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Abstract

Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor
cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia
(DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively
linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phe-
notype of patients with these mutations are not completely understood, it is believed that
stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor
cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are
unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild
type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the
anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos
exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53
response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that
RP mutations suppress activity of the AKT pathway, and we show here that this suppres-
sion results in proteasomal degradation of p53. By re-activating the AKT pathway or by
inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are
able to restore the stabilization of p53. Our work indicates that the anemia phenotype of
zebrafish models of DBA is dependent on factors other than p53, and may hold clinical sig-
nificance for both DBA and the increasing number of cancers revealing spontaneous muta-
tions in RP genes.
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Author Summary

The p53 tumor suppressor is the most commonly mutated gene in human cancers. How-
ever, cancer cells exploit multiple mechanisms to silence the p53 pathway in addition to
inactivation of the p53 gene. We previously reported that one of these mechanisms is
found in tumor cells with ribosomal protein (RP) gene mutations. These cells transcribe
wild type p53 mRNA yet do not stabilize p53 protein when exposed to DNA damaging
agents. In this work we demonstrate that this loss of p53 protein is due to its constitutive
degradation. This degradation is due to impairment of the AKT pathway, which normal
signals for p53 to stabilize when the DNA is damaged. By re-activating the AKT pathway
in RP-mutant cells we are able to restore p53 stabilization and activity, which may hold
clinical significance for cancer treatment.

Introduction

The stabilization of the p53 tumor suppressor is a pivotal event in the programmed cell death
response. Levels of p53 protein are normally kept very low through its physical association
with the MDM2 protein, an E3 ubiquitin ligase that constitutively ubiquitinates p53 and targets
it for proteasomal degradation [1]. Many kinds of cellular stress, including DNA damage and
oncogene presence, activate different signaling pathways that result in the dissociation of p53
and MDM2. p53 then stabilizes and translocates to the nucleus where it targets genes that
arrest the cell cycle and turn on DNA repair, or genes that induce apoptotic cell death if the
damage is deemed irreparable [2].

The stabilization of p53 has been reported to trigger human bone marrow failures such as
dyskeratosis congenita and Fanconi anemia [3,4]. While Fanconi anemia is predominantly
linked to mutations in DNA repair enzymes, several genes found mutated in dyskeratosis con-
genita patients have a known role in the rRNA maturation steps of early ribosome biogenesis.
The mutation of these latter genes in zebrafish stabilizes p53, as does the mutation of several
other genes important for the processing of rRNA [5-7]. In human bone marrow failures syn-
dromes linked to RP haploinsufficiency such as Diamond-Blackfan anemia (DBA) and 5q-
myelodysplastic syndrome, the loss of hematopoietic progenitor CD34+ cells by p53-induced
apoptosis is believed by some to be the major cause of cytopenia [8]. However, the contribution
of p53-induced apoptosis specifically to the cytopenia phenotype remains controversial. Recent
studies demonstrated that patient CD34+ hematopoietic progenitor cells carrying mutations in
the most commonly mutated gene linked to DBA (RPS19) do not reveal any hallmarks of apo-
ptosis as they are induced to differentiate into erythrocytes [9]. This work also showed that
while the co-depletion of p53 with RPL11 in CD34+ cells reduced some apoptotic effects, it did
not restore the proliferation capacity lost upon RPL11I depletion alone. Therefore the contribu-
tion of p53 stabilization to the loss of erythrocytes in DBA patients is possibly less significant
than previously thought.

In addition to being important for erythrocyte production, there also exist several reports
indicating a role for RPs as tumor suppressors. Human patients with 5q-MDS or DBA are
more predisposed to developing malignancies, both acute myeloid leukemia (AML) and solid
tumors, respectively [10,11]. Importantly, the advent of exome sequencing has unveiled a sur-
prising number of somatic RP gene mutations in an array of human cancers. These recent
exome sequencing reports have identified mutations in RPL5 and RPLI0 in T-cell acute lym-
phoblastic leukemia, mutations in RPL5 in gliomas, and mutations in RPL22 in human endo-
metrioid endometrial cancer and colorectal cancer [12-14].
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Embryonic zebrafish mutants and morphants are popular models of DBA and RP loss. In
mutant lines where RP genes are disrupted by murine virus integrations, the homozygous
embryos reveal a progressive reduction of the RP over the first 3 days post fertilization (dpf)
coupled to a failure of hemoglobin-expressing cells to develop [15,16]. In contrast, haploinsuf-
ficient RP embryos reveal no cytopenia or any other conspicuous phenotype except for a mild
growth defect that does not affect their development into adulthood [17]. Once reaching adult-
hood however, many of the haploinsufficient mutant lines reveal the formation of malignant
peripheral nerve sheath tumors (MPNSTs), a tumor type rarely observed in laboratory strains
of zebrafish [18]. Interestingly, this exact tumor type arises with the same frequency in zebra-
fish carrying homozygous mutations of p53 in a highly conserved residue within one of the
DNA-binding domains (M214K) [19]. Further study into this revealed that while wild type p53
mRNA was normally transcribed in the RP-mutant tumor cells, p53 protein was unable to be
detected [20]. This observation was despite the application of ionizing radiation and/or protea-
some inhibition with MG132, two conditions that were found to stabilize p53 in zebrafish
tumor cells carrying wild type RP genes.

Actinomycin D is a drug that disrupts ribosome biogenesis by inhibiting rRNA polymerase
and results in the stabilization of p53 [21]. It was recently reported that this induction of p53
requires the activity of the survival factor AKT/PKB [22], a kinase that responds to the stimula-
tion of many growth factor receptors, including insulin receptors [23]. While activated AKT
has many functions, one major event of insulin stimulation directly downstream of AKT is the
phosphorylation and inhibition of glycogen synthase kinase-3 (GSK-3) [24]. Under normal
conditions GSK-3 phosphorylates and activates MDM2 in a way that promotes p53 degrada-
tion [25]. However upon DNA damage by ionizing radiation, the phosphorylation of AKT
results in the inactivation of GSK-3 [26]. This AKT-mediated inactivation of GSK-3 in
response to ionizing radiation begins with the DNA-dependent protein kinase (DNA-PK), a
protein that recognizes the double-stranded breaks on DNA and signals through a cascade that
ultimately results in p53 stabilization and programmed cell death [27]. Thus one mechanism of
the p53 stabilization in response to ionizing radiation is through the activation of DNA-PK
and AKT inhibiting the downstream activity of GSK-3 and MDM2.

We previously reported that the loss of RP genes in mammalian cells and in zebrafish
embryos results in a loss of AKT activity that could be overcome by the addition of insulin
[16]. This observation led us to consider the possibility that the AKT pathway was involved in
the regulation of p53 in RP mutant cells, and that the impairment of the DNA damage pathway
through AKT may have a role in the predisposition to malignancy caused by RP gene
mutations.

Results

The hematopoietic phenotype of zebrafish with RP loss is not dependent
on p53

The RP mutant zebrafish lines we used for this study were generated by viral insertions in the
introns of RP genes, two of which (rpS7 and rpL11) have homologues found mutated in DBA
patients [28,29]. We find that at 2 dpf these embryos display normal expression of the scl tran-
scription factor required for the genesis of hematopoietic stem cells in both primitive and
definitive hematopoiesis, a result that was also observed in zebrafish embryos with deletions in
the rpS19 gene (S1 Fig) [30-33]. However, RP mutants reveal a marked decrease in the expres-
sion of the SE1-globin gene, which (at this stage of development) normally becomes up regu-
lated as cells commit to the erythrocyte lineage (S1 Fig) [34]. Zebrafish embryos carry maternal
stores of RPs such that these mutants reveal a progressive loss of RP expression. The rpS7
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mutants express about 50% of wild type rpS7 levels at 1 dpf while this percent reduction is not
observed in rpL11 mutants until 3 dpf [16,35]. This likely explains why despite the fact that
embryos from both mutant lines reveal hematopoietic and developmental phenotypes, these
are more severe in the rpS7 mutants [16,35]. Because these phenotypes at 1 dpf are much more
pronounced in rpS7 embryos, we selected them for the following analysis of apoptosis. S2 Fig
provides images of the mutants compared to wild types and shows the morphological features
that we use to initially select the mutants, such as the smaller head and eye, inflated hindbrain,
and the dent in the mid-hind brain barrier.

We measured overall levels of cell death in developing embryos carrying the rpS7 mutation
with acridine orange (AO), a stain commonly used to detect cells undergoing apoptosis in zeb-
rafish embryos [36]. Fig 1A and 1B show that at 1 dpf, rpS7 mutant embryos reveal a signifi-
cantly larger number of apoptotic cells compared to wild type controls. Closer visualization of
an rpS7 mutant in Fig 1C reveals that these AO-stained cells are found clustered in the brain
area and evenly distributed on the entire surface of the tail. The injection of a translation-block-
ing morpholino that we have previously demonstrated is specific to zebrafish p53 (p53 MO)
but not a missense control morpholino (mis MO), completely rescued the number of cells
undergoing apoptosis in the rpS7 mutants, reinforcing a role for p53 in cell death as a result of
RP loss (Fig 1A and 1B) [37]. The p53 MO also results in the rescue of morphological pheno-
types commonly observed in ribosome biogenesis mutants such as the inflation of the hind-
brain vesicle and pericardial edemas, a rescue effect that has been previously demonstrated in
other zebrafish models of RP loss (S2 Fig) [15,38]. To determine if the p53 MO was sufficient
to rescue the defective hematopoiesis of the mutants we used o-dianisidine, which stains hemo-
globin-expressing cells evident at 2 dpf. Staining with o-dianisidine revealed that despite the
rescue of apoptotic cells by p53 depletion observed at 1 dpf in the rpS7 mutants, the p53 MO
was not able to rescue hematopoietic development to any appreciable degree (Fig 1D).

The apoptotic response to DNA damage is caspase-independent in RP
mutants

The levels of caspase-induced apoptosis in human CD34+ cells with RP loss vary depending on
the RP [9]. To determine if the loss of RPs triggers caspase-induced apoptosis in zebrafish
embryos we measured both the basal levels of activated caspase 2 or 3/7 and their levels in
response to ionizing radiation, comparing wild type embryos with those carrying mutations in
rpS7 and rpL11, as well as rpS3 and rpL36 genes. Fig 2A and 2B indicate that in 2 dpf embryos
the caspase 2 and 3/7 basal levels in the mutants is equivalent to wild types, and the caspase
response to DNA damage is severely impaired in all the mutants. In fact, the RP mutant lines
show the same suppressed caspase 2 and 3/7 response to ionizing radiation as the homozygous
p53MEHAKMIK pytant line (Fig 2A and 2B), which is severely impaired in its ability to induce
apoptosis [19]. To determine if other hallmarks of apoptosis such as DNA fragmentation are
present in RP mutants we performed TUNEL assays on rpS7 embryos at 2 dpf. Fig 2C and 2D
show that while there is no appreciable difference in the levels of TUNEL-positive cells between
the rpS7 mutant and wild type embryos, the exposure of mutants to ionizing radiation results
in a similar significant increase of TUNEL-positive cells as observed in the wild types. Closer
visualization of these DNA-damaged embryos reveals a localization of TUNEL-positive cells in
the brain area similar to what is seen with the AO staining, however the localization of
TUNEL-positive cells in the tail region is found much more restricted to the dorsal area above
the notochord (Fig 2E). This may be due to the limits of penetration of the AO stain, or may
suggest that the cells in this dorsal area are especially sensitive to DNA damage-induced apo-
ptosis, as are the rapidly proliferating cells in the brain.
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Fig 1. Early cell death of RP mutant cells requires p53. A) Acridine orange staining allowing visualization of dying cells in wild type or rpS7 mutants at 1
dpf that are uninjected, injected with the p53 MO, or injected with the missense MO. Size bar = 0.25mm. B) Quantification of (A). **p<0.01. C) Acridine
orange staining of a rpS7 mutant is observed predominantly in the brain region (arrowhead) or distributed over the surface of the tail (white boxes). D) Scoring
results from o-dianisidine staining allowing visualization of hemoglobin-expressing cells in clutches of either 111 embryos (+mis MO) or 177 embryos (+p53

MO) from an rpS7 pairing.
doi:10.1371/journal.pgen.1005326.9001

p53 stabilization but not transcription is impaired in RP mutants

The increased transcription of the zebrafish p53 gene and its p534113 isoform (a target gene of
stabilized p53) has been described in several models of RP loss and likely reflects the early
response of p53 that triggers an up regulation of its own transcription and the transcription of
p534113[15,35,38-41]. In line with these results, we found using real-time quantitative PCR
analysis with primers that amplify both full-length p53 and p534113 that p53 mRNA levels
were significantly higher in 7pS7 and rpL11 mutants at 1 and 2 dpf both in the presence and
absence of ionizing radiation compared to untreated wild type embryos (Fig 3A and 3B). Semi-
quantitative PCR analysis of p53 mRNA levels in several other RP-mutant embryos (rpS3a,
rpL23a, and rpL36) at 2 dpf similarly revealed equivalent levels of p53 transcription in the
mutants compared to wild types (S3 Fig). However, when we performed western blotting anal-
ysis using a zebrafish p53-specific antibody, we were unable to detect any appreciable amount
of p53 protein in the rpS7 or rpL11 mutants in either the presence or absence of ionizing radia-
tion at either 1 or 2 dpf (Fig 3C). This is the case in all the mutant RP lines we tested including
in rpS3a, rpL23a, and rpL36 (S3 Fig). We often observe what may be a p53-specific isoform
such as p534113 on the western blots, but this may also be a p53 degradation product and in
this work we cannot be certain of its exact identity. Taken together, the results suggest that
although the p53 response to the RP mutation on a transcriptional level may function nor-
mally, an additional level of p53 post-translational regulation exists in the presence of RP
mutations that serves to reduce p53 protein.

p53 protein is degraded by the proteasome and rescued by insulin in RP
mutants

We recently demonstrated that AKT phosphorylation activity is impaired in zebrafish embryos
carrying mutations in rpS7, rpL11, and rpS3a [16]. Since the loss of AKT activity would theo-
retically lead to an increase of p53 proteasomal degradation due to an increase of GSK-3 phos-
phorylation of MDM2, we used the proteasome inhibitor MG132 to determine if we could
restore p53 expression. Fig 4A illustrates that MG132 is able to stabilize p53 in wild type
embryo cells as expected, and moreover it is able to stabilize p53 in the rpS7 mutants. This sup-
ports the notion that the loss of p53 in the RP mutants is the result of excessive proteasomal
degradation. We therefore hypothesized that stimulating AKT in the presence of ionizing radi-
ation may rescue the p53 response to DNA damage. Fig 4B (lanes 1-4) shows p53 stabilization
approximately 6 hours after exposure of wild type embryos to ionizing radiation when the
embryos are treated with the anti-oxidant Trolox, insulin, or both. Fig 4B (lanes 5-8) illustrates
that the addition of insulin, but not Trolox, immediately following the ionizing radiation
results in a rescue of the stabilization of p53 in rpS7 mutants. These data suggest that overcom-
ing the RP mutation-induced inhibition of AKT with insulin, which would stimulate AKT
more directly than Trolox, is able to rescue the p53 stabilization response to ionizing radiation.
A diagram illustrating how the impairment of the AKT pathway can lead to p53 protein degra-
dation through GSK-3 is shown in Fig 4C.
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doi:10.1371/journal.pgen.1005326.9002
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Fig 3. p53 protein stabilization is impaired independently of p53 mRNA levels. A) gPCR analysis measuring levels of p53 mRNA in wild type or rpS7
mutants at 1 or 2 dpf either untreated or exposed to 25 Gy ionizing radiation. B) qPCR analysis of p53 mRNA levels in wild type or rpL 17 mutants at 1 or 2 dpf
either untreated or exposed to 25 Gy ionizing radiation. *p<0.05. C) Western blot analysis of p53 protein levels and the quantification of the p53:actin ratio of
inrpS7 or rpL 11 mutants at 1 or 2 dpf either untreated or exposed to 25 Gy ionizing radiation. * indicates either a p53-specific isoform or a degradation
product.

doi:10.1371/journal.pgen.1005326.9003

GSK-3 inhibition restores p53 in RP mutant cells

We hypothesized that the impairment of AKT activity observed in cells with RP mutations
could cause constitutive activation of GSK-3, phosphorylation of MDM2, and ultimately
resulting in the constitutive degradation of p53. Therefore we reasoned that the inhibition of
GSK-3 with lithium chloride (LiCl) in cells with RP mutations could restore p53 stabilization.
Fig 5A and 5B show a partial rescue of p53 stabilization in rpL11 and rpS7 mutant embryos
exposed to ionizing radiation followed by 6 hours of LiCl treatment. Finally, p53 expression is
completely restored in rpS7 haploinsufficient MPNST tumor cells when the cells are plated
overnight with different dosages of LiCl (Fig 5C). This figure also shows LiCl induces the
expression of what may be different isoforms of p53 such as p53A113 resulting from restored
transcriptional activity of p53 in the tumor cells, for LiCl treatment of MPNST tumor cells

expressing the transcriptionally impaired p53™M24K</M214K

mutant does not result in the appear-
ance of same bands (Fig 5D). However we are still unable to state for certain what the exact
identity of these bands are, although they appear to be specific to p53 activation. These data
strongly implicate the impairment of AKT, in particular the loss of AKT inhibition of GSK-3,
as a driving force behind the high levels of constitutive degradation of p53 observed in tumor

cells with RP gene haploinsulfficiency.

Discussion

While stabilization of the p53 tumor suppressor has long been held the culprit for the cytopenia
phenotype observed in human diseases linked to RP gene mutations, it has been a decade-long
mystery as to why no p53 protein is detectable in RP haploinsufficient tumor cells. In the con-
text of the RP mutant zebrafish embryos, we show that a similar loss of p53 protein is evident
as the embryos age to 2 dpf, the maternal stores of RPs are depleted, and the RP deficiency
resulting from the mutation becomes more severe. We do not believe that this loss of p53 in RP
mutants is simply due to the inability of the cells to make protein per se, for in other zebrafish
models of ribosome biogenesis deficiency such as nucleostemin, gnl2, and nop10 mutants we
are able to visualize robust p53 stabilization by western blot analysis even in the absence of ion-
izing radiation up until 4 dpf [5,6]. Interestingly, the nop10, gnl2, and nucleostemin genes all
code for proteins with important roles in early ribosome biogenesis and the processing of
rRNA. While it has been shown that there are indeed detectable defects in rRNA processing in
DBA patient CD34+ cells with RP mutations, these are by and large more subtle than the
defects we observe upon the loss of nop10, gnl2, or nucleostemin [5,6,42]. This suggests that, as
with actinomycin D, defective rRNA processing is a critical mediator of p53 stabilization and
may in fact be a causative agent in the cytopenia phenotype of human diseases such as dyskera-
tosis congenita. However, our data suggest the molecular pathology underlying the anemia in
diseases linked to RP mutations is likely to implicate mechanisms that go beyond stabilization
of the p53 protein.

The fact that others and we observe no difference in early hematopoietic stem cell expres-
sion in RP mutant zebrafish embryos coupled to the anemia failing to be rescued upon p53 loss
suggests that the anemia phenotype cannot be explained by the organism’s general p53
response to the ribosome biogenesis defects induced by RP loss [30]. Clearly the embryos
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younger than 1 dpf are experiencing some p53-induced apoptosis otherwise we would see no
AQ staining rescue upon injection of the p53 MO and no partial rescue of the morphological
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Fig 5. Lithium chloride restores p53 stabilization in RP mutant embryos and tumor cells. A) Western blot analysis of p53 levels in 2 dpf wild type, rpS7,
or rpL 11 mutant embryos either untreated or exposed to 25 Gy ionizing radiation followed by the addition of 100uM LiCl. Note the partial rescue of p53
stabilization in the RP mutant embryos when exposed to LiCl after IR. B) Quantification of the p53:actin ratio of the western blots from (A). C) Western blot
analysis of p53 levels in rpS7 MPNST tumor cells untreated or incubated with varying concentrations of LiCl. D) Western blot analysis of p53 levels in p53
M214kIM214K MIPNST tumor cells untreated or incubated with varying concentrations of LiCl. * indicates either a p53-specific isoform or a degradation product.

doi:10.1371/journal.pgen.1005326.9005

phenotypes. We therefore propose that p53 has such an early effect in the developing RP
mutant embryo that by the time of 1 dpf (approximately 30 hours post fertilization is when the
experiments would begin) all that we are able to observe by laboratory techniques are the
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apoptotic cells in the wake of a brief p53 activation. The remaining live cells at 1 dpf appear
devoid of p53 protein, and if the apoptotic cells do still carry p53 protein we cannot detect it by
western blotting. We were unable to detect p53 by western blotting in any embryo younger
than 1 dpf, but this is likely a technical issue reflecting the abundance of yolk protein still pres-
ent at this early stage. The apoptotic cells rescued by p53 loss that we are able to observe at 1
dpf also do not appear to be important for red cell development, as we detect no rescue of the
anemia phenotype upon p53 loss.

The results of TUNEL assay suggests that some DNA fragmentation upon acute DNA dam-
age is still possible in the 2 dpf RP mutant cells despite no evidence of p53 stabilization or cas-
pase activation. Other studies have reported similar findings of caspase-independent DNA
fragmentation in cancer epithelial cells in response to diverse toxins, and the authors of this
work suggest that the DNA damage induced by these toxins may lead to noncaspase-mediated
proteolytic activation of DNases [43]. Interestingly, studies in Drosophila have shown that ion-
izing radiation leads to cells acquiring RP haploinsufficiency, and that these cells undergo apo-
ptosis that is also p53-independent [44]. Taken all together, our work supports a model where
the impairment of mature red blood cell formation in organisms with RP deficiency is due to
cell loss that is not dependent on either p53 stabilization or caspase activation. However, it
should be pointed out here that the work in this study is entirely based on zebrafish models of
DBA, which carry homozygous RP mutations (as noted in the introduction, the haploinsuffi-
cient mutants have no embryonic phenotype except a slight growth defect). Therefore it may
be that p53 has a more prominent role in cells with true RP haploinsufficiency, and this
remains an issue that must be kept in mind when interpreting data generated from zebrafish
models of DBA.

While other studies have suggested that the p53 MO or p53
rescues both general apoptosis and the number of hemoglobin-expressing cells in embryos
deficient for RPs [15,38], we believe our genetic models are more consistent than using mor-
phants and that our approach to quantifying the mutant phenotypes are both more robust (we
use sample sizes N > 100) and reliable (we genotype the embryos after the blind scoring to res-
olutely identify the homozygotes). Other studies support us by demonstrating that p53 inde-
pendent pathways are contributing to the anemia phenotype of RP-mutant zebrafish embryos,
and that the loss of p53 rescues the morphological abnormalities but not the anemia phenotype
of embryos with reduced RP expression [45-47].

M2IR/M2IK i ytant background

It remains an open question as to what the major pathways beyond p53 and caspase activa-
tion contribute to the death of RP deficient cells and the anemia phenotype in zebrafish models
of DBA. Interestingly, a recent study has shown that the mutation of 7pS19 in zebrafish embryo
erythrocytes specifically reduces the translation, but not the transcription of the hemoglobin
gene hbbe3 [30]. We also recently reported that the up regulation of autophagy, the cellular
process of self-digestion that is tightly regulated during hematopoiesis, is observed in both zeb-
rafish models of DBA and in human DBA cells with RP haploinsufficiency [16]. It may there-
fore be that RP loss in maturing erythrocytes derails their proper differentiation by failing to
translate critical mRNAs, or by the constitutive activation of autophagy resulting in the eryth-
rocyte progenitor cells essentially eating themselves before they are able to fully differentiate.
The former possibility is supported by several findings suggesting that L-leucine, an amino
acid that increases translation by activating the mTOR pathway, is able to partially rescue the
anemia phenotype of zebrafish RP morphants and increases the number of erythroid cells in
red cell culture assays where CD34+ cells are infected with shRNAs against RPS19 or RPS14
[47,48]. The latter possibility is enticing for one would not expect constitutively up regulated
autophagy to elicit an apoptotic response. Or the cells may be undergoing an as of yet unknown
p53- and caspase-independent mechanism of cell death that awaits identification.
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We had previously reported that the addition of MG132 to the MPNST cells with RP gene
haploinsufficiency was not able to restore p53 stabilization [20]. At the time this led us to
believe that the block in p53 expression was at the level of protein synthesis, since MG132
should be able to stabilize any protein undergoing ubiquitination and proteasomal degradation.
However our present study suggests otherwise, that in fact the MG132 treatment is not suffi-
cient to restore p53 stabilization in RP mutant MPNST cells. There may be additional factors
at the tumor level contributing to the degradation of p53 that are as of yet not known, or it may
be that the robustness of the degradation in the tumors is much stronger than in the embryos.
While our present study is not able to delineate between these possibilities, it may be that more
powerful proteasome inhibitors are capable of restoring p53 to the same levels as we observe
with the LiCl treatment of tumor cells, and these studies will be of great future interest. It
should also be pointed out here that given the very wide range of effects that LiCl has on many
cellular signaling pathways, there may be other effects beyond the AKT pathway that are con-
tributing to the restoration of p53 that we observe.

Very recent work suggests that a mechanism for malignant transformation in RP-haploin-
sufficient cells involves cells acquiring oncogenic mutations that allow for the bypass of a 60S
ribosomal subunit integrity checkpoint [49]. We propose that these mutations (which have yet
to be identified) coupled to excessive degradation of wild type p53 would be sufficient to pro-
mote malignant transformation. Interestingly, the T-ALL cells with RPL5 and RPL10 muta-
tions, similar to the RP-haploinsufficient zebrafish tumor cells, the p53 gene remains wild type
(personal communication with Dr. De Keersmaecker). We thus posit that cells with RP defi-
ciencies are able to exert selective pressure to overcome the p53 activity not just by acquiring
P53 gene mutations but also by suppressing AKT activity.

DBA is a rare disease with a prevalence that is approximately 7 in 1 million live births [50].
In addition, since the majority of DBA patients die early in life from bone marrow failure or
from complications stemming from chronic blood transfusions, the number of DBA patients
who ultimately experience malignant transformation is very low (it would be next to impossi-
ble for us to obtain DBA patient-derived tumor tissue for p53 analysis). In the absence of a
mammalian RP mutant cancer model, the zebrafish RP mutants to date remain the best possi-
ble option for molecular studies of RP mutation-driven tumors. That said, we believe our
results may still have some important implications for human leukemia. For example, acute
myeloid leukemia (AML) has very low rates of p53 genetic inactivation (similar to the RP
mutant MPNSTs) compared to very high rates in many other tumor types [51,52]. Inhibition
of GSK-3 with small molecules in AML cells leads to increased differentiation, impaired growth
and proliferation, and the induction of apoptosis [53]. Interestingly, the immunomodulating
agent lenalidomide, used to treat multiple myeloma, results in the phosphorylation of GSK-3 at
the same serine residues that inhibit GSK-3 phosphorylation of MDM2 [54]. This drug has
also been reported in 5q-MDS patients to result in increased survival and a reduced risk of
transformation to AML [55], raising the possibility that one mechanism of action of lenalido-
mide is to inhibit GSK-3 phosphorylation of MDM2 and restore a normal p53 response to the
acquisition of oncogenic mutations. In sum, we suggest the new mechanisms driving p53 loss
that we report here may be useful pathways to target in some cancers.

Materials and Methods
Zebrafish strains and maintenance

Zebrafish mutants were created and maintained as described [19,28,56]. Animal experiments
were conducted in accordance with the Dutch guidelines for the care and use of laboratory
animals, with the approval of the Animal Experimentation Committee (Dier Experimenten
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Commissie) of the Royal Netherlands Academy of Arts and Sciences (Koninklijke Nederlandse
Akademie van Wetenschappen [KNAW] (Protocol # 08.2001).

In situ hybridizations

Performed as previously described using probes against scl [31] and SE1-globin [57]. At least
three independent stains were performed with clutches > 60 embryos. Clutches were stained
simultaneously and mutants confirmed afterwards using Sanger sequencing, as previously
described [58].

Morphology

Embryos were sorted by gross phenotype and photographed with a Leica MZ FLIII microscope.
At least three independent clutches were analyzed and the expected Mendelian ratio of mutants
was always observed. Mutants were confirmed afterwards using Sanger sequencing, as previ-
ously described [58].

Morpholino injections

Embryos were microinjected with ~1ng MO at the one-cell stage. The p53 MO (Gene Tools,
Inc. Philomath, OR, USA) is 5-GCGCCATTGCTTTGCAAGAATTG-3’ and has been previ-
ously described [59]. The missense MO sequence is 5-CATGTTCAACTATGTGT-
TAGCTTCA-3' (Gene Tools, Inc. Philomath, OR, USA)

Acridine orange staining and cell counting

Live 1 dpf embryos were incubated in E3-embryo medium + 10pg/mL AO stain (Sigma) in the
dark for 30 min. Photos were obtained using a Leica MZ FLIII microscope and cells were
blindly counted within a defined area that included the tail starting at the dorsal end of the
yolk extension using Image J v1.44 software. At least 8 animals per condition were used for
counting. Embryos were genotyped afterwards using Sanger sequencing, as previously
described [58].

O-dianisidine staining

At least 100 embryos per clutch of a mating between two heterozygous hil034b fish were
injected at the one-cell stage with MOs as described above. At 2 dpf they were stained with o-
dianisidine (Sigma) as previously described [16]. Scoring of the phenotype severity was done

blindly. Embryos were genotyped afterwards using Sanger sequencing as previously described
[58].

TUNEL assays

2 dpf embryos were untreated or exposed to 25 Gy of ionizing radiation. Six hours after irradia-
tion TUNEL assays were performed as previously described and TUNEL-positive cells counted
as for AO staining [6].

Caspase assays

Embryos at 2 dpf were either untreated or subjected to 25 Gy ionizing radiation, and mechani-
cally lysed 6 hours later with a P200 pipette (each sample = 3 embryos per well of a 96-well

plate) using 100uL of the western blotting lysis buffer described above. The Caspase-Glo™ 2 or
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3/7 assay (Promega, Madison, WI, USA) was then performed per the manufacturer’s
instructions.

cDNA synthesis and quantitative PCR

5 embryos per sample were added to 100uL Trizol (Life Technologies, Carlsbad, CA, USA),
RNA was isolated and used to make cDNA with the iScript cDNA Synthesis Kit (Bio-Rad, Her-
cules, CA, USA) per the manufacturer’s instructions. Primers used were as follows: p53 forward
5- GCTTGTCACAGGGGTCATTT-3’, p53 reverse 5-ACAAAGGTCCCAGTGGAGTG-3’,
GAPDH forward 5-GGATCTGACAGTCCGTCTTGAGAA-3’, GAPDH reverse 5- CCATT-
GAAGTCAGTGGACACAACC, actin forward 5-GCCCATCTATGAGGGTTACG-3’, actin
reverse 5’-GCAAGATTCCATACCCAGGA-3’. Quantitative PCR (qQPCR) was performed
using iQ SYBR Green Super Mix and a MyiQ Single-Color PCR thermal cycler (Biorad, Hercu-
les, CA, USA). Each experiment was performed in biological triplicate. p53 mRNA expression
in mutants relative to wild types was normalized to GAPDH and calculated according to the Ct
method. Semi-quantitative analysis was performed with a standard PCR method using either
P53 or actin primers, the products run on a 1% agarose gel. Statistics were performed with a
Student’s t-test.

Western blotting

Embryos were subject to 25 Gy ionizing radiation and then lysed 6 hours later. 350nM insulin,
10mM Trolox or 100uM LiCl (all from Sigma) was added to the E3 media immediately follow-
ing the ionizing radiation. For the MG132 (Sigma) experiment, embryo cells were dissociated
mechanically with a 200pL pipette tip and added to DMEM media +10% FCS with or without
20uM MG132 for 6 hours at 28°C before lysing the cells. The zebrafish specific p53 antibody
and western blotting of zebrafish embryos and MPNST cells has been previously described
[20]. For MPNST cells the tumor was dissected, cells mechanically dissociated with a P200
pipette, and plated in a 6 well dish with the indicated concentration of LiCl at 28°C in DMEM
+ 10% fetal calf serum (Life Technologies, Carlsbad, CA, USA) media overnight. 50ug of total
protein from the MPNST cells was used for each sample, measured by Bradford assay (BioRad,
Hercules, CA, USA). Other antibodies used at 1:1000 dilution included anti-phospho-AKT
(Cell Signaling #9275) and anti-actin (Santa Cruz Biotech, #sc-1616, Santa Cruz, CA, USA).
Antibodies used at 1:5000 included donkey anti-goat IgG-HRP (Santa Cruz Biotech, #sc-2020,
Santa Cruz, CA, USA) and sheep anti-mouse IgG-HRP (GE Healthcare, #NA931, Little Chal-
font, Buckinghamshire, United Kingdom). Quantifications of western blots were performed
using Image J v1.44 software. Unless otherwise stated, all embryos subject to western blotting
were 2 dpf.

Supporting Information

S1 Fig. RP mutations affect expression of BEI-globin but not scl A,B) In situ hybridizations
of 2 dpf embryos measuring the mRNA expression levels of the transcription factor scl (A)
and the globin gene BE1-globin (B). C) Representative shots of the dorsal aorta in either wild
type of RP mutant embryos stained with probes against scl or BEI-globin. Note the decrease of
the BEI-globin expression in the RP mutants compared to the wild type while the expression of
scl remains unchanged.

(PDF)

S2 Fig. Morphology of zebrafish mutants with and without p53 MO. Light microscopy shots
of representative wild type (left) or rpS7 mutant embryos either uninjected (center) or injected
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with the p53 MO (right) at 1, 2, or 3 dpf. Arrowheads indicate the inflation of the hindbrain
vesicle and arrows indicate pericardial edemas, both phenotypes that are rescued by the p53
MO injection.

(PDF)

S3 Fig. p53 protein stabilization is impaired in many RP mutant lines. A) Semi-quantitative
PCR analysis of p53 mRNA levels in 2 dpf zebrafish embryos carrying mutations in rpS3a,
rpL23, or rpL36 compared to wild type controls. B) Western blot analysis measuring p53 pro-
tein in the embryos from (A) with or without 25 Gy ionizing radiation (IR). * indicates either a
p53 isoform or a degradation product. C) Quantification of the ratio of p53:actin bands from
the western blots in (B).

(PDF)
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