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Background: Accumulating evidence suggests that dysregulation of Chordin-like 1
(CHRDL1) is associated with malignant biological behaviors in multiple cancers.
However, the exact function and molecular mechanism of CHRDL1 in oral squamous
cell carcinoma (OSCC) remain unclear.

Methods: The expression levels of CHRDL1 in OSCC tissues and CAL27 cells were
determined by RT-qPCR. Immunohistochemical staining was applied to detect CHRDL1
protein expression in sample tissues from OSCC patients. Gain of function and
knockdown by lentivirus were further used to examine the effects of CHRDL1 on cell
proliferation, migration, invasion, and adhesion in OSCC. Tail vein injection of CAL27 cells
with dysregulated CHRDL1 expression was further used to examine the effect of CHRDL1
on lung colonization. RNA sequencing was performed to explore the molecular
mechanisms of CHRDL1 that underlie the progression of OSCC.

Results: CHRDL1 was significantly downregulated in OSCC tissues and CAL27 cells
compared to controls. CHRDL1 knockdown enhanced migration, invasion, adhesion,
and EMT, but not proliferation, in CAL27 cells. Overexpression of CHRDL1 had the
opposite effects. Moreover, CHRDL1 was proven to inhibit tumor metastasis in vivo.
Mechanistically, MAPK signaling pathway components, including ERK1/2, p38, and JNK,
were found to regulate the malignant biological behaviors of CAL27 cells.

Conclusions: Our results suggest that CHRDL1 has an inhibitory effect on OSCC
metastasis via the MAPK signaling pathway, which provides a new possible potential
therapeutic target against OSCC.

Keywords: chordin-like 1, oral squamous cell carcinoma (OSCC), epithelial-to-mesenchymal transition (EMT),
MAPK, metastasis
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INTRODUCTION

Oral squamous cell carcinoma (OSCC) is one of the most
common lethal malignancies worldwide, with poor prognosis
(1). It is reported that approximately 377,713 cases of oral cancer
are newly diagnosed each year, accounting for approximately 2%
of all malignancies reported worldwide. The latest data indicate
that the overall number of cases will even rise to 510,948 in 2035
(2). The traditional treatments for OSCC are surgical resection,
radiotherapy, or chemotherapy or their combination. Although
reconstructive surgery of the lesion is always applied to restore
appearance and function, the side effects of surgical resection,
radiotherapy, or chemotherapy persistently and irreversibly
reduce patient quality of life. Recent research has shown an
improvement in the survival rates of OCSS patients from 55% in
1986 to 60% in 2003 (3). However, the improvement in the
survival rate of OSCC has been much smaller than that for other
cancer types, such as breast cancers and colon cancers. It is
widely accepted that the accumulation of genetic alterations in
oncogenes and tumor suppressors leads to the emergence of
OSCC (4, 5). The potential pathogenesis, including the
progression mechanism, of OSCC is not fully understood.

Bone morphogenetic proteins (BMPs), belonging to the TGF-
b family (6), play an important role in early embryonic
development and homeostasis, including bone formation and
regeneration (7). Recently, several studies have indicated that
several BMPs, such as BMP-2, BMP-4, BMP-6, and BMP-7, are
also involved in tumor development and progression (8, 9).
Studies have shown that BMP-2 has a positive effect on the
invasion ability of oral, gastric, breast, colon, bladder, and
pancreatic cancers (10–12). BMP-2 induced the invasion of
OSCC cells, possibly through CCL5 release, in coculture
models (11). BMP-9 was reported to stimulate the proliferation
of ovarian cancer cells (13). Rothhammer et al. demonstrated
that BMP-4 promotes melanoma cell invasion and migration
(14). In OSCC, BMP-7 was found to be the key to the acquisition
of cetuximab resistance (15).

Compared with the fully elucidated role of BMPs in tumors,
research on their antagonists in tumors is relatively limited.
Chordin like-1 (CHRDL1), a BMP antagonist, was originally
reported to be expressed in the developing retina (16). Mutation
of CHRDL1 is related to X-linked megalocornea, an ocular
anterior segment disorder (17–20). Recent studies have
associated CHRDL1 with various cancers, including breast
cancer (21–24), lung cancer (25–28), gastric cancer (29, 30),
thyroid cancer (31–34), T-cell acute lymphoblastic leukemia (T-
ALL) (35), melanoma (36), and OSCC (37). CHRDL1 was proven
to block BMP-induced increases in breast cancer cell migration
and invasion. High CHRDL1 expression is associated with better
clinical outcomes in patients with breast cancer (21). Furthermore,
CHRDL1 expression is significantly downregulated in gastric
cancer tissues and associated with poor survival, and CHRDL1
knockdown promotes tumor cell proliferation and migration
through BMPR II by activating Akt, Erk, and b-catenin (29). In
melanoma, CHRDL1 showed growth-suppressing properties in
melanoma-derived cell lines with DNA methylation and genomic
deletion (36). However, most of these studies provided only
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correlation analyses of CHRDL1 with different tumors. The
specific role of CHRDL1 in cancers should be further explored.
Moreover, the function and regulatory mechanism of CHRDL1 in
OSCC have not been studied.

Here, we aimed to identify the role of CHRDL1 in OSCC and
to explore the relevant mechanisms, which may provide a new
potential target for OSCC therapy.
METHODS AND MATERIALS

Clinical Specimen Collection and
Immunohistochemistry Staining
for CHRDL1
The studies involving human participants were approved by the
Ethics Committee of the Stomatology Hospital of Guangzhou
Medical University (Approval No. KY2019026). Thirty primary
OSCC specimens and adjacent tissue specimens were obtained
from the Department of Oral and Maxillofacial Surgery,
Stomatology Hospital of Guangzhou Medical University. All
OSCC specimens were pathologically diagnosed as OSCC, and
the adjacent tissue specimens were obtained ≥2 cm from the
resection margin, which were pathologically diagnosed to have
no precancerous or reactive changes histologically. All specimens
were frozen immediately in liquid nitrogen after resection.

Immunohistochemical staining (IHC) was performed on 5
human OSCC tumor tissues and paired adjacent specimens.
Paraffin-embedded tissues were cut into 4-µm sections. The
samples were dewaxed, dehydrated, and then treated with 3%
H2O2 solution to inhibit the endogenous peroxidase activity.
Antigen retrieval was carried out by microwave heating in
sodium citrate buffer (pH 7.8). Slides were then blocked with
5% BSA solution. Tissue sections were further incubated with
primary antibody against CHRDL1 (1:150 dilution, Zen-Bio) at
4°C for 12 h and then washed and incubated with secondary
antibody (1:100 dilution, ZSJB-Bio) at 37°C for 1 h. Finally, slides
were incubated with diaminobenzidine (DAB, ZSJB-Bio) and
counterstained with hematoxylin.

IHC slices were scanned by a digital tissue slice scanner (3D
HISTECH, Magyarország). The Servicebio image analysis system
was used to score the slides for positivity. Positivity grading was
first performed (I) as follows: negative without staining, 0 points;
weak positive/light yellow, 1 point; medium positive/brownish
yellow, 2 points; strong positive/brown, 3 points; then, the
cumulative weak, medium, and strong positive area, tissue
area, and integrated optical density (IOD) value of positive in
the measurement area were calculated. The histochemistry score
(H-score) is the output of a histological scoring method for
immunohistochemistry. The number of positive cells in each
section and their staining intensity were converted into
corresponding values for semiquantification of the tissue
staining, as follows: H-Score = ∑(pi×i) = (percentage of weak
intensity area ×1) + (percentage of moderate intensity area ×2) +
(percentage of strong intensity area ×3), where pi represents the
percentage of the pixel area of positive signal, and i represents
positive grade (38, 39).
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Cell Line Acquisition and Culture
The human tongue squamous cell carcinoma cell line CAL27
(ATCC, ATCC® CRL-2095™) was purchased from ATCC, while
the normal oral epithelial keratinocyte line HOK was purchased
from AULU (Guangdong, China). CAL27 and HOK cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
(Gibco, Waltham, MA, USA). The complete cell culture
medium contained 10% fetal bovine serum (FBS, Gibco) and
1% penicillin/streptomycin (Gibco). The serum-free cell culture
medium for carcinoma cells was prepared as DMEM containing
1% penicillin/streptomycin for a number of subsequent
experiments (e.g., wound-healing assay, cell migration, and
invasion assays). The cells were cultured in a humidified
incubator at 37°C and 5% CO2 incubator.

Overexpression/Knockdown of CHRDL1 in
CAL27 by Lentiviral Transfection
Commercial lentivirus (lenti-CHRDL1 and shRNA-CHRDL1;
OBIO, Shanghai, China) was utilized to overexpress or silence
CHRDL1. An empty carrier lentivirus (lenti-NC/shRNA-NC)
was used as a negative control. CAL27 cells were infected with
the lentivirus (MOI = 60) and screened with puromycin (2 µg/
ml) for 15 days. Quantitative reverse transcription-polymerase
chain reaction (RT-qPCR) andWestern blotting (WB) were used
to validate the overexpression/knockdown level of CHRDL1.

RNA Isolation and Quantitative
Real-Time PCR
Total RNA from the clinical specimens was extracted using
TRIzol Reagent (Invitrogen, USA) according to the
manufacturer’s instructions. Total RNA from the cells was
extracted using an RNA extraction kit (19221ES50, Yeasen,
China). The quantity and quality of RNAs were detected by
A260/A280 with a spectrophotometer (NanoDrop 2000, Thermo
Fisher Scientific, Waltham, MA, USA). Two micrograms of total
RNA was used to synthesize cDNA (11141ES60, Yeasen, China).
RT-qPCR was performed using a SYBR Green qPCR kit
(11199ES08, Yeasen, China). Relative mRNA expression was
normalized to that of the internal GAPDH control. The primer
sequences are listed in Supplementary Table S1. The relative
expression of targeted genes was calculated by the 2−DDCt

method. Each test was repeated at least three times.

Western Blot Analysis
Total proteins were isolated from cell samples through precooled
cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA)
with protease inhibitor and phosphatase inhibitors (RayBiotech,
Guangzhou, China) and quantified by a BCA protein assay kit
(SE248351, Thermo Fisher, USA). Equal protein extracts (30 µg)
were separated by SDS–PAGE (PG112, Epizyme, China) and
transferred to polyvinylidene fluoride membranes (Millipore,
Burlington, MA, USA). After incubation with the primary
antibody and the secondary antibody, the target protein was
visualized by chemiluminescence using an ECL kit (P001AS,
Beyotime, China). The antibodies used in the Western blot assay
are listed as follows: CHRDL1 (1:500, Thermo Fisher, USA),
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Fibronectin (1:1,000, Proteintech, China), E-cadherin (1:1,000,
Proteintech, China), E-cadherin (1:1,000, Proteintech, China),
Cytokeratin 18 (1:1,000, Abcam, UK), b-actin (1:1,0000, Cell
Signaling Technology, USA), JNK (1:1,000, Cell Signaling
Technology, USA), p-JNK (1:1,000, Cell Signaling Technology,
USA), ERK1/2 (1:1,000, Cell Signaling Technology, USA), p-
ERK1/2 (1:1,000, Cell Signaling Technology, USA), p38 (1:1,000,
Cell Signaling Technology, USA), p-p38 (1:1,000, Cell
Signaling*nbsp;Technology, USA), and goat anti-rabbit IgG
H&L (HRP) antibody (1:10,000, Abcam, UK). b-actin served as
the internal control to calculate the relative expression of the
targeted proteins.

Wound-Healing Assay
For the wound-healing assay, transfected CAL27 cells were first
incubated and cultured with complete medium. A scratch was
made after a confluent monolayer of cells was formed.
Afterward, the cells were washed with phosphate-buffered
saline (PBS) and cultured with serum-free medium. Images
were taken at 0 and 24 h after wound generation. The wound-
healing areas were assessed by ImageJ to calculate the wound-
healing rate. Wound-healing rate% = [Area at 0 –Area at 1]/Area
at 0 × 100% (Area at 0 is the area of the wound measured
immediately after scratching, and Area at 1 is the area of the
wound measured at 1 h after scratching). The wound area was
measured at 0 and 24 h. Each test was repeated at least
three times.

Cell Migration Assay
CAL27 cells were seeded at a density of 1 × 105 in serum-free
DMEM in the upper wells of Transwell chambers (8 mm pore
size, Corning, New York, NY, USA), while the lower wells were
filled with complete medium containing 20% FBS. After 48 h,
cells in the upper layer were removed with a swab. The cells on
the bottom membrane were fixed with 4% paraformaldehyde
and stained with crystal violet. Five random visual fields were
photographed for each group, and the experiments were repeated
three times.

Cell Invasion Assay
CAL27 cells were seeded at a density of 2 × 105 in serum-free
DMEM in the upper wells of chambers that were coated with
60 µl of Matrigel (200 mg/µl, Corning) and incubated for 2 h at
37°C, while the lower wells were filled with complete medium
containing 20% FBS. Cells in the upper layer were removed with
a swab after 36 h of culture, and cells on the bottom membrane
were fixed with 4% paraformaldehyde and stained with crystal
violet. Each group was photographed in five randomized visual
fields, and the experiments were repeated three times.

Cell Adhesion Assay
A Cell Adhesion Detection kit (BB-48120, BestBio Science,
China) was used according to the manufacturer’s instructions
to analyze the adhesion ability of CAL27 cells. Briefly, the coating
buffer (100 µl) was transferred to each well in a 96-well plate and
incubated overnight at 4°C. Cells (5×104) were inoculated into
each well of the coated 96-well plate and allowed to adhere for 1.5
April 2022 | Volume 12 | Article 862751
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h at 37°C. After the cells were washed three times with PBS, cell
imaging was performed. The optical density value at 450 nm was
measured to calculate the cell adhesion rate. Each test was
repeated at least three times.

Rhodamine-Conjugated Phalloidin
Staining and Confocal Microscopy
CAL27 cells were seeded at a density of 1,000 in a confocal dish.
After 24 h, cell monolayers were fixed with 4% paraformaldehyde
and stained with rhodamine-conjugated phalloidin (40737ES75,
Yeasen, China) according to the manufacturer’s instructions.
Confocal images were captured using a confocal laser scanning
microscope (LEIKATCSSP8, Leica, Germany).

mRNA Sequencing
Total RNA was extracted from transfected CAL27 cells (OV-
CHRDL1/OV-NC and sh1-CHRDL1/sh-NC) using TRIzol
reagent (Invitrogen Life Technologies, USA) following the
manufacturer’s protocol. RNA concentration and purity were
checked with a Nanodrop 2000 instrument (Thermo Fisher
Scientific, USA). After RNA quality control was performed, the
libraries for next-generation sequencing were prepared using the
TruSeqTM RNA Sample Prep Kit (Illumina, USA) according to
the manufacturer’s instructions. Sequencing was performed by
Shanghai Origingene Biopharm Technology Co., Ltd. (Shanghai,
China). After quality control of the original data, the high-quality
sequencing data were compared with the designated reference
genome. The expression values were calculated by the StringTie
tool, and the tDESeq algorithm was applied to filter the
differentially expressed genes. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
performed to reveal the involved pathways.

Lung Metastasis in Nude Mice
The animal experiments were conducted in accordance with the
guidelines approved by the Institutional Animal Care and Use
Committee of the First Affiliated Hospital of Guangzhou Medical
University of China (Approval number was 2017-086).

Four-week-old male BALB/c-nude mice were purchased from
GemPharmatech (Jiangsu, China). All animal experiments were
carried out following the guidelines set by the Institutional
Animal Care and Use Committee of the First Affiliated
Hospital of Guangzhou Medical University of China. Nude
mice were randomly divided into four groups. CAL27 cells
(1×106) were suspended in 0.1 ml PBS and injected via the tail
vein into animals that had been anesthetized with 3% isoflurane.
After 9 weeks, the nude mice were anesthetized and euthanized
by cervical dislocation. Lungs were collected, weighed, rinsed,
fixed, and embedded in paraffin blocks and sectioned for H&E
staining to confirm metastasis. Three slices were acquired from
each lung sample. The number of pulmonary tumor nodules
were counted under the dissecting microscope. The averaged
lung colonies from 3 slices were calculated for each lung sample.

Cell Proliferation Assay
Cells (4,000) were cultured in 96-well plates, and cell
proliferation was detected using a Cell Counting Kit-8
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(Dojindo, Kumamoto, Japan) at 1, 3, and 5 days of culture
according to the manufacturer’s instructions. EdU staining was
performed to assess cell proliferation ability by the Cell-Light
EdU imaging kit (C0071S, Beyotime, China) following the
manufacturer’s instructions. A colony formation assay was
performed. One thousand transfected CAL27 cells were seeded
in six-well plates and cultured for 8 days in complete medium.
The colonies were further fixed with 4% paraformaldehyde and
stained with crystal violet. Colonies that contained more than 50
cells were counted. Each test was repeated at least three times.

Statistical Analysis
The data were analyzed using statistical software (SPSS Statistics
16.0). The data are presented as the means and standard
deviations. Student’s t-test was used for comparisons of
normally distributed data. The Mann–Whitney U test was used
for nonnormally distributed data. A p-value <0.05 was
considered statistically significant.
RESULTS

CHRDL1 Is Downregulated in OSCC Both
In Vivo and In Vitro
The data from the Gene Expression Profiling Interactive Analysis
database indicated that the expression of CHRDL1 was
downregulated in HNSC tissues compared to normal tissues
(Figure 1A). We further collected samples from 30 OSCC
patients, and qRT-PCR indicated that the expression of
CHRDL1 was significantly decreased in OSCC tissues compared
to adjacent tissues (Figure 1B). A lower expression level of
CHRDL1 was also detected in the common OSCC cell line
CAL27 than in the normal cell line HOK (Figure 1C). IHC
analysis of tissue samples showed that CHRDL1 was
downregulated in OSCC tissues. Representative IHC images
revealed that CHRDL1 protein was primarily distributed in the
epithelial structure of OSCC tissues and adjacent tissues. However,
there was little staining of CHRDL1 in either the tumor stroma in
OSCC or subepithelial tissues in the adjacent normal tissues
(Figures 1D, E). These data demonstrated that CHRDL1 was
typically negatively correlated with OSCC development.

Overexpression of CHRDL1 Inhibits
Malignant Biological Behaviors of
CAL27 Cells
The role of CHRDL1 in the progression of OSCC was explored in
the CAL27 cell line. CHRDL1 was overexpressed in the CAL27
cell line by lentivirus infection (Figures 2A–C). Overexpression
of CHRDL1 markedly suppressed the wound-healing and
migration abilities of CAL27 cells (Figures 2D–G).
Furthermore, CHRDL1 overexpression significantly decreased
the number of invading CAL27 cells (Figures 2F, G). The cell
adhesion assay showed a lower adhesion rate in the CHRDL1
overexpression (OV-CHRDL1) group than in the control group
(NC-CHRDL1) (Figures 2H, I). However, the EdU assay, colony
formation assay, and CCK-8 assay showed no significant
April 2022 | Volume 12 | Article 862751
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difference between the OV-CHRDL1 group and the NC-
CHRDL1 group, indicating that overexpression of CHRDL1
did not affect the proliferation of CAL27 cells (Supplementary
Figure 1). These results suggested that upregulation of CHRDL1
inhibited metastasis rather than proliferation in the CAL27
cell line.

CHRDL1 Knockdown Promotes Malignant
Biological Behaviors in CAL27 Cells
To determine whether silencing CHRDL1 promoted malignant
biological behaviors in the CAL27 cell line, two stable CHRDL1-
knockdown CAL27 cell lines (sh1-CHRDL1 and sh2-CHRDL1)
and their control group (sh-NC) were established. Although
CHRDL1 mRNA levels were significantly decreased in both stable
CHRDL1-knockdown cell lines (Figure 3A), the protein level was
reduced only in the sh1-CHRDL1 cell line and was obviously
increased in the sh2-CHRDL1 cell line (Figure 3B, C). Thus, the
sh1-CHRDL1 CAL27 cell line was used for the following
experiments. We demonstrated that CHRDL1 silencing markedly
promoted the wound-healing and migration abilities of CAL27 cells
(Figures 3D–G). The sh1-CHRDL1 CAL27 cells also exhibited
enhanced invasion (Figures 3D–G) and adhesion ability
(Figures 3H, I) compared to sh-NC CAL27 cells. Intriguingly,
proliferation assays also showed no significant difference between
the sh1-CHRDL1 group and the sh-NC group (Supplementary
Figure 1). These findings confirmed that CHRDL1 silencing
promoted the progression of CAL27 cells.
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CHRDL1 Knockdown Induces the
Epithelial–Mesenchymal Transition
Phenotype in CAL27 Cells
EMT has been widely reported to increase OSCC metastasis (40,
41). Compared to sh-NC cells, sh1-CHRDL1 cells became
fusiform and fibroblast-like in shape and lost their polygonal
epithelial morphology (Figure 4A a). The sh1-CHRDL1 CAL27
cells also became more dispersed and showed loose cell-to-cell
contact compared to sh-NC CAL27 cells under high cell density
conditions (Figure 4A b). Rhodamine phalloidin staining was
further performed to detect F-actin. Actin-rich membrane
protrusions called filopodia (white arrow) were clearly seen at
the periphery of sh1-CHRDL1 CAL27 cells but not sh-NC CAL27
cells (Figure 4A c). To further examine the EMT-like phenotype
of sh1-CHRDL1 CAL27 cells, the expression of epithelial and
mesenchymal markers, including cytokeratin 18, E-cadherin, N-
cadherin, and fibronectin, was examined by WB (Figures 4B, C).
The protein expression levels of E-cadherin and cytokeratin 18,
epithelial differentiation markers, were significantly upregulated in
OV-CHRDL1 CAL27 cells compared to OV-NC CAL27 cells. The
protein expression levels of the mesenchymal differentiation
markers N-cadherin and fibronectin were significantly
downregulated in OV-CHRDL1 CAL27 cells compared to OV-
NC CAL27 cells. In contrast, the protein expression levels of E-
cadherin and cytokeratin 18 were 1.21- and 2.17-fold
downregulated, respectively, in sh1-CHRDL1 CAL27 cells
compared to sh-NC CAL27 cells, while the protein expression
A B

D E

C

FIGURE 1 | The expression of CHRDL1 was downregulated in OSCC tissue and cell lines. (A) Relative mRNA expression of CHRDL1 in OSCC tissues (n = 201)
and normal tissues (n = 18) from the TCGA database. (B) The relative mRNA expression of CHRDL1 in 30 specimens of OSCC and adjacent tissues was
determined by qRT-PCR. (C) The relative mRNA expression of CHRDL1 in normal human oral keratinocytes (HOK) and the OSCC cell line CAL27 was determined
by RT-qPCR. CHRDL1 mRNA expression was normalized to GAPDH. (D, E) IHC analysis of CHRDL1 in tumor and adjacent tissues (n = 5). Error bars represent the
standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 2 | Overexpression of CHRDL1 inhibits CAL27 cell migration, invasion, and adhesion. (A) Relative mRNA expression of CHRDL1 in CAL27 cells after lentivirus
transfection. (B, C) CHRDL1 protein expression in CAL27 cells after lentivirus transfection was identified by Western blot and quantitatively analyzed. (D, E) Representative
images of wound-healing assays of transfected CAL27 cells at 0 and 24 h and statistical results from each group. (F, G) Migration and invasion assays of transfected CAL27
cells. Representative images of cell migration and invasion in each group are shown in (F). Statistical analyses of cell migration and invasion are shown in (G). (H, I) Cell
adhesion assay of transfected CAL27 cells. Representative fluorescence images from each group (H) and statistical analyses of the adherence rate (I). Error bars represent the
standard deviation. **p < 0.01, ***p < 0.001.
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FIGURE 3 | CHRDL1 knockdown promotes CAL27 cell migration, invasion, and adhesion. (A) Relative mRNA expression of CHRDL1 in CAL27 cells after lentivirus
transfection. (B, C) CHRDL1 protein expression in CAL27 cells after lentivirus transfection was evaluated by Western blot and quantitatively analyzed. (D, E)
Representative images of wound-healing assays of transfected CAL27 cells at 0 and 24 h and statistical analyses of each group. (F, G) Migration and invasion
assays of transfected CAL27 cells. Representative images of cell migration and invasion in each group are shown in (F). Statistical analyses of cell migration and
invasion are shown in (G). (H, I) Cell adhesion assay of transfected CAL27 cells. Representative fluorescence images of each group (H) and statistical analyses of
the adherence rate (I). Error bars represent the standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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levels of N-cadherin and fibronectin were 0.64- and 0.53-fold
upregulated, respectively, in sh1-CHRDL1 CAL27 cells compared
to sh-NC CAL27 cells. These results suggested that CHRDL1
silencing in CAL27 cells led to the EMT phenotype, while
overexpression of CHRDL1 in CAL27 cells inhibited the
process. Thus, CHRDL1 knockdown may induce metastasis in
CAL27 cells by activating EMT.

CHRDL1 Regulates the MAPK Signaling
Pathway in CAL27 Cells
To identify genes differentially expressed specifically in the
context of high versus low CHRDL1 levels, RNA sequencing
was performed in OV-NC/OV-CHRDL1 and sh-NC/sh1-
Frontiers in Oncology | www.frontiersin.org 8
CHRDL1 CAL27 cells. A fold-change >2.0 or <−2.0 and padj <
0.05 were chosen as cutoff criteria and visualized using the
heatmap. A total of 163 upregulated and 179 downregulated
genes in OV-CHRDL1 CAL27 cells compared to OV-NC cells
were identified by gene expression analysis (Figure 5A, left). In
addition, 1067 genes were upregulated and 952 genes were
downregulated in sh1-CHRDL1 CAL27 cells compared to sh-
NC cells (Figure 5A, right). Then, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed on the differentially expressed genes
(DEGs) identified in OV-CHRDL1 CAL27 cells and sh1-
CHRDL1 CAL27 cells. The top 10 most significant GO
biological processes (BP) are shown in Figure 5B. Cell
A

B

C

FIGURE 4 | Depletion of CHRDL1 induces the EMT phenotype in CAL27 cells. (A) Representative fluorescence images of sh-NC/sh1-CHRDL1 CAL27 cells under
low (A) and high (b) cell density conditions. (c) Rhodamine-conjugated phalloidin staining of F-actin in sh-NC/sh1-CHRDL1 CAL27 cells, examined using confocal
microscopy. The arrows indicate filopodia. (B, C) The expression of EMT markers (Fibronectin, N-cadherin, E-cadherin, and Cytokeratin 18) in CAL27 cells after
lentivirus transfection was detected by Western blot and quantitatively analyzed. All experiments were performed three times, and one representative experiment is
shown. Error bars represent the standard deviation. **p < 0.01, ***p < 0.001.
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morphogenesis and regulation of cell adhesion were identified in
sh1-CHRDL1 CAL27 cells, consistent with the in vitro results.
The top 10 enriched KEGG pathways are shown in Figure 5C.
Interestingly, MAPK signaling was enriched in both OV-
CHRDL1 CAL27 cells and sh1-CHRDL1 CAL27 cells. Thus,
MAPK signaling pathway components were further probed by
WB (Figures 5D, E). The protein expression of phosphorylated
JNK (p-JNK) was upregulated, and that of phosphorylated ERK
(p-ERK1/2) and p38 (p-p38) was downregulated, in OV-
CHRDL1 CAL27 cells compared to OV-NC CAL27 cells. In
contrast, the protein expression of p-JNK was downregulated
and that of p-ERK and p-p38 was upregulated in sh1-CHRDL1
CAL27 cells compared to sh-NC CAL27 cells. These results
indicated that CHRDL1 may influence the MAPK pathway in
CAL27 cells to regulate cell metastasis.

CHRDL1 Regulates Tumor Metastasis
In Vivo
To determine the metastatic effect of CHRDL1 in vivo, OV-NC/
OV-CHRDL1 and sh-NC/sh1-CHRDL1 CAL27 cells were
injected into 4-week-old male BALB/c nude mice via the tail
vein, and their lung colonization ability was analyzed. Samples
were collected after 9 weeks to determine the number of
pulmonary tumor colonies and weight changes. As shown in
Figure 6A, the number of lung tumors (red arrow) derived from
Frontiers in Oncology | www.frontiersin.org 9
OV-CHRDL1 CAL27 cells was significantly decreased compared
to that derived from OV-NC CAL27 cells. The number of lung
tumors (red arrow) derived from sh1-CHRDL1 CAL27 cells was
significantly increased compared to that derived from sh-NC
CAL27 cells. The lung weights of the mice injected with OV-
CHRDL1 CAL27 cells were lower than those of the mice injected
with OV-NC CAL27 cells. In contrast, the lungs from the mice
injected with sh1-CHRDL1 CAL27 cells weighed more than
those of the mice injected with sh-NC CAL27 cells
(Figure 6B). Furthermore, hematoxylin-eosin staining of lung
tissues showed that mice injected with OV-CHRDL1 CAL27
cells had fewer lung colonies, while mice injected with sh1-
CHRDL1 CAL27 cells showed more lung colonies, compared to
the control group (Figure 6C). These results demonstrated
that CHRDL1 silencing could promote tumor metastasis
and enhance lung colonization in vivo, while CHRDL1
overexpression could restrain tumor metastasis and enhance
lung colonization in vivo.
DISCUSSION

The roles of CHRDL1, a BMPS antagonist associated with
various cancers, should be more deeply explored. In the
present study, we focused on the effect of CHRDL1 on OSCC
A B

D EC

FIGURE 5 | CHRDL1 regulates the MAPK signaling pathway in CAL27 cells. (A) Heatmap of differentially expressed genes between OV-CHRDL1 and OV-NC (left)
and between sh1-CHRDL1 and sh-NC (right). Green indicates downregulated genes, and red indicates upregulated genes. The thresholds for up- and
downregulation were a +2.0-fold and -2.0-fold change, respectively, and a padj < 0.05. (B) Top 10 GO-BP terms enriched among DEGs from OV-CHRDL1 CAL27
cells and sh1-CHRDL1 CAL27 cells. (C) Top 10 KEGG pathways enriched among DEGs from OV-CHRDL1 CAL27 cells and sh1-CHRDL1 CAL27 cells.
(D, E) Protein expression of MAPK signaling pathway-related markers in CAL27 cells after lentivirus transfection. Error bars represent the standard deviation. **p <
0.01, ***p < 0.001.
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in vitro and in vivo and further revealed its function and
potential mechanisms.

The expression of CHRDL1 is dysregulated in different types of
tumors. CHRDL1 was reported to be downregulated in T-ALL
Frontiers in Oncology | www.frontiersin.org 10
(35), gastric cancer (29), thyroid cancer (31–34), lung cancer (25–
28), malignant melanoma (36), and breast cancer (22–24).
However, Mock etal. (42) reported an upregulation of CHRDL1,
which is activated by the transcription factor ZEB1 and correlated
A

B

C

FIGURE 6 | Effects of CHRDL1 on CAL27 cells in vivo. (A) Representative images of the lungs of BALB/c nude mice at 9 weeks after inoculation with OV-NC/OV-
CHRDL1 (left) or sh-NC/sh1-CHRDL1 (right) CAL27 cells by tail vein injection. The red arrows show nodules on the lung surfaces. (B) Weights of the lungs of BALB/
c-nude mice inoculated with OV-NC/OV-CHRDL1 (left) or sh-NC/sh1-CHRDL1 (right) CAL27 cells by tail vein injection. (C) Photomicrographs of hematoxylin-and-
eosin-stained lungs of mice injected with OV-NC/OV-CHRDL1 (up) or sh-NC/sh1-CHRDL1 (down) CAL27 cells. Error bars represent the standard deviation. *p <
0.05, ***p < 0.001, ****p < 0.0001.
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with bonemetastasis rather than brain or lungmetastasis, in breast
cancer. Cha etal. (37) used array-based comparative genomic
hybridization (aCGH) and multiplex ligation-dependent probe
amplification (MLPA) to screen human genome-wide alterations
in seven OSCC tissues and their resection margins. They found
that CHRDL1 was one of the eleven genes with the highest
amplification frequencies. No additional expression analysis was
performed. However, we found lower CHRDL1 expression in
OSCC tissues than in adjacent tissues by bioinformatic analysis,
RT-qPCR and WB confirmation. The inconsistent findings
regarding the expression of CHRDL1 in OSCC might be
attributable to various factors, including differences in controls
and populations, small sample sizes, and the heterogeneity of
OSCC. The GEPIA database (43) was searched to analyze
CHRDL1 expression between the tumor and normal groups
(Supplementary Figure 2). CHRDL1 was downregulated in
head and neck squamous cell carcinoma (HNSC), which was
consistent with our results. Furthermore, CHRDL1 was also
downregulated in esophageal carcinoma (ESCA). It is possible
that HNSCC (including OSCC) and ESCA share a common
histological origin (i.e., stratified squamous epithelium) (44) and
a similar genomic characterization (45–47). CHRDL1 is
downregulated in most malignant tumors (except for thymoma),
despite their differing histologic origins. We also found that
CHRDL1 expression was decreased in OSCC. These findings
suggest that CHRDL1 downregulation may regulate the
initiation of malignant tumors across different tissues.

CHRDL1 knockdown significantly facilitated migration,
invasion, and adhesion, but not proliferation, in OSCC cells.
CHRDL1 overexpression reversed these cellular phenotypes. It
has been demonstrated that both endogenous CHRDL1 and
recombinant CHRDL1 suppress the migration and invasion
induced by BMP4 signaling in different breast cancer cell lines
(21). CHRDL1 knockdown promotes the proliferation and
migration of gastric cancer cells through BMPR II by activating
Akt, Erk, and b-catenin (29). Mithani etal. (36) demonstrated
growth-suppressive properties with CHRDL1 transfection into
melanoma-derived cell lines. Tumor metastasis in vivo can be
simplified into an ordered process consisting of local invasion,
intravasation, survival in the circulation, extravasation, and
colonization (48). In an in vivo nude mouse model, CHRDL1
knockdown in CAL-27 cells significantly increased the weight of
the lungs and the metastatic nodules of the lungs. Overexpression
of CHRDL1 reversed this effect.

The initiation of cancer cell metastasis is highly associated
with the aberrant activation of the EMT process, which allows
cancer cells to disseminate from the primary tumor to the
surrounding tissues (49). EMT involves the decreased
expression of epithelial markers such as E-cadherin and
cytokeratin 18 and the increased expression of mesenchymal
markers such as fibronectin and N-cadherin (50). Activation of
EMT was also found in gastric cancer and breast cancer cells after
CHRDL1 silencing (29, 42). It is worth noting that we observed
an EMT-like phenotype in CHRDL1-depleted CAL27 cells.

The dysregulated signaling pathway after CHRDL1
dysregulation was further explored in CAL-27 cells. Mitogen-
Frontiers in Oncology | www.frontiersin.org 11
activated protein kinase (MAPK) signaling pathway members,
including p38, ERK1/2, and JNKs, regulate all critical phases of
cell growth, including proliferation, differentiation, and
apoptosis. The deregulation of the MAPK pathway has been
reported in several types of tumors, including human epithelial
carcinogenesis, prostate cancers, renal cell carcinoma,
hepatocellular carcinoma, glial neoplasms, and breast
cancer (51).

Various lines of evidence in OSCC have reported that the
phosphorylated activation of p38 promotes cell proliferation,
migration, and invasion (52–55). In addition, inhibition of p38
signaling reduces proliferation, angiogenesis, lymphangiogenesis
and tumor-induced inflammation (52, 56) and increases
apoptosis and autophagy in OSCC tumor cells (57). ERK1/2
phosphorylation appears to promote OSCC cell progression,
migration, proliferation, and metastasis (58, 59). Notably, the
role of JNK signaling in OSCC is complex and remains
controversial. Some authors have argued that downregulation
of JNK1/2 pathways inhibits OSCC cell metastasis (60–63) and
increases apoptosis and autophagy (57). In contrast, some
reports have concluded that reducing the phosphorylation of
JNK promotes OSCC cell progression and migration (64–66),
which is consistent with our results.

The effects of CHRDL1 on the MAPK signaling pathway have
rarely been reported. We found that silencing CHRDL1 in an OSCC
cell line could activate the MAPK signaling pathway, leading to the
promotion of malignant behaviors in OSCC. In contrast,
overexpression of CHRDL1 in CAL27 cells inhibited the expression
of phosphorylated ERK1/2 and p38 and increased the level of
phosphorylated JNK, leading to the malignant characteristics of
OSCC. Several studies of OSCC have indicated that activation of
the MAPK signaling pathway induces EMT to increase cellular
malignancy (67–70). In addition, MAPK inhibitors can restore the
original morphology of epithelial cells or block the expression of
EMT-related factors (71, 72). These findings supported the
hypothesis that CHRDL1 is associated with EMT and aggressive
behaviors through the MAPK pathway in OSCC. MAPK inhibitors
should be used to confirm the involvement of ERK1/2, p38, and JNK
in CHRDL1-related phenotypes in future studies.

Furthermore, noninvasive detection of salivary, serum, and
plasma factors is an important method for OSCC prediction (73–
76). Our study is limited by the fact that CHRDL1 levels were not
measured in the saliva and serum of OSCC patients due to the
lack of such samples.
CONCLUSION

In conclusion, our study revealed the modulatory role of
CHRDL1 in the malignant characteristics of OSCC as well as
the molecular mechanism. The downregulation of CHRDL1 in
OSCC may induce EMT and promote metastasis via the MAPK
signaling pathway, while upregulation of CHRDL1 could
reverse this effect. Our study provides the new perspective
that CHRDL1 has possible potential as a molecular target in
OSCC therapy.
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