, PD-L1 expression was assessed using the PD-L1 IHC 22C3
pharmDx assay (Agilent Technologies) and reported as the CPS [34]. PD-L1 positivity was
defined as CPS 1 or higher, and approximately 30% of patients were positive. Clinical
benefit of Pem+Lenva with respect to PFS and OS was consistent across PD-L1 status.

Given the results of the exploratory analyses of pivotal trials (Table 2), PD-L1 expres-
sion showed inconsistent predictive effects across trials. Furthermore, PD-L1 testing meth-
ods and cutoffs were different across trials; therefore, further studies are needed. To date,
PD-L1 expression cannot be used as a definitive biomarker in ICI-based front-line treatment.
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Table 2. Summary of PFS and OS of front-line pivotal trials according to PD-L1 expression.

CheckMate 214
(Int/Poor) [16,18] IMmotion151 [30,31] KEYNOTE-426 [25,26] JAVELIN Renal 101 [28,29,38] CheckMate 9ER [32] CLEAR [34]

Ipi+Nivo vs. Sun Atezo+Bev vs. Sun Pem+Axi vs. Sun Avel+Axi vs. Sun Nivo+Cabo vs. Sun Pem+Lenva vs. Sun

PD-L1 positive rates (%) 26% vs. 29% 39% vs. 40% 59% vs. 62% 61% vs 65% 26% vs. 25% 30% vs. 33%
PD-L1 cut off 1%, TC 1%, IC 1%, tumor CPS 1%, IC 1%, TC 1%, tumor CPS

PD-L1 antibody Dako PD-L1 28-8
pharmDx.

VENTANA PD-L1 SP142
assay

PD-L1 22C3 pharmDx
assay PD-L1 SP263 assay Dako PD-L1 28-8

pharmDx.
PD-L1 22C3 pharmDx

assay
OS in PD-L1 positive
(HR, 95% CI) 0.45 (0.29–0.71) 0.68 (0.46–1.00) 0.54 (0.35–0.84) 0.83 (0.60–1.15) 0.80 (0.48–1.34) 0.76 (0.46–1.27)

OS in PD-L1 negative
(HR, 95% CI) 0.73 (0.56–0.96) NA 0.59 (0.34–1.03) NA 0.51 (0.34–0.75) 0.50 (0.28–0.89)

OS in ITT (HR, 95% CI) 0.63 (0.44–0.89) 0.81 (0.63–1.03) 0.53 (0.38–0.74) 0.80 (0.62–1.03) 0.60 (0.40–0.89) 0.66 (0.49–0.88)
PFS in PD-L1 positive
(HR, 95% CI) 0.46 (0.31–0.67) 0.74 (0.57–0.96) 0.62 (0.47–0.80) 0.62 (0.49–0.78) 0.49 (0.32–0.73) 0.40 (0.27–0.58)

PFS in PD-L1 negative
(HR, 95% CI) 1.00 (0.80–1.26) NA 0.87 (0.62–1.23) NA 0.52 (0.40–0.67) 0.39 (0.26–0.59)

PFS in ITT (HR, 95% CI) 0.82 (0.64–1.05) 0.83 (0.70–0.97) 0.69 (0.57–0.84) 0.69 (0.57–0.83) 0.51 (0.41–0.64) 0.39 (0.32–0.49)

Atezo, atezolizumab; Avel, avelumab; Axi, axitinib; Bev, bevacizumab; Cabo, cabozantinib; CI, confidence interval; Ever, everolimus; HR, hazard ratio; IC, immune cell; Ipi, ipilimumab;
ITT, intention to treat; Lenva, lenvatinib; NA. not available; Nivo, nivolumab; OS, overall survival; PD-L1, programmed cell death ligand-1; Pem, pembrolizumab; PFS, progression-free
survival; Sun, sunitinib; TC, tumor cell.
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4.2. Sarcomatoid Differentiation

Sarcomatoid differentiation is known to occur in 10% of RCC and is associated with
more aggressive features, poor response to VEGFi, and higher PD-1/PD-L1 expression [43].
A previous study showed that angiogenesis gene expression is low, and PD-L1 expression
and T-effector gene signatures are high in sarcomatoid tumors [44,45].

A post hoc analysis of CheckMate 214 evaluated outcomes in patients with sarcomatoid
features (sRCC) [46]. A total of 139 patients with intermediate/poor-risk disease and 6
with favorable-risk disease were identified as having sRCC. The Ipi+Nivo group showed
significantly longer OS (NR vs. 14.2 months) and PFS (26.5 vs. 5.1 months) than the
sunitinib group. The ORR was significantly higher in the Ipi+Nivo than in the sunitinib
group (60.8% vs. 23.1%), with CR rates of 18.9% and 3.1%, respectively.

A subgroup analysis of KEYNOTE-426 evaluated outcomes in patients with sRCC [47].
Sarcomatoid features were present in 18.2% of the patients. Pem+Axi improved OS
(12-month survival rate, 83.4% vs. 79.5%), PFS (NR vs. 8.4 months), ORR (58.8% vs.
31.5%), and CR rates (11.8% vs. 0%) over sunitinib in patients with sRCC.

The updated analysis of CheckMate 9ER evaluated outcomes by sarcomatoid histol-
ogy [48]. Nivo+Cabo improved PFS (10.9 vs. 4.2 months), OS (NR vs. 19.7 months) and
ORR (55.9% vs. 22.0%) over sunitinib in sRCC. Notably, in terms of HR, prominent benefits
of Nivo+Cabo with respect to PFS (HR, 0.39 vs. 0.54) and OS (HR, 0.36 vs. 0.68) were
observed in patients with sRCC compared to those without sRCC.

A subgroup analysis of CLEAR evaluated the outcomes by sarcomatoid feature [49].
PFS results favored Pem+Lenva over sunitinib (11.1 vs. 5.5 months) treatment in patients
with sRCC.

A recent meta-analysis including four RCTs (CheckMate 214, KEYNOTE-426, IM-
motion151, and JAVELIN Renal 101) evaluated the outcomes of ICI-based treatment in
sRCC [50]. ICI-based treatments were associated with an improved PFS, OS, and ORR
compared with sunitinib, with a reduction of more than 40% in progression (HR, 0.56) and
mortality (HR, 0.56) risk. Finally, ICI-based treatment significantly increased the possibility
of obtaining CR (relative risk, 8.15; p = 0.0002) with an incidence of 11%.

The ORR and CR rates of the ICI-based regimen are summarized in Table 3. Given
these results, ICI-based treatment should be considered as a front-line treatment in patients
with sarcomatoid differentiation.
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Table 3. Summary of efficacy of front-line ICI-based treatment in patients with sarcomatoid feature.

CheckMate 214
(Intermediate/Poor) [46] IMmotion151 [51] KEYNOTE-426 [47] CheckMate 9ER [48] CLEAR [49]

Ipi+Nivo
(n = 74)

Sun
(n = 65)

Atezo+Bev
(n = 68)

Sun
(n = 74)

Pem+Axi
(n = 46)

Sun
(n = 50)

Nivo+Cabo
(n = 34)

Sun
(n = 41)

Pem+Lenva
(n = 28)

Sun
(n = 21)

ORR (%) 61 23 49 14 58.8 31.5 54.8 28.4 60.7 23.8
CR (%) 19 3 10 3 13 2 9.3 4.3 NA NA
PFS (months) 26.5 5.1 8.3 5.3 NR 8.4 10.3 4.2 11.1 5.5
HR
(95% CI) 0.54 (0.3–0.9) 0.52 (0.34–0.79) 0.54 (0.29–1.00) 0.42 (0.23–0.74) 0.39 (0.18–0.84)

OS (months) NR 14.2 21.7 15.4 NR NR NR 19.7 NR NR
HR
(95% CI) 0.45 (0.3–0.7) 0.64 (0.41–1.01) 0.58 (0.21–1.59) 0.36 (0.17–0.79) 0.91 (0.32–2.58)

Atezo, atezolizumab; Avel, avelumab; Axi, axitinib; Bev, bevacizumab; Cabo, cabozantinib; CI, confidence interval; CR; complete response; HR, hazard ratio; ICI, immune checkpoint
inhibitor; Ipi, ipilimumab; Lenva, lenvatinib; NA, not available; NR, not reached; Nivo, nivolumab; OS, overall survival; ORR, objective response rate; Pem, pem-brolizumab; PFS,
progression-free survival; Sun, sunitinib.
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4.3. Tumor Mutation Burden (TMB)

TMB has been extensively studied as a predictive biomarker for ICI. Prospective
biomarker analysis of the KEYNOTE-158 study suggested that high TMB (TMB-H) could
be a predictive biomarker for pembrolizumab in advanced solid tumors [52]. On 6 June
2020, the FDA granted accelerated approval of pembrolizumab to treat adult and pediatric
patients with unresectable or metastatic TMB-H (≥10 mutations/megabase) solid tumors
that have progressed following prior treatment and who have no satisfactory alternative
treatment options. Meanwhile, RCC, which is recognized as an immunogenic tumor, has a
relatively lower TMB than other immunogenic tumors, including melanoma, lung cancer,
and bladder cancer [53]. A previous study analyzed the clinical and genomic data of
1662 advanced cancer patients treated with ICIs using targeted next-generation sequencing
(MSK-IMPACT) [54]. The study suggested that higher somatic TMB is associated with better
OS after ICI treatment for most cancers, but this association of higher TMB and improved
survival was not observed in patients with RCC. Several other retrospective studies also
did not find an association between TMB and prognosis in RCC patients who were treated
with ICIs [55,56]. In addition to TMB with an NGS-based technique, a previous study
investigated whether the frameshift nature of insertion/deletion (indel) mutations creates
tumor-specific neoantigens and contributes to the immunogenic phenotype in the pan-
cancer dataset [57]. Whole-exome sequencing data from 5777 solid tumors were analyzed.
Among the pan-cancer cohort, the highest proportion and number of indel mutations was
observed in RCC. Compared with single nucleotide variation (SNV) mutations, it was
observed that indel mutations generate 3 times more high-binding affinity neoantigens
and 9 times more mutant-specific binders. This study also showed that indel load was
significantly associated with ICI response compared with non-SNV load in melanoma
cohorts. These approaches were applied in several pivotal clinical trials. The exploratory
analysis of IMmotion150, a randomized phase 2 study of atezolizumab alone or combined
with bevacizumab versus sunitinib, showed that TMB, tumor neoantigen burden (TNB),
and indels were not associated with PFS in any of the three treatment arms [58]. Recently,
biomarker analysis of CheckMate 214 also reported that TMB and tumor indel burden were
not associated with survival benefit in patients treated with Ipi+Nivo [59]. A biomarker
study of JAVELIN Renal 101 also did not show an association between PFS and TMB in
both the Avel+Axi and sunitinib arms [60]. Given these results, TMB, TNB, and indel
burden need more study as biomarkers for ICI-based treatment in RCC.

4.4. RNA Gene Signature

The IMmotion150 biomarker study performed whole transcriptome profiling of
263 patients using RNA sequencing and showed distinct biological subgroups based
on relative expression levels of angiogenesis (Angio), immune (T-effector presence and
function, IFN-γ response, checkpoint inhibitors, and antigen presentation), and myeloid
inflammation-associated genes [58]. The angio-high signature group was characterized by
relatively higher vascular density, whereas high expression of T-effector gene signature was
positively associated with PD-L1 expression and CD8 T-cell infiltration. In the sunitinib
arm, ORR was significantly higher in the angio-high than -low group (46% vs. 9%). In-
creased PFS was observed in the angio-high group than in the angio-low group. In contrast,
in the Atezo+Bev arm, the ORR was higher in the T-effector-high group than in the -low
group (49% vs. 16%). Additionally, Atezo+Bev showed longer PFS in the T-effector-high
group than the -low group. Meanwhile, high myeloid inflammation gene signature ex-
pression (Myeloid-High), which is associated with suppression of the antitumor adaptive
T-cell response, was associated with reduced PFS in the atezolizumab monotherapy group
(HR 2.98) and, to a lesser extent, in the Atezo+Bev group (HR, 1.71), but not in the suni-
tinib group. Based on this result, the authors suggested that the addition of VEGFi may
overcome innate inflammation-mediated resistance. An exploratory study of IMmotion151
reported similar results [44]. T-effector-high was associated with improved PFS in the
Atezo+Bev group compared with the sunitinib group. Angio-high was associated with
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improved PFS in the sunitinib arm. Atezo+Bev improved PFS compared to sunitinib in the
angio-low group. Interestingly, the angio signature was higher in the favorable than in the
intermediate/poor MSKCC risk groups, which could explain the prominent benefit of ICI
in the intermediate/poor risk group compared with the favorable group. The biomarker
analysis of JAVELIN Renal 101 generated the whole-transcriptome profiles of 720 patients
and defined 26 immune gene signatures (Renal 101 immuno [R-101Immuno]) and 26 gene
angio-signatures (Renal 101 angio [R-101Angio]) [60]. Patients with R-101Immuno-high
showed longer PFS than those with R-101Immuno-low signatures in the Avel+Axi arm, but
the signature did not differentiate PFS in the sunitinib arm. The R-101Angio-high group
showed improved PFS in the sunitinib arm, but not in the Avel+Axi arm. CheckMate
214 performed survival analysis using six different gene expression signatures [59]. An
angio-high signature (per IMmotion 150 signature) was associated with improved ORR
and PFS benefits for sunitinib, and an angio-low signature was associated with a higher
ORR in the Ipi+Nivo group. However, immune signature scores were not predictive of
ORR in both the Ipi+Nivo and sunitinib groups.

Given these results, although the results of the above-mentioned studies are not
consistent, RNA gene signature can be a potential biomarker if further studies with detailed
validation are conducted.

In addition to the above, there have been many studies on biomarkers of RCC, includ-
ing PBRM1 mutation [29,59,61–63], endogenous retroviruses [64–67], and the neutrophil–
lymphocyte ratio [68,69]. Although there are no definitive biomarkers of clinical impact,
many studies are currently ongoing. We hope that these studies will improve the prognosis
and treatment outcomes of advanced ccRCC.

5. How to Select the First-Line Treatment
5.1. Favorable-Risk Group

In the favorable-risk group, several international guidelines [36,37] recommend Pem+Axi,
Nivo+Cabo, or Pem+Lenva, but not Ipi+Nivo, as the preferred frontline treatment options
in advanced ccRCC. CheckMate 214 demonstrated the clinical benefit of Ipi+Nivo in the
IMDC intermediate/poor risk group. In contrast, the ORR (29% vs. 52%) and PFS (median,
15.3 vs. 25.1 months) were improved with sunitinib over Ipi+Nivo in the favorable-risk
group [16]. This superiority of sunitinib over Ipi+Nivo with respect to ORR and PFS in
the favorable-risk group was maintained in the extended follow-up results [17,18]. OS
was not significantly different, but 30-month OS rates were slightly higher in the sunitinib
group (85% vs. 80%). Therefore, the Ipi+Nivo combination is not recommended as the
preferred option in the favorable-risk group. In contrast to the ICI combination, ICI with
an VEGFi demonstrated clinical benefit in the favorable-risk group. In subgroup analyses
of previous pivotal trials, PFS and ORR benefits with ICI+VEGFi were observed to be
more favorable than sunitinib [26,30,34,47,58]. However, these trials did not show the OS
benefit of ICI+VEGFi over sunitinib alone. It is not clear whether ICI+VEGFi treatment
should be performed in all favorable-risk patients while enduring the toxicity and cost of
ICI+VEGFi, because some patients with favorable risk achieved durable disease control
with pazopanib or sunitinib alone, or even without systemic treatment [70,71]. Although
selection criteria for VEGFi alone or ICI+VEGFi have not been validated, VEGFi alone may
be another treatment option in selected patients, such as those with slowly progressing,
asymptomatic, and low-volume disease. However, ICI+VEGFi should be considered for
patients with a high tumor burden, clinically rapid progression, or symptomatic disease
requiring immediate disease control. Moreover, ICI+VEGFi provided a better ORR than
sunitinib in several pivotal trials, and we should check the OS results with long-term
follow-up in the future to develop guidelines for drug choice in the favorable-risk group.

5.2. Intermediate/Poor-Risk Group

In the intermediate/poor group, several international guidelines [36,37] recommend
Ipi+Nivo, Pem+Axi, Nivo+Cabo, or Pem+Lenva as preferred frontline treatment options in
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advanced ccRCC. The choice of treatment options is either Ipi+Nivo or ICI+VEGFi. There
has been no head-to-head trial between Ipi+Nivo and ICI+VEGFi treatments. Although it is
impossible to compare these trials directly, several issues must be considered for decision-
making in practice. In patients with symptomatic, high disease burden who require rapid
disease control, ICI+VEGFi can be a better option than Ipi+Nivo. ICI+VEGFi achieves
numerically higher ORR and shorter time to response, which can control disease rapidly.
The low PD rate is also an important advantage of ICI+VEGFi. Meanwhile, Ipi+Nivo can
be an important option for patients who do not need rapid tumor reduction with clinicians
who can manage immune-related AEs well. Ipi+Nivo demonstrated a durable response
and long-term survival, which has not been clearly demonstrated in ICI+VEGFi trials due
to the shorter follow-up duration of these trials. Therefore, we should check the updated
results for survival with extended follow-up of ICI+VEGFi trials. The toxicity profiles
were different between Ipi+Nivo and ICI+VEGFi. Ipi+Nivo can induce higher rates of
immune-related AEs, which can be fatal and require high doses of steroids. Meanwhile,
ICI+VEGFi can cause not only ICI-induced toxicities but also VEGFi-induced chronic
toxicities resulting in a decreased QoL.

The next important issue is the choice across several ICI+VEGFi treatments. There
are no head-to-head studies, and there is no definite consensus on the choice of treatment.
Numerically, Pem+Lenva provides impressive ORR with a high CR rate and PFS; therefore,
Pem+Lenva could be considered in patients who need rapid tumor reduction or have a
strong desire for CR, regardless of toxicity. Meanwhile, Nivo+Cabo and Pem+Axi are
good options for patients who need tolerable treatment with good response. Pem+Axi and
Nivo+Cabo showed numerically lower rates of AEs, which led to drug discontinuation
compared to Pem+Lenva (7% and 6% vs. 13%). In particular, Nivo+Cabo showed improved
quality of life compared to sunitinib [33], while Pem+Lenva showed a similar QoL to suni-
tinib [35]. Avel+Axi and Atezo+Bev are less preferred options because these regimens have
not shown OS benefits. Toxicity profiles differ across ICI+ VEGFi. Pem+Lenva appeared
to cause hypertension, proteinuria, and increased lipase. Meanwhile, palmar–plantar
erythrodysesthesia syndrome was more prominent in the Nivo+Cabo group. Pem+Axi
appeared to cause hepatotoxicity.

Therefore, there are several considerations in determining treatment, so clinicians
should consider these factors and choose the appropriate treatment.

6. Potential Candidates for Systemic Treatment and Ongoing Phase 3 Trials in
Front-Line Setting

Several studies are investigating potential promising agents in RCC. In addition to
PD-1/PD-L1 and CTLA4 inhibitors, several other immune checkpoints are also being
investigated in many studies. For example, human endogenous retrovirus-H long terminal
repeat-associating 2 (HHLA2) may be a promising checkpoint for the improvement of
immunotherapy [72]. HHLA2, a member of the B7 family of immunoregulatory ligands, is
known to have inhibitory effects on T cells and be overexpressed in RCC, and is associated
with poor prognosis [73]. Recent study proposed that killer cell immunoglobulin-like
receptor, three immunoglobulin domains and long cytoplasmic tail 3 (KIR3DL3) is an
inhibitory receptor for HHLA2 in T cells and natural killer cells [74]. Moreover, this study
showed that HHLA2 expression was not overlapping with PD-L1 expression in ccRCC,
suggesting that HHLA2 may represent a regulated mechanism of tumor immune evasion
that is independent of PD-L1. In addition, several other checkpoints such as LAG-3, TIM-3,
and TIGIT [75] are currently being investigated in many other studies.

Metabolic reprogramming is an important hallmark of tumor initiation and pro-
gression [76]. Constitutive HIF signaling results in extensive metabolic reprogramming
including a shift towards increased glutamine utilization; therefore, RCC may be par-
ticularly susceptible to interference with glutamine metabolism [77,78]. Previous stud-
ies showed that glutamine utilization is increased in RCC and that tumor cells become
addicted to glutamine [79,80]. Telaglenastat is a first-in-clinic, selective, potent glutam-
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inase inhibitor, and previous early phase studies showed a tolerable safety profile and
encouraging efficacy [81,82]. The CANTANA study, which was a recent phase 2 study
of cabozantinib + telaglenastat with cabozantinib + placebo in previously treated patients,
did not show clinical benefit from the addition of telaglenastat [83]. Currently, several
studies are ongoing in other solid tumors as well as RCC, and future studies are warranted
to determine the impact of glutaminase inhibition.

Histone deacetylases (HDACs) are key regulators of gene expression that act as tran-
scriptional repressors by removing acetyl groups from histones [84]. HDACs are grouped
into four classes. Class I HDACs are frequently overexpressed in RCC, and RCC has
lower protein acetylation levels than normal renal tissue [85]. Therefore, pan- or selective
HDAC inhibition may be potential treatment strategy in RCC. Previous phase 1/2 trials of
vorinostat, which is a class II HDAC inhibitor, reported that the combination of vorinostat
with bevacizumab showed an ORR of 18% and manageable toxicity [86]. Another phase 1b
study of abexinostat, which is a potent pan-HDAC inhibitor, showed an acceptable toxicity
profile and encouraging anti-tumor activity [87]. In this study, markedly durable responses
with abexinostat in combination with pazopanib were achievable in some patients that
were refractory to previous VEGFi [88]. Currently ongoing is a phase 3 RENAVIV trial,
which is investigating the efficacy and safety of pazopanib with abexinostat or placebo in
the first-line setting [89].

Cyclin-dependent kinases (CDKs) are the families of protein kinases and play impor-
tant roles in the control of cell division and modulation of transcription [90]. CDK4/6
play a role in phosphorylation of the retinoblastoma protein, which has been shown to be
expressed in 95% of RCC [91]. In a xenograft model, abemaciclib, which is a potent CDK4/6
inhibitor, in combination with sunitinib reduced the size of the tumor [92]. Currently, a
phase 1 study to evaluate the safety of the combination of abemaciclib and sunitinib is
ongoing. In addition to the above-mentioned potential agents, many other studies of novel
agents are ongoing. We summarized selected potential novel treatment trials in Table 4.

Additionally, in the first line setting, there have been several large-scale phase 3 trials
of novel promising agents with ICI combinations including HIF-2a inhibitor [93], pegylated
IL-2 (bempegaldesleukin) [94], and powerful triplet combinations [95]. We describe these
strategies briefly.
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Table 4. Summary of selected potential candidates for novel treatment of advanced ccRCC.

Agent Phase Target/Mechanism NCT Number

MK2206 1 AKT Inhibitor NCT01480154
DS-6000a 1 Antibody Drug Conjugate (CDH6) NCT04707248
Ibrutinib 1/2 BTK inhibitor NCT02899078
APL-501 1/2 C-MET inhibitor NCT03655613
CCT301 1/2 CAR-T NCT03393936
ALLO-316 1 CAR-T NCT04696731
CAIX-targeted CAR-T Cells 1 CAR-T NCT04969354
Abemaciclib 1 CDK4/6 inhibitor NCT03905889, NCT04627064
Palbociclib 2 CDK4/6 inhibitor NCT05176288
CMN-001 2 Cell therapy (Dendritic cell) NCT04203901
CTX130 1 Cell therapy (T cell) NCT04438083
HERV-E TCR transduced autologous T cells 1 Cell therapy (T cell) NCT03354390
PF-04518600 2 Checkpoint (Anti-OX40 antibody) NCT03092856
Daraturumab 1 Checkpoint (Anti-CD38 monoclonal antibody NCT03473730
APX005M 1 Checkpoint (CD40 agonistic monoclonal antibody) NCT04495257, NCT03502330
MEDI5752 1 Checkpoint (Monovalent Bispecific PD-1/CTLA4 Antibody) NCT04522323
Cyclophosphamide 1/2 Chemotherapy (metronomic cyclophosphamide) NCT04262427
X4P-001 1/2 CXCR4 antagonist NCT02667886
DS3201 1,2 EZH1/2 Dual Inhibitor NCT04388852
Entinostat 1 HDAC inhibitor NCT03552380, NCT03501381, NCT01038778
HBI-8000 1/2 HDAC inhibitor NCT02718066
Vorinostat 1 HDAC inhibitor NCT02619253
Seleno-L-methionine 1/2 HIF1/2 degradation enhancer NCT02535533
ARO-HIF2 1 HIF2 RNA interference molecule NCT04169711

Belzutifan 1,2 HIF2a inhibitor NCT03634540, NCT04489771, NCT03401788,
NCT04195750, NCT04846920

NKT2152 1/2 HIF2a inhibitor NCT05119335
PT2385 2 HIF2a inhibitor NCT03108066
Epacadostat 3 IDO1 inhibitor NCT03260894
TAK-228 2 mTOR1/2 inhibitor NCT03097328
Anlotinib 2 Multi-target TKI NCT02072044
Sitravatinib 1 Multi-target TKI NCT04518046
ESK981 2 Multi-target TKI NCT03562507
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Table 4. Cont.

Agent Phase Target/Mechanism NCT Number

Sitravatinib 2 Multi-target TKI NCT04904302
NeoVax 1 Neoantigen long peptide vaccines NCT02950766
Talazoparib 2 PARP inhibitor NCT04068831, NCT04337970
Olaparib 2 PARP inhibitor NCT03786796, NCT03741426
IPI-549 2 PI3K-γ inhibitor NCT03961698

AKT, phosphatidyl-inositol-3-kinase−protein kinase B; BTK, Bruton’s tyrosine kinase; CAR-T, chimeric antigen receptor-T; CDH6, cadherin-6; ccRCC, clear cell renal cell carcinoma;
CDK, cyclin-dependent kinase; C-MET, hepatocyte growth factor receptor; CTLA4, cytotoxic T lymphocyte antigen-4; CXCR4, C-X-C motif chemokine receptor 4; EZH, enhancer of zeste
homologue; HDAC, histone deacetylase; HERV-E, human endogenous retrovirus-E; HIF, hypoxia inducible factor; IDO1, indoleamine 2,3-Dioxygenase 1; mTOR, mammalian target
of rapamycin; OX40, CD134; PARP, Poly (ADP-ribose) polymerase; PD-1, programmed cell death-1; PI3K-γ, phosphoinositide 3-kinase-gamma; TCR, T cell receptor; TKI, tyrosine
kinase inhibitor.



Biomedicines 2022, 10, 251 16 of 23

6.1. HIF-2α Inhibitors

After the discovery of the role of the VHL-HIF-VEGF axis in ccRCC carcinogenesis,
VEGF and mTOR inhibitors played an important role in ccRCC treatment; however, these
agents showed drug resistance and disease progression. Recently, HIF has been recognized
as a potential therapeutic target. HIF-1 and HIF-2 are heterodimeric transcription factors
mediating the cellular response to hypoxia [96]. Although HIF-1α and -2α share some
similar structures, it is known that their role in ccRCC may be different. ccRCC expressing
only HIF-2α showed enhanced proliferation and resistance to replication stress compared
with ccRCC expressing both HIF-2α and HIF-1α [97]. In xenograft models, downregulation
of HIF-1α in HIF-1α proficient cell lines promotes tumor growth [98]; in contrast, downreg-
ulation of HIF-2α suppresses tumor formation [99]. These studies suggested that HIF-2α
plays a major pro-tumorigenic role in human ccRCCs, whereas HIF-1α appears to function
rather to inhibit aggressive tumor behavior [100]. From these backgrounds, inhibition of
HIF-2α has been investigated actively. A phase 1 dose-escalation study of PT2385, a first-
in-class HIF-2α antagonist, was conducted in heavily treated ccRCC patients [101]. This
study showed a favorable safety profile and promising efficacy (ORR, 14%; disease control
rates, 66%) in heavily treated patients. However, PT2385 was restricted by variable and
dose-limited pharmacokinetics resulting from extensive metabolism of PT2385 to its glu-
curonide metabolite [102]. Belzutifan (PT2977, MK-6482), a 2nd generation small molecule
HIF-2α inhibitor that showed increased potency and an improved pharmacokinetic profile,
was evaluated in a phase 1 trial [103]. Recently, a phase 2 study evaluated the efficacy and
safety of belzutifan in pre-treated patients with RCC with VHL disease [104]. Belzutifan
showed promising results with a 49% ORR. In addition to tumor response, belzutifan
showed promising response in non-RCC neoplasms. In sporadic ccRCC, a recent phase
1/2 study evaluated the efficacy and safety of belzutifan in pre-treated patients [105]. ORR
was 25% and median PFS was 14.5 months. Among grade 3 AEs, anemia (27%) and hy-
poxia (16%) were the most common. Currently, several studies of belzutifan with/without
other agents are ongoing in ccRCC patients [106–108]. In particular, in the first-line setting,
phase 3 study to evaluate the efficacy and safety of pembrolizumab+belzutifan+lenvatinib
or a co-formulation of pembrolizumab and quavonlimab (CTLA4 inhibitor)+lenvatinib
versus pembrolizumab+lenvatinib is ongoing in advanced ccRCC [93].

6.2. Pegylated Interleukin-2

High-dose interleukin-2 (IL-2) shows durable response in RCC, but modest efficacy,
treatment-associated toxicity and expansion of suppressive regulatory T cells (Tregs) limit
its use in patients with RCC [109,110]. Bempegaldesleukin (BEMPEG) is a PEGylated IL-2
acting as a CD122-preferential IL-2 pathway agonist designed to activate and proliferate
CD8+ T cells and NK cells [111,112]. In a phase 1 study, BEMPEG monotherapy was
well-tolerated and showed clinical activity with objective response and durable disease
control in heavily pretreated patients with advanced solid tumors [113]. Additionally,
in a previous phase 1 study, BEMPEG+nivolumab showed promising ORR (71%) and
manageable toxicity in untreated RCC patients [114]. Currently, a phase 3 PIVOT-09 trial
to evaluate the efficacy and safety of BEMPEG+nivolumab vs. the investigator’s choice of
TKI (sunitinib or cabozantinib) in patients with previously untreated advanced ccRCC is
ongoing [94].

6.3. Powerful Combinations

Dual combination strategies have shown promising results and become the stan-
dard of care in the first-line setting. Under the hypothesis that triple combinations may
be more effective than dual combinations, triplet combination trials are ongoing now.
COSMIC-313 is a phase-3 trial to compare Ipi+Nivo+cabozantinib with Ipi+Nivo+placebo
in patients with previously untreated advanced ccRCC of intermediate or poor risk [95].
Another phase-3 study, to compare a co-formulation of pembrolizumab and quavon-
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limab (CTLA4 inhibitor)+Lenvatinib or pembrolizumab+belzutifan+lenvatinib vs. pem-
brolizumab+lenvatinib alone in the first-line setting, is also currently under way [93].

7. Conclusions

The landscape of frontline treatment for advanced ccRCC has changed in recent years.
ICI-based treatment showed promising results, especially in the intermediate/poor risk
group, and became the standard of care. Many studies are under way to improve the
outcome of the current standard of care. The results of several ongoing trials for new
treatments should be discussed in the near future. We believe that these efforts can improve
patient prognosis.
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