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Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a
broad distribution of relaxation times in response to linear mechanical perturbations.
Although this macroscopic stress relaxation is an essential feature in the application
of arrested systems as structural materials, consumer products, foods, and biological
materials, the microscopic origins of this relaxation remain poorly understood. Here,
we elucidate the microscopic dynamics underlying the stress relaxation of such
arrested soft materials under both quiescent and mechanically perturbed conditions
through X-ray photon correlation spectroscopy. By studying the dynamics of a model
associative gel system that undergoes dynamical arrest in the absence of aging effects,
we show that the mean stress relaxation time measured from linear rheometry is
directly correlated to the quiescent superdiffusive dynamics of the microscopic clus-
ters, which are governed by a buildup of internal stresses during arrest. We also show
that perturbing the system via small mechanical deformations can result in large
intermittent fluctuations in the form of avalanches, which give rise to a broad
non-Gaussian spectrum of relaxation modes at short times that is observed in stress
relaxation measurements. These findings suggest that the linear viscoelastic stress
relaxation in arrested soft materials may be governed by nonlinear phenomena
involving an interplay of internal stress relaxations and perturbation-induced inter-
mittent avalanches.
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A broad distribution of relaxation times in response to linear mechanical perturbations—
manifested, for instance, via power-law or stretched-exponential stress relaxation curves—
is recognized as a fundamental property of arrested soft materials and occurs ubiqui-
tously in glasses (1), concentrated emulsions (2, 3), gels (4), surfactant solutions (5),
granular systems (6), and biological materials (7–11). Despite this universality, the cur-
rent understanding of this phenomenon is prevalently system-specific; for example, in
glasses, nonexponential stress relaxations can be approached from the perspective of
dynamic heterogeneity (1), referring to the spatiotemporal heterogeneities of mobilities
that manifest within the glass microstructure (12). In associative systems, such as gels,
stretched-exponential stress relaxations can be interpreted as a convoluted exponential
relaxation process originating from an exponential or logarithmic distribution in the
size of different relaxing mechanical components (5, 13, 14). In strongly aging systems
such as colloidal glasses and emulsions, relaxations can be analyzed from the viewpoint
of activated hops in an exponential potential-energy landscape through a framework
known as soft glassy rheology (15, 16). The quest to understand nonexponential stress
relaxation in a variety of soft materials has also motivated studies of nonaffine deforma-
tions (17), nonlinear internal prestress (8), fractal structures (18), shear-transformation
zones (19), aging-induced avalanches (3), interchain locking (20), and phase separation
(21). This large variety of system-specific relaxation processes that have been proposed
makes extracting the key physics behind broadly distributed stress relaxation dynamics
in arrested soft materials a complicated task.
Arrested soft materials also exhibit a common microscopic relaxation behavior, in

the form of a compressed exponential decay in the correlation functions arising from
the superdiffusive motion of the constituents (22–26). The origins of these dynamics
are well understood as being athermal in nature, wherein internal stress heterogeneities
generated during arrest are released and cause local strain propagation at a rate exceed-
ing that from thermal rearrangements (22–25, 27, 28). These microscopic dynamics
are expected to play an important role in dictating the macroscopic stress relaxation
dynamics of arrested systems. Indeed, evidence for this idea lies in past studies on gels
(4) and biological networks (11), where correlations between the aging-induced evolu-
tion of microscopic relaxation times and macroscopic relaxation times (4) or elastic
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moduli (11) have been established. However, despite these ear-
lier studies, a connection between the microscopic relaxation
dynamics and the statistical features of the broad distribution
of relaxation times in macroscopic perturbations (e.g., the
mean value and the width of the distribution of relaxation
times) has remained elusive.
Here, we aim to address this missing connection through a

multiscale investigation of the relaxation dynamics of an
arrested model system via rheology, ultra small angle X-ray scat-
tering (USAXS), and X-ray photon correlation spectroscopy
(XPCS). To do so, we study a recently developed associative
hydrogel platform consisting of water-stabilized iron oxide
nanoparticles (NPs) (29), which are bridged by telechelic link-
ers of four-arm poly(ethylene glycol) (PEG) functionalized with
strongly iron-coordinating nitrocatechol ligands (Fig. 1A).
Prior work by our group (30), as well as theoretical predictions
for such gel systems (31), have shown that polymer-particle
configurations facilitate dynamic arrest in the absence of a phase
separation (32) through limited-valency interactions. This mech-
anism of self-assembly results in the dynamic arrest of NPs into

a gelled state. The resulting gels are able to reach a structural and
mechanical steady state during the experimental time frame—
rather than undergo continued aging via an arrested phase sepa-
ration (30) (SI Appendix, Fig. S2)—while still exhibiting hall-
mark dynamical characteristics of arrested soft materials such as
stretched exponential stress relaxations and compressed expo-
nential correlation decays (30, 33). This makes the polymer-
particle gel a useful model system for exploring the microscopic
dynamics of arrested systems, as it exhibits quiescent microscopic
dynamics associated with the arrested state without the
contribution of aging dynamics (2, 4, 34). As a result, this
system allows us to isolate and examine the microscopic
relaxation dynamics of arrested soft materials that arise in
perturbation-free quiescent states as well as in mechanically
perturbed states, and analyze their separate contributions to
the macroscopic stress relaxation.

Results

We first begin with macrorheological characterizations of the
gel. In response to a step strain in the linear regime, the arrested
gel exhibits classic signatures of stretched-exponential stress
relaxations of the form:

GðtÞ ¼ G0 exp
�
�ðt=τM Þβ

�
, [1]

where G0 is the plateau modulus, τM is the macroscopic relaxa-
tion time, and β is the stretching exponent. The gel shows an
exponent of β¼ 0:3 across 25 °C < T ≤ 65 °C (Fig. 1B and
SI Appendix, Fig. S1). Stretched-exponential stress relaxation
functions underscore an asymmetric distribution in the relaxa-
tion times (with a mean relaxation time hτi and a heavy tail at
short times) (35) and are often seen in highly arrested systems
such as gels and glasses (1, 4, 5). These relaxation dynamics are
distinct from what is commonly seen (and well understood) in
associative gels with moderate concentrations of associations,
wherein a power-law stress relaxation of ∼t�1=2 emerges due to a
“sticky” Rouse relaxation of interconnected components (36,
37). Instead, these relaxation dynamics are observed in associative
gels with high concentrations of associations (38) such as our
model system, for which the microscopic origins remain unclear.

The microscopic dynamics of our model gel are measured
via XPCS, a technique that allows us to directly measure the
dynamics of the NPs which serve as cross-linkers in the gel.
XPCS bypasses the drawbacks of visible light–based approaches
in dealing with material opacity (Fig. 1B, Inset) and capitalizes
on the high electron-density contrast between the NPs and the
continuous-phase constituents, water and PEG. In XPCS,
speckle intensity maps are measured as a function of time (Fig.
2A). The autocorrelation of the wave-vector q-dependent intensities
produces a second-order correlation function g2ðq, tÞ as a function
of delay time t , which is related to the intermediate scattering func-
tion F ðq, tÞ ¼ A exp

�� ðt=τmÞγ
�
via the Siegert relation:

g2ðq, tÞ ¼ 1þ b

�
A exp

�
� ðt=τmÞγ

��2
, [2]

where b ∼ 0:1 is an instrument-dependent coherence-adjust-
ment factor, A is a contrast term, and τm and γ measure the
microscopic relaxation time and associated stretching (γ < 1) or
compressing (γ > 1Þ exponent of the decay curve. More details
on the technique are provided in (39).

We perform XPCS over a q range of 0.0032 Å�1 to
0.063 Å�1, which covers the intracluster length scale in our gel
system. This information is revealed by USAXS measurements on

CB

A

Fig. 1. Arrested associative gels exhibit broad nonexponential stress
relaxations in response to linear perturbations. (A) Schematic illustration of
the model polymer–particle system, consisting of four-arm PEGs (10 kDa)
with nitrocatechol groups, and Fe3O4 NPs (7-nm diameter) stabilized by
one-arm PEGs (2 kDa) with catechol groups. Upon mixing, the stronger-
binding nitrocatechol ligand replaces the catechol ligand on the NP surface
and gelation thus occurs via a dynamic ligand exchange from equilibrium.
Details on the synthesis and compositions are available in Materials and
Methods, and additional characterizations of the quiescent viscoelasticity of
the gels are available in ref. 30. (B) Representative GðtÞ of the arrested gel
in response to a linear step strain (γ0 ¼ 0:5 %) at 25 °C ≤ T ≤ 65 °C. Solid
lines indicate fits to the stretched exponential function (Eq. 1) with a cons-
tant stretching exponent of β¼ 0:3. The stretching exponent is consistent
at all temperatures, as evidenced by the stretched exponential fit to the
time and temperature–superposed data (SI Appendix, Fig. S1). Inset: Repre-
sentative picture of the model gel material. Scale bar, 1 cm. (C) Step strain
measurements of the relaxation modulus GðtÞ of the gelled system mea-
sured at varying strain amplitudes γ0 (T ¼ 25 °C). All GðtÞ values are normal-
ized by the initial storage modulus G0

i of the gel measured immediately
after gelation (SI Appendix, Fig. S2A). Linear behavior is demonstrated up to
a strain of γ0 ¼ 1:0 %; this result is also in agreement with amplitude sweep
characterizations on the system (SI Appendix, Fig. S2B).
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the gels (Fig. 2B), from which contributions from three distinct
length scales are identified: a high-q contribution at q ≥ 1 ×
10�2 Å

�1
, an intermediate-q contribution at 4 × 10�3 Å

�1 ≤ q ≤
1 × 10�2 Å

�1
, and a low-q contribution at q ≤ 4 × 10�3 Å

�1
.

The high-q contribution can be accurately described by a hard-
sphere model (HSM)—the dividing of our intensity I ðqÞ by the
HSM yields the structure factor SðqÞ (Fig. 2D)—and can be
attributed to the NPs. The intermediate-q and low-q contribu-
tions can be attributed to the existence of clustering at multiple

length scales. These features have been commonly observed in
other network systems such as polymer gels (40) and nanocom-
posites (41) through scattering measurements over large length
scales beyond the characteristic cluster size. Here, we follow the
conventions of these studies and attribute the intermediate-q
length scale to the primary cluster size ξ [with a diameter of
ξ¼ 3760 Å, obtained via a unified model fit (42)] and the low-
q length scale to larger agglomerates (with a characteristic size
greater than the largest probed length scale of USAXS, 1 μm,
as evidenced by the Porod scaling of I ðqÞ ∼ q�4). The XPCS
region of interest thus falls within the size of the primary cluster, ξ.

We first probe the microscopic dynamics of the gel system in
the quiescent state via XPCS using an in situ capillary-gelled
sample (see SI Appendix, Fig. S3 for holder setup). Second-
order correlation g2ðq, tÞ measurements on the capillary-gelled
system reveal a compressed exponential decay, which is paired
by superdiffusive dynamical behavior, as evidenced by the col-
lapse of the g2ðq, tÞ upon scaling the relaxation times τm by
q�v (Fig. 2C). The scaling exponent v ∼ 1:07 is obtained
directly through the fitting of the mean value of τmðqÞ from 20
independent measurements (Fig. 2D); such ensemble-averaged
measurements are only possible due to the negligible aging of
the gelled material (SI Appendix, Fig. S2). Within this same q
region, the compressing exponent is approximately constant
around γ ∼ 1:7 (Fig. 2D), suggesting that superdiffusive
dynamics persists throughout the intracluster length scale. At
high q, the relaxation time τmðqÞ deviate from this q�v scaling
and γ decrease toward unity, in agreement with previous experi-
ments (22) and simulations (25). These observations are
consistent with the aforementioned signatures of elastic stress
fluctuations (22–27), in which the relaxation of heterogeneous
frozen-in internal stresses modify the elastic strain field and
induce superdiffusive local rearrangements in the material.

Though the heavy tail of the correlation decay is not cap-
tured by the compressed exponential form of the Siegert rela-
tion in Fig. 2C [as also observed in many other measurements
that reveal a compressed exponential decay in the correlations
(23, 43, 44)], we find a good collapse of the data in this tail
region by horizontally shifting the data with q�v , indicating
that this heavy tail shares the same superdiffusive origins as the
main decay function. We verify this, and directly shed light on
the role played by internal stresses on the measured τm, by per-
forming an azimuthal angle φ-dependent investigation of
g2ðq, tÞ in capillary-gelled systems (SI Appendix, Fig. S4 A–C).
Capillary environments facilitate anisotropic residual stresses in
the gels during dynamic arrest by preventing internal stress
relaxations in the direction of boundary conditions such as the
capillary walls and the sealant (43). Thus, we can expect
arrested systems that are governed by internal stresses to exhibit
a φ-dependence in the correlation decay, such that relaxation is
accelerated in φ directions facing confinement-induced persis-
tence of internal stress. We indeed observe this behavior in our
gels, where relaxation is faster along directions that are under
confinement by the capillary walls and the Torr seal, and slower
in unconfined directions. The heavy tail in g2ðq, tÞ (Fig. 2C)
can thus be attributed to the distribution of stored internal
stresses in the microstructure, arising from the heterogeneous
boundary conditions of the capillary (43). Overall, these results
show that internal stresses accrued during gelation govern the
measured microscopic τm of the gel system. That such dynam-
ics can dominate the steady-state response of a limited-valency
gel system exhibiting negligible aging effects would indicate
that these internal stresses are globally trapped in the system
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Fig. 2. Microscopic dynamics of the arrested gel probed at quiescence via
XPCS. (A) Illustration of the XPCS experimental setup. A partially coherent
synchrotron X-ray beam strikes the sample, and scattered speckle intensity
maps (with coordinates defined by the wave-vector q and azimuth angle φ)
are measured as a function of time. Correlations of the measured speckle
intensity Iðq, tÞ are taken to obtain the second-order correlation function
g2ðq, tÞ as a function of delay time t. (B) USAXS intensities of the arrested
gel. The scattering is captured by a hard sphere model (HSM) at high q, a
unified model (UM) at intermediate q, and a Porod scattering response at
low q. The region of interest probed by XPCS is shown by the shaded
region, which is bound by q = 0.0032 Å�1 and 0.063 Å�1 and a noise floor
at low IðqÞ. The UM captures the cluster size ξ of the associative gel and
shows that the XPCS region of interest is within the primary cluster size. All
fitting parameters are listed in SI Appendix, Table S1. (C) The second-order
correlation function g2ðq, tÞ as a function of delay time t for the arrested
system in situ gelled in a capillary (see holder configuration in SI Appendix,
Fig. S3). The correlation decay is fitted to the Siegert relation in Eq. 2. The
x-axis is rescaled by qv with v ¼ 1:07; data collapse here indicates that
superdiffusive dynamics drive both the fitted decay and the long-time tail.
The inset shows the original q-dependent g2 data in the range
0:0032 Å

�1 ≤ q ≤ 0:010 Å
�1

(increasing in q from right to left). (D) Graphs of
the q-dependent structure factor SðqÞ, microscopic relaxation time τmðqÞ, and
compressing exponent γðqÞ. The τmðqÞ and γðqÞ values shown are averages
taken from 20 independent experiments conducted in the capillary (see statis-
tics for q¼ 0:0032 Å

�1
in SI Appendix, Fig. S5). The structure factor SðqÞ is

obtained by dividing IðqÞ by the HSM results (Fig. 2B). The dashed line in the
SðqÞ plot indicates the noise threshold dictated by low IðqÞ; measurements
made at q corresponding to SðqÞ < SðqÞNoise exhibit larger error bars, as
shown. The data points in this noise floor are indicated by smaller symbols,
and are shaded in gray. The relaxation times above this noise floor, τmðqÞ at
q ≤ 0:012 Å

�1
, are fitted to the relation τmðqÞ ¼ Cq�v to obtain v ¼ 1:07.
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during arrest and facilitate spontaneous local relaxations, similar
to other arrested systems in which the steady-state responses are
also governed by internal stresses (26, 43, 45).
We now seek to establish a connection between the internal

stress–dominated microscopic τm and statistical features of the
broad distribution of relaxation times observed in macrorhelog-
ical experiments, namely, the mean relaxation time hτi and the
breadth of the distribution. The hτi underlying a stretched
exponential function can be obtained by calculating its first
moment, which has a simple analytical solution (46):

hτi ¼ ðτ=aÞΓð1=aÞ, [3]

where τ is the relaxation time and α is the generic scaling exponent
in the stretched exponential function, such as the parameters β in
Eq. 1 and γ in Eq. 2. As typical values of the exponents obtained
through stretched exponential fits to rheology and XPCS data are
vastly different (since they are described by stretched and com-
pressed exponential functions, respectively), we thus compare the
mean rheological relaxation time hτM i, obtained by rescaling τM
with β (Eq. 1), with the mean XPCS relaxation time hτmi,
obtained by rescaling τm with γ (Eq. 2). We perform this compari-
son in a temperature-dependent manner, comparing hτM i obtained
via rheology at 25 °C < T ≤ 55 °C, with hτmi obtained via XPCS
over the same temperature range. To enable this comparison, we
study the microscopic dynamics of our arrested system by gelling
the system ex situ and gently loading it into a 1.5 mm–thick alumi-
num cell which is capable of conducting heat from the Peltier
assembly loaded in the XPCS chamber (SI Appendix, Fig. S3). Our
ex situ gels are 1.1 mm thick, and thus the cells are underfilled to
minimize mechanical perturbations to the sample. These aluminum
cell loaded samples exhibit compressed exponential correlation
decays which are similar to the capillary-gelled samples discussed
thus far (see comparison in SI Appendix, Fig. S7); hence, we also
refer to these samples as “quiescent.”
Since hτmi is q-dependent (Fig. 2D) and clearly smaller than

hτM i over the studied q range (Fig. 3A), we select a characteris-
tic microscopic length scale at which reasonable comparisons
with macroscopic measurements can be made. For this purpose,
we select the primary cluster size ξ as the characteristic length
scale, as cluster dynamics are often implicated in the macroscopic
viscoelasticity of soft materials (13, 47–49). Various scattering
experiments and simulations of arrested systems have shown that
τmðqÞ reach a plateau at wave-vectors corresponding to the clus-
ter size, qξ (25, 49, 50), as microscopic dynamics can become
strongly constrained beyond this length scale. These findings
allow us to reliably extrapolate our superdiffusive scalings of
τm ∼ q�v (Fig. 2D) towards the cluster-size wave vector
qξ ¼ 1=ξ¼ 2:7 × 10�4 Å

�1
to determine the characteristic

relaxation times of the primary clusters of the gel, even if the q
range of XPCS does not explicitly capture such large length scales.
The comparison between hτM ðT Þi obtained via rheology

with hτmðq,T Þi obtained via XPCS is shown in Fig. 3A. Excel-
lent agreements are observed between hτM ðT Þi and the extrap-
olated quantity hτmðqξ,T Þi, with hτmðqξ,T Þi=hτM ðT Þi ∼ 1
for all temperatures studied (Fig. 3B). Moreover, we find that
both measurements can be captured by a single Arrhenius func-
tion of the form hτi ¼ τ0expð�EA=kT Þ, with an activation
energy EA ∼ 21 kT (Fig. 3C). The direct correlation between
the mean macroscopic stress relaxation time and mean micro-
scopic relaxation times at the cluster size shown here suggest
that internal stress relaxation of clusters at quiescence may gov-
ern the mean macroscopic stress relaxation of the gel. This
would indicate that stress relaxation in the gel is facilitated by
an inherently nonlinear phenomenon, where the energy EA

represents the thermal activation energy of relaxation which is
modified by internal stresses in the system (51, 52).

We next seek to understand the connection between micro-
scopic dynamics and the breadth of stress relaxation times
observed via linear macrorheology. Though we find that quies-
cent microscopic fluctuations are directly correlated to the
mean macroscopic relaxation time of the system (Fig. 3), the
distribution of τm is Gaussian, with a small variance that can
be attributed to the spatial variation of the internal stresses in
the microstructure (SI Appendix, Fig. S5). This distribution of τm
is not consistent with the broad distribution of relaxation times
underlying a stretched exponential stress relaxation function with
a stretching exponent as low as β¼ 0:3 (illustrated analytically in
SI Appendix, Fig. S6). Thus, we reasoned that the macroscopic
relaxation process may entail nonquiescent or perturbation-
induced relaxation processes. Such pertubations, whether they
originate from microstructural aging (3, 53–55) or mechanical
deformations (56) [even in the linear regime below the yield
strain (57)] have been shown to induce avalanche dynamics in
arrested systems, and recent simulation studies on emulsions have
even hinted at a connection between avalanche dynamics and
power-law macroscopic stress relaxation response through a
microrheological framework (3). As our quiescent system shows
little structural and dynamical aging within experimental time
frames (SI Appendix, Fig. S2), we sought to directly induce such
perturbations into our system through mechanical compressions.
As a simple approach to inducing this perturbation during
XPCS, we again load an ex situ gelled material with a controlled
thickness into the aluminum cell—the same approach as the one
used to study temperature-dependent dynamics in Fig. 3—but
in this case, we use a thinner aluminum cell which is 1.0-mm
thick. Thus, the polycarbonate windows of the aluminum cell
put the sample under a compressive strain of ∼10% in this state,
in contrast to the uncompressed quiescent samples (Fig. 4A).

A markedly different g2ðtÞ response is observed in these
mechanically compressed systems compared to the quiescent
systems (Fig. 4B). Whereas the quiescent systems exhibit
a prototypical g2ðq, tÞ, which can almost be completely

A B

C

Fig. 3. Correlations between quiescent microscopic cluster relaxation
times and macroscopic stress relaxation times in the arrested gel. (A) Mean
microscopic relaxation times hτmðq,TÞi (Eq. 3) over a temperature range of
25 °C ≤ T ≤ 55 °C measured in an aluminum cell. All data are normalized to
the mean macroscopic stress relaxation time at the corresponding temper-
atures hτMðTÞi (Fig. 1B), fitted to the function hτmðqÞ,Ti=hτMðTÞi ¼ Cq�v , and
extrapolated to the wave vector corresponding to the cluster size
qξ ¼ 1=ξ¼ 2:7 × 10�4 Å

�1
. (B) hτmðqξ,TÞi=hτMðTÞi obtained via extrapolation

to the cluster size. (C) Arrhenius plot of the mean relaxation times obtained
from rheology, hτMi, and from XPCS, hτmðqξÞi. Lines indicate fits of hτMi to
the Arrhenius relation hτi ¼ τ0expð�EA=kTÞ, which reliably captures hτmðqξÞi
as well. Fitting parameters are listed in SI Appendix, Tables S2 and S3.
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described by a single ballistic decay curve [with a compressing
exponent of γ ≈ 2 (43)], the perturbed systems exhibit a much
broader g2ðtÞ which cannot be described by a single ballistic
decay curve. To quantify these differences, we estimate the
discrete spectra of ballistic relaxation modes governing the
second-order correlation g2ðq, tÞ of the quiescent and perturbed
systems through an inverse Laplace transform of the relation:

g2
�
q, tÞ ¼

ð∞
�∞

Hm

�
τÞf1þ b½A expð�ðt=τÞ1: _9Þ�2gd ln τ, [4]

where HmðτÞ is the spectrum of ballistic microscopic relaxa-
tion modes in the g2ðq, tÞ function. The ballistic relaxation

mode was modeled here by a compressing exponent of
γ ¼ 1: _9 (rather than γ ¼ 2 to circumvent the appearance of a
Gaussian and ensure that the function remains monotonic).
To perform this inverse Laplace transform, we use a nonlinear
regularization estimation (58) that is used commonly in mac-
rorheology to determine HmðτÞ; we find the discrete relaxation
modes by identifying the dominant spectral peaks obtained by
minimizing the curvature penalty in the regularization protocol
(see Materials and Methods). Fig. 4C illustrates the results of this
operation performed on the ensemble of correlation data
obtained on our arrested gels in quiescent and perturbed states.
There is a marked difference in the breadth of the relaxation
spectra of our system as shown by the emergence of short-time
relaxation modes in the perturbed state, which are absent in the
quiescent state but would be expected from the distribution of
relaxation times underlying a stretched exponential with β¼ 0:3
(SI Appendix, Fig. S6).

To understand the physics governing these emergent short-
time dynamics in the perturbed system, we study the two-time
correlations in the system, CI ðq, t1, t2Þ (39, 44) (Fig. 5 A and
B; see SI Appendix, Fig. S9 for larger ensemble of CI ðq, t1, t2Þ).
The two-time correlation is a matrix representation of the
instantaneous correlation of the system at measurement times
t1 and t2, where the delay time is t ¼ t2 � t1 (the correlation
decay g2ðq, tÞ is thus an average of the instantaneous correla-
tions, obtained by averaging over all pairs of measurement
times of an experiment). For the quiescent configurations in
the capillary and in the aluminum cell, we observe that the
CI ðq, t1, t2Þ bands are homogeneous across the measurement
time (Fig. 5A). These observations indicate that the microscopic
relaxation dynamics are temporally homogeneous over experi-
mental time scales and furthermore, show the absence of dynam-
ical processes at short times in the quiescent samples. However,
with the introduction of mechanical perturbations, we observe
highly intermittent correlation patterns with an abundance of
narrowing in the bands, reminiscent of those seen in other disor-
dered solids near the yielding transition (59) (Fig. 5B). These
correlation patterns show that perturbation-induced intermittent
dynamics give rise to short-time relaxation modes, and thus, a
broadening in the observed relaxation spectrum (Fig. 4C).

To quantify the statistical nature of these intermittent
dynamics, we compute the ensemble-averaged probability dis-
tribution function p of the two-time correlation CI ðq, t1, t2Þ at
different delay times. The instantaneous correlations in the qui-
escent state can be well described by a Gaussian distribution,
consistent with the temporally homogeneous nature of the two-
time correlation matrices (Fig. 5C). By contrast, the distribu-
tion of the instantaneous correlations in the perturbed state are
highly non-Gaussian and can be captured by a distribution that
is commonly used for scale-free processes, the generalized Gum-
bel distribution (60, 61):

pðxÞ ¼ aaba
ΓðaÞ exp

�
7afbaðx þ saÞ ± exp½�baðx þ saÞ�g

�
, [5]

where ba ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 lnΓðaÞ=d a2

q
=σx and sa ¼ μx þfln a��

d lnΓðaÞ=d a
�g=ba . Here, ΓðaÞ is the gamma function of a;

ux and σx are the mean and SD of x ; and 7 and ± in Eq. 5.
refer to the direction of the skew (such that � and + produce a
heavy tail to the right, and vice versa). The shape parameter a
in Eq. 5 is given by the skewness or third moment of the distri-

bution eμ3 ¼ ½ðx � μxÞ=σx �3 ≈�1=
ffiffiffi
a

p
. The parameter a
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Fig. 4. Perturbation-induced broadening of the distribution of microscopic
relaxation times in the arrested gel. (A) Configurational descriptions of the
gel system in the quiescent state and in the mechanically perturbed state.
The quiescent state is probed either through in situ gelation of the system
in a capillary (denoted C), or through underloading an aluminum cell
(denoted A) with an ex situ gelled material. Detailed illustrations of the C
and A configurations are in SI Appendix, Fig. S3. We induce mechanical per-
turbations to our gels by overloading the aluminum cell with the ex situ
gelled material, resulting in a compressive strain of ∼10 %. (B) Representa-
tive second-order correlations g2 for the quiescent system (in the capillary)
and perturbed system. The g2 data shown here are time-wavevector super-
posed—in similar vein to the data shifting performed in Fig. 2C—such that
data collected over the range 0:0032 Å

�1 ≤ q ≤ 0:010 Å
�1

are shifted to a
reference wave vector of qmin ¼ 0:0032 Å

�1
, which allows us to sample lon-

ger time scales of up to t ¼ 4000 s. The quiescent system in the aluminum
cell shows a similar response to the quiescent system in the capillary (SI
Appendix, Fig. S7). The quiescent data show good agreement with Eq. 2,
with a ballistic decay exponent of γ ¼ 1: _9. (C) Discrete spectra of ballistic
microscopic relaxation times HmðτÞ in the quiescent and perturbed systems
at qmin ¼ 0:0032 Å

�1
and T ¼ 25 °C, obtained via the protocol highlighted in

Materials and Methods. The analysis is done on 15 experiments in the capil-
lary configuration, 6 experiments in the aluminum configuration at quies-
cence, and 11 experiments in the aluminum configuration under perturba-
tions. The vertical shading at t > 4000 s denotes the time-scale limitations
of the experiments. The data for quiescent (capillary and aluminum-cell
data combined) and perturbed conditions are fitted to a Gaussian function
of the form HmðτÞ ¼ k exp

�
� ðτ� bÞ2=2c2

�
(red and green lines, respec-

tively). Note the fits are for visual guidance only to highlight the emergence
of short-time dynamics in the perturbed system.
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provides a measure of the distance to criticality in a given system
(62, 63), where a !∞ corresponds to dynamics that follow a
Gaussian distribution, and a ! 1 corresponds to scale-free
dynamics such as in 1/f noise (64), and in avalanches in foams
(53), colloidal gels (54), and glasses (65). The distribution of the
instantaneous correlation function in the perturbed system shows
a pronounced Gumbel-like behavior at short times (Fig. 5D).
This is quantified by evaluating the dependence of the shape
parameter a on the delay time t . At times shorter than τm of the
system (i.e., t < hτmi), we see that α! 1 at all times [barring the
sudden increase in the skewness at t ¼ 300 s, which occurs due
to a skew direction change about the median timescale of the
avalanches (54)]. At long times approaching the mean micro-
scopic relaxation time of the system (i.e., t ∼ hτmi), α increases
significantly, indicating that the distribution in the instanta-
neous correlation function reverts to Gaussian statistics at long
times (Fig. 5E). These results indicated that small mechanical
perturbations generate avalanche-like fluctuations in the gel that
persist at short times, before Gaussian fluctuations emerge at
long times approaching the internal stress relaxation time τm.
Thus, though microscopic internal stress relaxations in quies-

cent states exhibit strong correlations with the mean timescale of
stress relaxation in arrested soft materials, we find that such qui-
escent dynamics do not explain the breadth of stress relaxation
times observed in arrested systems via linear macrorheology.
Instead, we find that these broadly distributed stress relaxation
events—especially the broadening of the distributions at shorter
times (Fig. 4C and SI Appendix, Fig. S6)—are observed at
microscopic scales in arrested systems that are perturbed, in our
case, through mechanical perturbations. Though these inter-
mittent dynamics arise from a compressive strain that is osten-
sibly above the yield strain of the system (Fig. 1C), the amount
of strain we imposed on the system may not be an important
factor in triggering avalanche dynamics in the system. This idea
is supported by the fact that the observed stress relaxation
responses of the system are self-similar and nonexponential in

shape across a wide range of step strains (Fig. 1C), regardless of
whether the strain magnitude is above or below the yield strain.
At the microscopic level, the broad distribution of relaxation
times underlying such stress relaxation behaviors can only be
accounted for by non-Gaussian fluctuations arising from inter-
mittent avalanches (Figs. 4 and 5). While avalanche dynamics
have been understood to occur in arrested systems strained near
or above the yield strain (66, 67), the emergence of such micro-
scopic dynamics in the linear regime can be rationalized by
considering that several recent works on dense amorphous
materials (e.g., dense glasses) have shown that even small strains
well within the linear viscoelastic regime of the material are suf-
ficient for generating intermittent avalanches in the system
(56, 57, 68). These findings, therefore, provide qualitative but
meaningful insight into the important role played by such
intermittent avalanches in the nonexponential macroscopic
stress relaxations of arrested soft materials. These insights may
have important ramifications for understanding the origins of
nonexponential viscoelastic relaxations in a larger variety of soft
materials, for instance, biological hydrogels such as cells (10),
tissues (9), and mucus (69).

Discussion

Our findings provide a connection between the microscopic
relaxation dynamics of arrested systems and the statistical features
of the broad distribution of relaxation times in macroscopic
mechanical measurements. We find that the quiescent superdiffu-
sive microscopic dynamics of the gel at the cluster scale are gov-
erned by internal stress relaxations and show a direct correlation
to the mean relaxation time measured via macrorheology. We
also find that perturbation-induced intermittent avalanche
dynamics are necessary for attaining a broad non-Gaussian dis-
tribution of microscopic relaxation times in the system, thus
rationalizing the broad distribution of relaxation times observed
in macrorheological experiments. A natural extension of the
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Fig. 5. Avalanche statistics of the emergent short-time dynamics in the mechanically perturbed gel. Representative two-time intensity correlation functions
CI of the arrested gel in the (A) quiescent state (Top: capillary; Bottom: aluminum cell) and (B) mechanically perturbed state (aluminum cell) at q¼ 0:0032 Å�1

(see SI Appendix, Fig. S9 for a larger ensemble of data). Probability distribution function p of the two-time correlation CI at the indicated delay times at
q¼ 0:0032 Å�1 for the arrested gel at (C) quiescent states (in capillary) across 15 experiments, and (D) perturbed states across 11 experiments. The instanta-
neous correlation fluctuations are Gaussian for the quiescent samples at all delay times probed, whereas the perturbed samples exhibit highly non-
Gaussian fluctuations at short times, which are captured by a generalized Gumbel distribution (Eq. 5), before reverting to Gaussian statistics near the
microscopic relaxation time τm. The generalized Gumbel distributions shown (dashed lines) are calculated numerically by calculating the skewness parame-
ter a directly from the data (by calculating the third moment eμ3 , where 1=

ffiffiffi
a

p ¼� eμ3 ), rather than fitted. (E) Third moment eμ3 of the correlation fluctuations
and the corresponding skewness parameter a as a function of t for the perturbed system. Colored triangles indicate delay times t corresponding to those
shown in D; black triangles indicate the quiescent relaxation time τm at q¼ 0:0032 Å�1 (Fig. 2D).
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work would be to quantitatively compare the microscopic relaxa-
tion modes arising from various rheologically relevant perturba-
tions with macroscopically measured stress relaxation modes. We
believe such a feat may be possible through simulations as well as
via emerging experimental techniques such as Rheo-XPCS (70),
in conjunction with improved temporal resolution in coherent
scattering from the planned advancements in synchrotron
technology (71). Results from such studies may provide further
insight into the quantitative physics connecting dynamic arrest,
marginal stability, and linear viscoelasticity in arrested and
disordered materials.

Materials and Methods

Materials Synthesis. Nitrocatechol-functionalized four-arm PEG (10 kDa),
catechol-functionalized one-arm PEG (2 kDa), and Fe3O4 NPs (7-nm diameter)
(Fig. 1A) are synthesized following the same protocol in ref. 30. The polymer-
particle gel is made by mixing 10.0 weight% of nitrocatechol-functionalized
four-arm PEG and 1.50 volume% of NP stabilized by catechol-functionalized one-
arm PEG in an aqueous solution with pH adjusted to 2 to induce monofunctional
binding between nitrocatechol and iron. All materials for rheological measure-
ments are gelled in situ; the mixture is placed beneath a parallel plate geometry
and sealed in mineral oil; the Peltier temperature is raised to T ¼ 55 °C;
and the system is left to gel for at least 24 h before rheological measurement.
Materials for XPCS measurements are made by placing the reagent mixture
either inside a Kapton capillary which is then sealed by Torr, or inside a plastic
cap which is then wrapped and sealed with aluminum foil. The reagent mixture
is then gelled in an oven at T ¼ 55 °C for at least 24 h. The gel sample inside
the capillary is used to study in situ conditions, and the gel sample inside the
plastic cap is carefully extracted from the plastic cap and placed inside an alumi-
num cell to study ex situ conditions (see SI Appendix, Fig. S3 for holder details).
Detailed characterization of the gel system can be found in ref. 30.

Rheology. All measurements are conducted using Anton-Paar’s MCR-302 stress-
controlled rheometer, with a 10-mm parallel plate geometry and a gap size
< 1 mm. All measurements are done on hydrogels which are sealed with min-
eral oil to minimize dehydration, and conducted with conditions as described in
Fig. 1 and SI Appendix, Fig. S2.

X-ray Photon Correlation Spectroscopy. All measurements are conducted
at the XPCS beamline 8-ID-I at the Advanced Photon Source at Argonne National
Laboratory. Monochromatic X-rays at an energy of 7.35 keV are used, with a
beam size of 15 μm × 15 μm, and with a nominal flux of 109 photons/s which
is then attenuated to minimize radiation damage. A Large-Area Medipix-Based
Detector Array pixel array detector with a pixel size of 55 μm and array size of
516 × 1,556 is used. The measurements are checked for radiation damage by
controlling the dose using filters, and the beam attenuation factor n (which
attenuates beam strength by a factor of 2n) is increased until no sign of radiation
damage was visible (SI Appendix, Fig. S10).

Ultra Small Angle X-ray Scattering. All measurements are conducted at the
USAXS beamline 9-ID at the Advanced Photon Source at Argonne National Labo-
ratory. Samples are mounted in cells with a sample thickness of ∼1 mm and
with 3M Scotch tape on either side. Due to variations in the thickness of the
actual samples, only relative intensities are reported here. The X-ray energy is
21 keV (wavelength = 0.5905 Å�1), and the beam size is 0.6 × 0.6 mm for
USAXS and 0.1 mm × 0.6 mm for small angle X-ray scattering (SAXS). Data col-
lection time for the experiments are set to 90 s for USAXS and 15 s for SAXS; the
measured data are then subtracted from those obtained from a blank cell cov-
ered with the adhesive tape, reduced, and then merged together using software
packages (Indra, Nika, and Irena) provided by the beamline (72, 73). Slit smear-
ing inherent to the USAXS instrument is removed using de-smearing routines in
Irena to generate pinhole equivalent data for analysis.

Relaxation Spectrum Analysis. The continuous relaxation spectra HðτÞ are
obtained by making appropriate modifications to the MATLAB implementation
(74) of the Tikhonov nonlinear regularization method (58). Briefly, this method
aims to minimize the cost function:

VðλÞ ¼ ∑
n

i

GðtiÞ � G
�
ti;HðτÞ

�
GðtiÞ

24 352

þ λ

ð∞
�∞

d2HðτÞ
d τ2

" #2

d ln τ; [6]

where GðtiÞ are the experimental decay data, Gðti;HðτÞÞ are the predicted decay
data based on the continuous relaxation spectrum, and λ is the regularization
parameter. In this expression, the first term denotes the mean-square error and
the second term is the regularized smoothing parameter that penalizes curvature
and overfitting. In a typical analysis, λ is optimized for the mean-square error and
the smoothness through the L-curve method. For the XPCS data HmðτÞ, the best
agreement is found by minimizing λ (and thus minimizing the mean-square
error), which results in a continuous relaxation spectrum with strongly peaked
relaxation modes (SI Appendix, Fig. S8). These peaks can be well approximated
as discrete relaxation spectra and are presented this way in Fig. 4C.

Data Availability. All study data are included in the article and/or supporting
information.
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