Operons Are a Conserved Feature of Nematode Genomes

Jonathan Pettitt, ${ }^{1}$ Lucas Philippe, Debjani Sarkar, Christopher Johnston, Henrike Johanna Gothe, Diane Massie, Bernadette Connolly, and Berndt Müller
School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
ORCID IDs: 0000-0001-7988-6833 (J.P.); 0000-0002-0672-4371 (С.J.); 0000-0003-1279-5421 (B.M.)

Abstract

The organization of genes into operons, clusters of genes that are co-transcribed to produce polycistronic pre-mRNAs, is a trait found in a wide range of eukaryotic groups, including multiple animal phyla. Operons are present in the class Chromadorea, one of the two main nematode classes, but their distribution in the other class, the Enoplea, is not known. We have surveyed the genomes of Trichinella spiralis, Trichuris muris, and Romanomermis culicivorax and identified the first putative operons in members of the Enoplea. Consistent with the mechanism of polycistronic RNA resolution in other nematodes, the mRNAs produced by genes downstream of the first gene in the T. spiralis and T. muris operons are trans-spliced to spliced leader RNAs, and we are able to detect polycistronic RNAs derived from these operons. Importantly, a putative intercistronic region from one of these potential enoplean operons confers polycistronic processing activity when expressed as part of a chimeric operon in Caenorhabditis elegans. We find that T. spiralis genes located in operons have an increased likelihood of having operonic C. elegans homologs. However, operon structure in terms of synteny and gene content is not tightly conserved between the two taxa, consistent with models of operon evolution. We have nevertheless identified putative operons conserved between Enoplea and Chromadorea. Our data suggest that operons and "spliced leader" (SL) trans-splicing predate the radiation of the nematode phylum, an inference which is supported by the phylogenetic profile of proteins known to be involved in nematode SL trans-splicing.

THE organization of open-reading frames into operons, such that multiple, distinct gene products are produced from a single, polycistronic transcript, is commonplace in prokaryote genomes (Jacob et al. 1960). Operons are also found in eukaryotes, although their distribution is sporadic and it does not seem likely that they represent an ancestral eukaryotic trait (Lawrence 1999; Hastings 2005). In prokaryotes, translation of multiple open reading frames in a polycistronic RNA occurs through multiple independent translation initiations. In eukaryotes, the polycistronic RNAs must first be processed into individual mRNAs before being translated. This

[^0]creates a problem in that the processed, downstream mRNAs would lack a cap structure necessary for RNA stability and translation. A number of eukaryotes are able to circumvent this problem through the trans-splicing of a short "spliced leader" (SL) RNA onto the 5 ' end of the mRNA. Because the precursor SL RNAs that donate the SL are trimethylguanosinecapped, the trans-splicing event provides the cap structure for the mRNA. Thus by providing a mechanism that allows the formation of monocistronic, capped mRNAs from polycistronic RNA, SL trans-splicing enables the organization of eukaryotic genes into operons. It is striking that, at least to date, all eukaryotes in which operon usage is widespread also undergo SL trans-splicing (Johnson et al. 1987; Spieth et al. 1993; Davis and Hodgson 1997; Blumenthal et al. 2002; Ganot et al. 2004; Guiliano and Blaxter 2006; Satou et al. 2008; Marlétaz et al. 2008; Dana et al. 2012; Protasio et al. 2012; Tsai et al. 2013), suggesting that the resolution of polycistronic RNA is dependent upon SL trans-splicing.

Although operon organization is widespread in numerous eukaryotic taxa, the evolutionary mechanisms that have resulted in this form of gene organization are not well
understood. The most detailed analysis of the problem has come from studies in Caenorhabditis elegans, which led to the hypothesis that operon organization allows the marshalling of multiple genes under the control of a single promoter. This makes cells better able to cope with situations when transcription factors are present in limiting concentrations, such as recovery from growth arrest (Zaslaver et al. 2011). However, it is far from clear whether this is the only mechanism responsible for the evolution of operon organization, and the general applicability of this hypothesis to other members of the nematode phylum is not known.

To better understand the relationship between operon evolution and SL trans-splicing, it is necessary to determine the distribution of operon organization across the nematode phylum. Nematodes can be divided into two major classes: Enoplea and Chromadorea (Holterman et al. 2006; Meldal et al. 2007), with the latter class being much better characterized in terms of gene expression mechanisms, largely because it contains C. elegans. Both SL trans-splicing and operons have been identified in multiple nematodes within the Chromadorea (Evans et al. 1997; Lee and Sommer 2003; Guiliano and Blaxter 2006). However, the presence of operons has not been reported in nematodes from the other taxon.

We have previously identified SL trans-splicing in the enoplean nematodes Trichinella spiralis and Prionchulus punctatus (Pettitt et al. 2008; Harrison et al. 2010), suggesting that they may also possess operons. The draft genome of T. spiralis should be a useful resource for identifying operons in this nematode (Mitreva et al. 2011). However, identification of operons is not straightforward. The original discovery of operons in C. elegans was dependent upon the discovery of a specific spliced leader, SL2, which is trans-spliced to most mRNAs derived from genes downstream of the first gene in operons (Spieth et al. 1993), but not all nematodes use a specialized SL RNA to resolve polycistronic RNAs (Guiliano and Blaxter 2006). Thus, this feature cannot be considered diagnostic for mRNAs derived from nematode operons. The other feature common to operonic genes is that, at least in C. elegans, the distance between genes in an operon (the intercistronic region, ICR) is unusually short, with a mean ICR size of 126 bp (Blumenthal et al. 2002). Again, this trait is not definitive: the ICR size can be considerably larger in the operons of other nematodes (Guiliano and Blaxter 2006; Ghedin et al. 2007) and even in C. elegans operons exist with large ICR distances (Morton and Blumenthal 2011).

Previous approaches to identify operons in T. spiralis (Mitreva et al. 2011) looked for pairs of T. spiralis genes whose homologs were in the same operon in C. elegans. This resulted in a limited set of 16 neighboring pairs of genes that potentially correspond to T. spiralis operons; however, further characterization of these candidate operons was not undertaken. We have used conserved synteny, coupled with the fact that mRNAs derived from downstream genes in operons are dependent on SL trans-splicing to elucidate a set of putative T. spiralis operons. Detailed analysis of two of these putative operons indicates that they display all the molecular charac-
teristics expected of loci that generate polycistronic RNA. Taken together our data indicate that the organization of genes into operons was present in the last common ancestor of the Chromadorea and Enoplea.

Materials and Methods

Bioinformatic identification of T. muris SL RNA genes

Trichuris muris SL RNA genes Tmu-SL1, Tmu-SL2, Tmu-SL3, and Tmu-SL9 were identified by searching the T. muris genome dataset with T. spiralis SL sequences using the BLASTN tool. Hits were considered if two of the three following criteria were met: a candidate Sm protein binding site was detected (AATTTTTG), the 5^{\prime} splice site sequence was conserved (AGGT), and a run of at least three Ts was found located $\sim 100 \mathrm{bp}$ from the end of the putative SL sequence. T. muris SL RNA genes Tmu-SL4, Tmu-SL5, Tmu-SL6, Tmu-SL7, TmuSL8, and Tmu-SL10 were identified by searching the T. muris genome dataset with the Tmu-SL1, Tmu-SL2, Tmu-SL3, or Tmu-SL9 sequences using the BLASTN tool and fulfilling the same criteria as above. Genes for Tmu-SL1, Tmu-SL2, TmuSL6, Tmu-SL8, Tmu-SL9, Tmu-SL10, and Tmu-SL11 were also identified with a PERL script (Pettitt et al. 2008) used previously to identify T. spiralis SL genes, except that the parameters for the Sm binding site were changed to AATTTTTG/TG.

Analysis of T. spiralis SL containing ESTs and Identification of Putative Conserved Operons

The ESTs were identified earlier (Pettitt et al. 2008). To identify the corresponding gene from which each EST was derived, the EST sequences were mapped onto the T. spiralis draft genome sequencing using BLASTN. The corresponding gene was annotated as being in a putative operon if its upstream or downstream neighbor genes were on the same DNA strand with an intercistronic distance of $\leq 1 \mathrm{~kb}$. If the neighbors were on the same strand, but between 1 kb and 5 kb away, they were recorded as ambiguous. Otherwise the genes were annotated as nonoperonic. A minority of the ESTs matched to more than one predicted T. spiralis gene.

To identify the operonic status of the C. elegans homologs of each SL trans-spliced T. spiralis EST, BLASTX searches were carried out. We used an E-value cutoff of 10^{-5} to determine homology. In addition, if we obtained similar E-values for multiple C. elegans genes, we excluded that EST from the analysis.
T. spiralis and Romanomermis culicivorax homologs of operonic gene pairs conserved between C. elegans and Brugia malayi (Ghedin et al. 2007) were identified using BLASTP searches with the C. elegans upstream homologs from each pair as a query in searches against the respective gene predictions. The predicted coding region of the T. spiralis/R. culicivorax gene immediately downstream of the gene identified by this search was then used as a query sequence in a "reciprocal" BLASTP search against the C. elegans gene predictions. Since it was apparent that T. spiralis genes, which are separated by unusually short intergenic distance (such as might be expected in genes organized into operons), are prone to misannotation
and conflation into a single gene prediction, we also carried out an additional step using both C. elegans gene pairs as query sequences in BLASTP searches against the T. spiralis gene predictions, looking for cases where both C. elegans genes return matches to the same T. spiralis gene. Manual examination of such putative gene prediction errors, guided by the results of the sequence similarity searches, was then used to identify the intercistronic regions in each case. In all BLASTP searches, we used an E-value cutoff of 10^{-5} for the establishment of homology.

Phylogenetic profiling of SL trans-splicing snRNPs

Homologs of C. elegans sna-1, sut-1, and sna-2 were identified by carrying out BLAST searches against the National Center for Biotechnology Information (NCBI) nonredundant database, except in the case of R. culicivorax and T. muris, where BLAST searches were carried out against datasets downloaded from http://www.nematodes.org/genomes/ romanomermis_culicivorax/ and http://www.sanger.ac.uk/ resources/downloads/helminths/trichuris-muris.html, respectively. Phylogenetic tree construction was carried out with the online implementation of PhyML (Dereeper et al. 2008) using default settings.

Nematode isolation and RNA preparation

T. spiralis RNA was produced as described (Pettitt et al. 2008). T. muris RNA was a generous gift from Allison Bancroft and Richard Grencis (University of Manchester).

Analysis of RNA 5' ends

The 5^{\prime} ends of cDNAs were obtained through 5^{\prime} RACE using the GeneRacer kit (Invitrogen), according to the manufacturer's instructions. Gene-specific primers used are given in Supporting Information, Table S3, and the cDNAs, amplified by PCR, using either GoTaq polymerase (Promega) or Expand High Fidelity polymerase (Roche), were cloned into pGEM T-Easy (Promega). The resulting plasmid inserts were sequenced by the University of Dundee Sequencing Service.

Detection of processing intermediates of polycistronic transcripts

RNA was reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen) and random primers according to the instructions of the manufacturer. In control reactions ("-RT") all reagents were included except the reverse transcriptase. Processing intermediates were normally amplified by two rounds of PCR with nested primer pairs (Table S4) and either GoTaq polymerase (Promega) or Expand High Fidelity polymerase (Roche) and visualized by agarose gel electrophoresis. The identity of the PCR products was determined by cloning into pGEM-T Easy (Promega) and sequencing of plasmid inserts.

Identification of SL RNA 3' ends

SL RNA 3' ends were determined essentially as described previously (Pettitt et al. 2008). T. muris total RNA ($\sim 5 \mu \mathrm{~g}$) was poly(A) tailed using yeast poly(A) polymerase, reverse tran-
scribed using an oligo-dT-anchor primer (GCGAGCTCCGCGG CCGCGTTTTTTTTTTTTTTT) and then PCR amplified using an SL-specific primers (GGTTAATTACCCAATTTAAAAG) and an anchor primer (GCGAGCTCCGCGGCCGCG). PCR fragments were inserted into pGEM-T Easy (Promega), and inserts were sequenced at the University of Dundee DNA Sequencing Facility.

SL RNA secondary structure prediction: Secondary structure prediction of T. muris SL RNA was performed using MFOLD Version 2.3 (Zuker 2003) using the default folding conditions ($1 \mathrm{M} \mathrm{NaCl}, 37^{\circ}$) and with the constraint that the Sm-binding site (5^{\prime}-AAUUUUUUG-3') was required to be single stranded.

Generation and analysis of synthetic operon constructs

The GFP coding region was amplified from pTG96 using the primers 5^{\prime}-CAATACAGACTTCCCGGGATTGGCCAAAGGACC CAAA-3' and 5'-GCTCACCATGCTAGCCTATTTGTATAGTTC ATCCATGC- 3^{\prime}. The mCherry coding region, coupled to the unc-54 3'-UTR, was amplified from pPD95.75Cherry (a derivative of pPD95.75 in which the GFP coding region was replaced by mCherry) using the primers 5^{\prime}-ACAAATAGGCT AGCATGGTGAGCAAGGGCGAG-3' and 5^{\prime}-CGCGCGAGACG AAAGGGCCCAGGAAACAGTTATGTTTGGTAT-3'. The primers were designed so that they had overlapping complementary 5^{\prime} extensions that introduced an NheI restriction site. The two amplicons were purified and fused using a PCR fusion strategy (Hobert 2002). The resulting amplicon consisting of the GFP and mCherry coding regions flanking an NheI site was cloned into SmaI-ApaI cut pTG96 using In-Fusion HD (Clontech Laboratories) to generate pTG96-Op. The ICRs were cloned from PCR products amplified from genomic DNA. The Tsp-cpt-2~nuaf-3 ICR was amplified from T. spiralis genomic DNA using primers 5'-ATACAAATAGGCTAG CACGAATTATCACTTTTATAAC-3' and 5^{\prime}-TGCTCACCATGC TAGCTTACGCCAAACTAGGAAATTATTGA- 3^{\prime}, and the Cel-cpt-2~prx-14 ICR was amplified from C. elegans genomic DNA using primers 5'-ATACAAATAGGCTAGCTTGTTTGAT GACATTTATGTATTTAT-3' and 5^{\prime}-TGCTCACCATGCTAGCTTT CAACCTGAAGCTTTAAAAT-3'. The resulting PCR products were cloned into NheI cut pTG96-Op using In-Fusion HD (Clontech Laboratories) and the resultant plasmids, pPE\#LP1 (Tsp-cpt-2~nuaf-3 ICR clone) and pPE\#LP2 (Cel-cpt-2~prx-14 ICR clone) were sequenced to confirm the integrity of the cloning process. To generate transgenic C. elegans strains, the plasmids were co-injected ($100 \mathrm{ng} / \mu \mathrm{l}$) with $\mathrm{P}_{\text {myo- } 2}:$ dTomato ($10 \mathrm{ng} / \mu \mathrm{l}$) into Bristol (N2) wild-type hermaphrodites. For each construct, several lines were obtained, each of which gave identical expression patterns. Single lines for each construct were selected for the experiments reported here: PE612, feEx304 [sur-5::gfp::ICR ${ }^{\text {Tsp-cpt-2~nuaf-3: }: m C h e r r y ~} \mathrm{P}_{\text {myo-2 }}:$:dTomato] and PE613, feEx305 [sur-5::gfp::ICR ${ }^{\text {Cel-cpt2~prx-14 }:: m C h e r r y ~}$ $\mathrm{P}_{\text {myo-2 }}:$:dTomato]. Trans-splicing of reporter gene transcripts was analyzed as described previously (Harrison et al. 2010). Briefly, total RNA was reverse transcribed and trans-spliced
transcripts were PCR amplified using C. elegans SL2-specific (5^{\prime}-GGTTTTAACCCAGTTACTCAAG-3') and mCherry-specific (5^{\prime}-CCGTCCTCGAAGTTCATCAC-3') primers. Primers derived from gpd-1 (5'-CCAACTGTCTGGCACCACT-3' and 5'-GTCTT CTGGGTTGCGGTTAC-3') were used to normalize the reactions. cDNA fragments were cloned into pGEM-T Easy (Promega), and inserts were sequenced at the University of Dundee DNA Sequencing Facility.

Results

A putative enoplean operon

As part of the analysis of the transcriptome of the free-living enoplean, Prionchulus punctatus, we identified an EST corresponding to an SL trans-spliced mRNA. Sequence similarity searches using this sequence identified a single predicted T. spiralis gene, Tsp_06075. However, subsequent sequence analysis of Tsp_06075 showed that it corresponds to an erroneous gene prediction, which conflates three genes that are the orthologs of the C. elegans genes zgpa-1 (C33H5.17), dif-1, and aph-1, respectively. That Tsp_06075 is actually three separate genes was confirmed by sequence analysis of 5' RACE products. It seems likely that the unusually short intergenic regions that exist between these three T. spiralis genes caused the gene annotation error (Figure 1). Such short intergenic distances are characteristic of nematode genes that are arranged into operons (Blumenthal et al. 2002; Guiliano and Blaxter 2006; Ghedin et al. 2007), and we thus decided to investigate the possibility that Tsp-zgpa-1, Tsp-dif-1, and Tsp-aph-1 constitute an operon. In parallel, we also analyzed the homologs of these three genes in the closely related enoplean, T. muris, which show the same syntenic arrangement, although the intergenic distance between Tmu-dif-1 and Tmu-aph-1 is much larger than expected for an ICR. The three C. elegans homologs although organized into operons, are not found in the same operon. However, in a close relative of C. elegans, Pristionchus pacificus, zgpa-1 and dif-1 could potentially constitute a single operon, but again the intergenic space between the two genes is also relatively large compared to the average size of ICRs in C. elegans operons.

We determined the overall pattern of SL trans-splicing of the mRNAs derived from the putative operons in both T. spiralis and T. muris by analyzing the 5^{\prime} ends of zgpa-1, dif-1, and aph-1 mRNAs using 5' RACE (Figure 1A; Table S2). The analysis of Tsp-zgpa-1 and Tmu-zgpa-1 transcripts mapped the mRNA 5^{\prime} ends to a region 200-250 bp upstream of the start codon, and we failed to detect any SL trans-spliced transcripts derived from this gene in either nematode. In contrast, all dif-1 transcripts analyzed were subject to SL trans-splicing in both organisms (Table S2). Tsp-dif-1 transcripts were transspliced to Tsp-SL10 [note this SL was previously given the designation TSL-10 (Pettitt et al. 2008), but we have renamed it to conform to accepted nematode gene nomenclature rules, which employ a species-specific prefix (Beech et al. 2010)] and Tmu-dif-1 transcripts were trans-spliced to the newly identified Tmu-SL1, Tmu-SL4, and Tmu-SL12 (Table S2).

Analysis of aph-1 transcripts showed that in some cases the transcripts are SL trans-spliced, but we were also able to detect transcripts that initiated $\sim 200-300$ bp upstream of the start codon, indicating that they were not subject to SL transsplicing (Figure 1A; Table S2). It is notable that the distance between Tmu-aph-1 and Tmu-dif-1 is relatively large, suggesting the possibility that there are promoter elements immediately upstream of Tmu-aph-1 that would allow the production of transcripts without the need for SL trans-splicing. Such "hybrid operons" have been described in C. elegans (Huang et al. 2007).

As part of this analysis, we identified spliced leaders in T. muris, leading to the discovery of 13 Tmu -SLs (Figure 2; Table S2). Previous studies have shown that the primary sequences of spliced leaders in T. spiralis are much more variable than those found in the Chromadorea (Pettitt et al. 2008), and many lack the conserved motifs that characterize spliced leaders from these latter nematodes. In contrast, those of P. punctatus do not show the same diversity and display a greater degree of sequence similarity to the Chromadorid spliced leaders (Harrison et al. 2010). Analysis of the 13 distinct T. muris spliced leaders, designated Tmu-SL1-13, support this view, since the T. muris spliced leaders possess the same 5^{\prime} GGUWW and central CCC motifs that are highly conserved in the P. punctatus spliced leaders and Chromadorid SL1 and SL2 families, but missing in most of the T. spiralis spliced leaders. The presence of canonical nematode spliced leaders in T. muris and P. punctatus, despite the fact that the former nematode is more closely related to T. spiralis, supports the inference that the T. spiralis spliced leaders are derived features.

If zgpa-1, dif-1, and aph-1 are components of a bona fide operon in the two enoplean nematodes, we would expect to be able to detect the polycistronic RNA from which their mRNAs are derived. Although not a definitive criterion, the presence of polycistronic, partially processed pre-mRNAs is a predicted property of operon usage. We tested for the presence of such RNA molecules in both T. spiralis and T. muris (Figure 1B; Figure S1) by reverse transcription of total RNA followed by PCR with gene-specific primers. PCR products were then analyzed by agarose gel electrophoresis. In T. spiralis, we detected RNA species connecting the open reading frames of Tsp-zgpa-1 with Tsp-dif-1 (Tsp-zgpa-1~dif-1) and Tsp-dif-1 with Tsp-aph-1 (Tsp-dif-1~aph-1) (Figure 1B). As we failed to amplify any products in control reactions performed in parallel with RNA subjected to mock reactions without reverse transcriptase (Figure S1), these products represent processing intermediates of polycistronic transcripts.

The Tsp-zgpa-1~dif-1 intermediates contained the intercistronic region, and two of the intermediates lacked introns. The Tsp-dif-1~aph-1 processing intermediates detected were all subject to cis-splicing of dif-1 introns, but we failed to detect an intermediate containing the complete ICR. Instead, the ICR was removed by cis-splicing of a cryptic splice donor site located in exon 7 of the dif-1 gene to the SL splice acceptor site of aph-1 (Figure 1B). Such cis-splicing events have
A
zgpa-1
dif-1
aph-1
CEOP4260 CEOP4228
CEOP1542 \square

B
T. spiralis

T. muris

Figure 1 Evidence for the existence of an enoplean operon. (A) Schematic showing the genomic organization of zgpa-1, dif-1, and aph-1 in selected nematodes mapped onto their phylogenetic relationships. Arrows represent genes, and the gray lines represent the intercistronic regions (ICRs). Numbers above the ICRs represent the distances, in base pairs, between the stop and start codons of the upstream and downstream genes, respectively. The C. elegans operon numbers are given where appropriate. Fractions below the T. spiralis and T. muris genes represent the proportion of cDNAs derived from those genes that begins with a spliced leader sequence (see also Table S2). In C. elegans, the three genes are part of different operons. * indicates the distance between genes on chromosome IV. (B) Detecting polycistronic RNAs derived from the zgpa-1~dif-1~aph-1 operon in enoplean nematodes. The exon-intron structures of the amplicons used to identify polycistronic RNAs are shown, with exons represented by boxes (shaded to identify the genes from which they are derived using the same color coding that was used in A. The intercistronic regions are represented by creamcolored boxes. The positions of the SL trans-spliced 3^{\prime} splice sites are indicated. The length of each cDNA is indicated.
also been detected in putative polycistronic RNAs discovered in tapeworm genomes (Tsai et al. 2013). Moreover, this demonstrates that Tsp-dif-1 and aph-1 are transcribed as a single transcript. In T. muris we also detected processing intermediates corresponding to Tmu-zgpa-1~dif-1 and Tmu-dif-1~aph-1 transcripts (Figure 1B; Table S2). The latter observation is significant, since the ICR between Tmu-dif-1 and Tmu-aph-1 is predicted to be 3033 nt long, a distance substantially longer than the length of an average ICR in C. elegans, although ICRs of similar length are also present in some C. elegans operons (Morton and Blumenthal 2011).

Identification of additional putative enoplean operons

To more systematically identify enoplean operons, we adopted two approaches. First, we used a set of EST sequences derived
from SL trans-spliced T. spiralis mRNAs (Pettitt et al. 2008) to identify their corresponding genes via sequence similarity searches (we also identified two T. muris mRNAs via the same approach: FF145866 and CB277782). For each gene, we then looked for neighboring genes predicted to be transcribed in the same orientation and that lay within 1 kb . Using this approach, we were able to identify multiple potential operons in the T. spiralis genome (Table 1; Table S1). We further analyzed this set of genes by identifying the C. elegans orthologs of each T. spiralis gene and determining whether these correspond to genes within operons. Our analysis revealed that at least 75 of the C. elegans orthologs are arranged in operons. This represents 44% of the C. elegans genes identified as orthologs of our T. spiralis SL trans-spliced EST set. Since only 15% of C. elegans genes are organized into operons

Figure $2 T$. muris SL sequences and SL RNA structure. (A) Tmu-SL1-13 genes were identified using a combination of CDNA sequencing and bioinformatics tools as described in Materials and Methods. Tmu-SL12 was found by 5' RACE trans-spliced to nuaf-3 mRNA, and Tmu-SL13 was found trans-spliced to aph-1 mRNA. In the alignment, only the SL sequences are shown. T. muris SL sequences were manually aligned and conserved groups are countershaded. C. elegans SL1 and SL2 and the previously identified P. punctatus SL sequences were included for comparison. (B) The intron of Tmu-SL2 was experimentally identified and also found in the genome sequence. The proposed secondary structure was produced using M-fold (Zuker 2003). The SL sequence is shown in outline font and the putative Sm sequence motif is countershaded.
(Allen et al. 2011), we would expect only 15% of T. spiralis genes in our dataset to match C. elegans operonic homologs if they were selected at random. It is difficult to determine the reason for the increased likelihood of matches to C. elegans operonic genes among the T. spiralis SL trans-spliced ESTs; it may be that the corresponding T. spiralis gene set is biased for highly expressed genes, for instance. However, it is consistent with the possibility that this dataset is enriched for transcripts derived from operonic genes.

As an alternative approach, which would potentially identify operons that have been conserved since the separation of the Enoplea and Chromadorea, we looked for T. spiralis homologs of a set of putative operons conserved between C. elegans and B. malayi (Ghedin et al. 2007). Of the 107 operonic gene pairs screened, we identified 12 T. spiralis gene pairs that displayed conserved synteny, and whose component genes were separated by an average intergenic distance of 607 bp (Table 2). To determine whether any of these operons are also conserved in another enoplean species, we examined the organization of the corresponding homologous genes in the genome of R. culicivorax (Schiffer et al. 2013). This analysis revealed that 4 of the 12 gene pairs were arranged in putative operons (assuming a maximum ICR distance of up to 1 kb) in this nematode (Table 2).

Taken together, our analysis indicates that there are multiple T. spiralis gene pairs whose genomic arrangement is consistent with their corresponding to operons. Moreover, it is possible to identify gene pairs conserved between T. spiralis, R. culicivorax, B. malayi, and C. elegans, suggesting that these represent operons that were present in the last common ancestor of the three species.

Characterization of a conserved nematode operon

The analysis of one of the two SL trans-spliced T. muris mRNAs (GenBank accession no. FF145866) led to the identification of a putative operon conserved between multiple
nematodes (Figure 3A). The two genes contained in these putative operons have C. elegans homologs, cpt-2 and nuaf-3, respectively, which are in the same operon (CEOP4424) (Figure 3A), although there is an additional gene, prx-14, located between these genes in CEOP4424 that is not present in the putative homologous T. spiralis operon. Examination of the genomic organization of the homologous genes in a selection of nematode species confirmed the evolutionary conservation of the synteny of the cpt-2 and nuaf-3 homologs (Figure 3A). This analysis also showed that insertion of prx-14 into the cpt-2~nuaf-3 operon was a relatively recent event, since it is present only in C. elegans and other closely related Caenorhabditis species. We also find, based on the head-to-tail organization and spacing between coding regions, that there is variation in the composition of both operons in different species, and these genes in R. culicivorax are not in operons.

We further focused on the cpt-2~nuaf-3 operon in T. spiralis and T. muris to determine the pattern of SL trans-splicing exhibited by the mRNAs derived from this operon and to verify that we were able to detect cDNAs consistent with the production of polycistronic RNAs.

Determination of the 5^{\prime} ends of cpt-2 and nuaf-3 transcripts by 5^{\prime} RACE revealed that nuaf- 3 mRNA is subject to

Table 1 Operonic status of genes that match ESTs derived from T. spiralis SL trans-spliced transcripts

	Location in operon			
Species	Upstream	Downstream	Ambiguous	Nonoperonic
T. spiralis	30	35	40	54
C. elegans	29	46	5^{a}	89

[^1]Table 2 Putative conserved nematode operons

T. spiralis		R. culicivorax		C. elegans			B. malayi	
Upstream gene	Downstream gene	Upstream gene	Downstream gene	Upstream gene	Downstream gene	Operon no.	Upstream gene	Downstream gene
Tsp_00685	a	Nonoperonic		mrps-17	C05D11.9	3372	Bm1_13520	Bm1_13525
Tsp_03140	Tsp_03139	t32947	t32944	T26E3.4	par-6	1672	Bm1_48785	Bm1_48780
Tsp_05540	Tsp_05541	Nonoperonic		K11B4.1	K11B4.2	1764	Bm1_55805	Bm1_55810
Tsp_06077	Tsp_06076	Nonoperonic		Y62E10A. 2	Y62E10A. 6	4540	Bm1_54855	Bm1_54850
Tsp_06996	a	t05598/9	t05596	sel-1	mrps-5	5365	Bm1_45745	Bm1_45750
Tsp_09103	Tsp_09102	t35569	t35568	snu-23	ZK686.3	3452	Bm1_13735	Bm1_13740
Tsp_09506	a	Nonoperonic		H2OJ04.6	mog-2	2124	Bm1_15855	Bm1_15860
Tsp_09539	${ }^{\text {a }}$	Nonoperonic		E02H1.5	E02H1.6	2436	Bm1_24720	Bm1_24715
Tsp_10673	Tsp_10674	t34344.1	t34344.2	B0491.1	B0491.7	2532	Bm1_10780	Bm1_10785
Tsp_10698	Tsp_10702	Non	operonic	trpp-8	vha-10	1264	Bm1_12140	Bm1_12135
Tsp_10959		Non	operonic	ubxn-2	Y94H6A. 8	4665	Bm1_36515	Bm1_36520
Tsp_11898	a	Non	peronic	lst-6	sqv-7	2276	Bm1_24075	Bm1_24080

${ }^{a}$ Single gene annotation matches to both C. elegans genes in the operon pair consistent with annotation error caused by short intergenic spacing.

SL trans-splicing (Table S2) in both nematodes. However, we failed to detect any SL trans-spliced cpt-2 transcripts, similar to the situation with zgpa-1 transcripts in the zgpa-1~dif-1~aph-1 operon.

We were also able to detect processing intermediates derived from the putative polycistronic T. spiralis cpt$2 \sim n u a f-3$ transcripts. As for the zgpa-1~dif-1~aph-1 operon, in addition to unprocessed, polycistronic transcripts, we detected cis-spliced intermediates lacking cpt-2 and nuaf-3 introns and a transcript in which the ICR was removed by splicing from a cryptic 3^{\prime} splice site in $c p t-2$ to the nuaf-3 SL splice acceptor site (Figure 3B).

The T. spiralis cpt-2~nuaf-3 ICR can mediate polycistronic RNA processing in C. elegans

Analysis of the intercistronic region between Tsp-cpt-2 and nuaf-3 downstream of the polyadenylation signal of Tsp-cpt-2 revealed a clear Ur element and there are several U-rich regions, characteristics of the ICRs in C. elegans operons (Graber et al. 2007). To investigate the possibility that this region is able to function in polycistronic RNA processing, we determined whether the ICR from it could be recognized and processed if heterologously expressed in C. elegans. We generated an artificial operon consisting of sur-5::gfp (Gu et al. 1998) and mCherry genes flanking the ICR from Tsp-cpt-2~nuaf-3. Transgenic animals carrying this construct expressed nuclear GFP and cytoplasmic mCherry, consistent with the processing of the two coding regions under the direction of the Tsp-cpt-2~nuaf-3 ICR. We confirmed that this involved trans-splicing to SL2, as expected for polycistronic RNA processing in C. elegans, by showing that we could detect SL2 trans-splicing to the mCherry mRNA in RNA derived from transgenic animals (Figure 4). Thus, the predicted ICR between Tsp-cpt-2 and nuaf-3 is recognized and used as a substrate for polycistronic RNA processing in C. elegans.

Conservation of SL trans-splicing snRNPs between Enoplea and Chromadorea

Our data show that both SL trans-splicing and operons were likely present in the last common ancestor of the nematode
phylum. This suggests that the processing machinery necessary for the coordination of these processes was already in place prior to radiation of the nematode phylum. To address this, we sought to determine the conservation of known protein components that are specifically involved in SL trans-splicing. Previous studies have shown the existence of two interacting proteins, conserved between Ascaris suum and C. elegans, that are components of the SL small nuclear ribonucleic particle (snRNP) (Denker et al. 2002; MacMorris et al. 2007). The two proteins, termed SNA-1 and SNA-2 in C. elegans, form a complex with SL RNA. In addition, a paralog of SNA-1, SUT-1, forms novel snRNPs containing SNA-2 and a family of nematode-specific RNAs, designated Sm Y (MacMorris et al. 2007; Jones et al. 2009). The function of Sm Y RNAs is not known, but they are associated with SL trans-splicing (Maroney et al. 1996), and a role in the recycling of Sm proteins following SL trans-splicing has been proposed (MacMorris et al. 2007).

We were able to identify credible homologs of sna-2 in the genomes of all nematodes in which searches were carried out, including T. spiralis and R. culicovorax, indicating that this gene encodes a nematode-wide SL trans-splicing component (Figure S2). Searches of the same datasets identified clear sna-1 and sut-1 orthologs in the chromadorean nematodes (Figure 5), extending the previously reported phylogenetic distribution of sut-1 (MacMorris et al. 2007). In contrast, the only enoplean genome in which we were able to identify a sut-1 homolog was R. culicivorax (Figure 5). We could not detect sna-1 homologs in any of the enoplean genomes that we assayed. These data suggest that the gene duplication event that gave rise to sna-1 and sut-1 occurred after the separation of the two major nematode taxa; however, we cannot rule out that the possibility that our failure to detect sna-1 homologs is due to the incomplete state of the enoplean genome drafts.

Discussion

The incidence of operons as a means to coordinate gene expression has been investigated in only one of the two main nematode taxa, leaving unanswered the question about when

Figure 3 Evidence for an evolutionarily conserved nematode operon. (A) The structure of the cpt-2-nuaf-3 genomic regions from a range of nematode species mapped onto the nematode phylogeny. Genes are represented by arrows, and the gray lines represent the intercistronic regions (ICRs). Numbers above the ICRs represent the distances, in base pairs, between the stop and start codons of the upstream and downstream genes, respectively. The C. elegans operon numbers are given where appropriate. Fractions below the T. spiralis and T. muris genes represent the proportion of cDNAs derived from those genes that begins with a spliced leader sequence. (B) Detecting polycistronic RNAs derived from the cpt-2~nuaf-3 operon in T. spiralis. The exon-intron structures of the amplicons used to identify polycistronic RNAs are shown, with exons represented by boxes (shaded to identify the genes from which they are derived using the same color coding that was used in A. The region removed during operon processing is represented by cream-colored boxes. The positions of the SL trans-splice 3^{\prime} spliced sites are indicated.

878 bp

529 bp

this mechanism first occurred during nematode evolution (Guiliano and Blaxter 2006; Ghedin et al. 2007; Liu et al. 2010). The work presented here provides strong support for the existence of operons in the Enoplea, and that operons were likely present in the ancestor of the Chromadorea and the Enoplea. The unequivocal identification of operons is not straightforward in those nematodes that do not utilize a specialized spliced leader to resolve polycistronic RNAs; the use of SL2 in C. elegans and its close relatives has greatly facilitated the identification of operons in these species. In contrast, in enoplean species we can only infer the presence of operons through multiple lines of evidence.

Our work demonstrates the existence of clusters of genes ordered in a head-to-tail arrangement with short, less than 1 kb , intergenic distances, consistent with their being organized into operons. The fact that we can identify homologous pairs of closely spaced genes conserved between enoplean and chromadorean nematodes suggests that at least in these cases there has been selective pressure to retain short intergenic
distances, consistent with what would be expected if they were part of operons. Analysis of the transcripts produced by these putative operons shows that, as expected, genes predicted to be downstream in operons produce mRNAs that are SL trans-spliced. Further supporting evidence comes from the fact that we can detect unprocessed, polycistronic premRNAs derived from these putative operons. Thus these genes exhibit the molecular properties expected of operons. Most significantly, the intergenic region between Tsp-cpt-2 and nuaf-3 acts as a substrate for the polycistronic RNA processing machinery of C. elegans, providing the strongest evidence that it is part of an operon in T. spiralis.

The identification of SLs from T. muris has extended our understanding of nematode SL evolution. Previous studies have shown that T. spiralis and T. pseudospiralis have unusually diverse SLs that do not readily correspond to those SLs found within Chromadorea (Pettitt et al. 2008, 2010). Another enoplean, P. punctatus, possesses SLs that resemble the specialized SL2 associated with trans-splicing and polycistronic RNA

Figure 4 Processing of a synthetic operon containing the T. spiralis cpt-2~nuaf-3 intercistronic region in C. elegans. (A) Schematic of the structure of sur-5::gfp~mCherry synthetic operon construct containing the Tsp-cpt-2~nuaf-3 intercistronic region. The sequence immediately downstream from the Tsp-cpt-2 3'-UTR is shown, illustrating the presence of the Ur motif and the trans-splice acceptor site. Strain PE613 contains an identical construct, but with the ICR replaced with that from between Cel-cpt-2 and prx-14. (B) Detection of operon transcript processing by SL2 trans-splicing. mCherry transcripts trans-spliced to SL2 were detected by reverse transcription of RNA prepared from either PE612 or PE613 animals followed by PCR with an SL2 primer and a primer located in the mCherry coding region (+RT). Primers amplifying gpd-1 were included to control for sample variation. gpd-1 genomic DNA was detected in the -RT control reaction (*) and SL2-ZK1236.7a is a minor product detected in the +RT reactions. Reactions with RNA isolated from N2 wild-type animals were included as control. M is a DNA size standard. (C) Alignment of transgene sequences and SL2-mCherry transcripts confirming correct splice site usage. The beginning of the mCherry open reading frame is countershaded black, the Nhel cloning site is countershaded gray, and the SL2 sequences are underlined.
resolution found in C. elegans and other closely related nematodes. At least one of these is specifically recognized by the SL2 trans-splicing machinery in C. elegans when expressed heterogeneously (Harrison et al. 2010). Rather surprisingly, since it is more closely related to Trichinella species than P. punctatus, the T. muris SLs are more similar in terms of sequence composition to those of the latter nematode (the most extreme example of this being Ppu-SL3 and Tmu-SL13, which possess $>95 \%$ sequence identity). Thus, the diverse SL complement of the Trichinella species is likely to be a derived rather than ancestral trait.

In addition to elucidating the extent of nematode SL RNA conservation, we have determined the phylogenetic distribution of the protein components of the SL snRNP. This reveals that one of these components, SNA-2, is conserved throughout the phylum, consistent with its essential role in SL transsplicing in both A. suum and C. elegans (Denker et al. 2002; MacMorris et al. 2007). Our analysis of SNA-1/SUT-1 has revealed that these two paralogs are distributed throughout the Chromadorea. These data, together with the presence of a single clear SUT-1 homolog in R. culicivorax (and absence of
a SNA-1 homolog) is consistent with an evolutionary scenario whereby the ancestral sut-1 gene was duplicated in the ancestor of the Chromadorea, with one paralog, sut-1, retaining the ancestral function, while the other, sna-1, evolved a derived function. However, the fact that sna-1 and sut-1 show a synthetic loss of function phenotype in C. elegans (MacMorris et al. 2007) indicates that their functions are related and possibly overlapping. The puzzling absence of SUT-1 homologs in T. spiralis and T. muris means that such an interpretation must be provisional, pending broader sampling of genome sequences from other enopleans. If these nematodes actually lack these proteins this would be surprising, given that loss of both sna-1 and sut-1 function in C. elegans results in embryonic lethality (MacMorris et al. 2007) and SNA-1 is required for SL trans-splicing in A. suum splicing extracts (Denker et al. 2002).

An important question that remains to be answered is whether there is any evidence for functional specialization of the enoplean SLs with regard to polycistronic RNA resolution. In C. elegans, SL2-type SLs are clearly specific for this latter process (Blumenthal et al. 2002), with SL1 trans-splicing almost exclusively employed in mRNAs derived from nonoperonic

0.8

Figure 5 Evolutionary relationship between snRNPs associated with SL trans-splicing. Unrooted PhyML tree showing the relationship between sna-1 and sut-1 homologs identified in selected nematodes. Genes were named on the basis of their C. elegans homologs. The following speciesspecific prefixes were used: Aca, Angiostrongylus cantonensis; Asu, Ascaris suum; Bma, Brugia malayi; Cel, C. elegans; Cbr, C. briggsae; Cre, C. remanei; Hco, Haemochus contortus; Llo, Loa loa; Nam, Necator americanus; Rcu, Romanomermis culicivorax; and Wba, Wucheria bancrofti. The numbers at each node are approximate likelihood ratio test statistics.
genes, or the first gene in an operon. Other nematodes within the Rhabditina also show the same specialization (Evans et al. 1997; Lee and Sommer 2003), but other taxa within the Chromadorea appear to use the same set of SLs for all SL trans-spliced mRNAs (Guiliano and Blaxter 2006). Within the Enoplea we clearly see multiple different SLs used in the trans-splicing of mRNAs derived from downstream genes in operons, but our data are not comprehensive enough to determine whether some SLs are preferentially used to process the transcripts arising from such genes.

We have identified multiple examples of gene pair synteny conserved between T. spiralis, R. culicivorax, B. malayi, and C. elegans, suggesting these correspond to conserved operons present in the last common ancestor of the Enoplea and Chromadorea. Nevertheless, the majority of the putative operons that we have identified in T. spiralis are not syntenic with C. elegans operons, although in many cases we see that the component genes of these putative T. spiralis operons have C. elegans orthologs that are found in operons. An example of such an operon is that comprising Tsp-zgpa-1, Tsp-dif-1, and Tsp-aph-1, whose C. elegans orthologs are located in different operons. We also observed putative T. spiralis operon genes whose C. elegans orthologs are not part of operons. The changes in the operon complements between the two nematodes could arise from the lineage-specific rearrangements of an ancestral set of nematode operons, but could also be accounted for by differential de novo operon generation in the two clades, or a mixture of the two processes. A key question is whether the synteny shown between the putative
enoplean operons and their chromadorean orthologs is significant, i.e., are the genes that comprise these operons more constrained to be located in the same operon than other operonic genes, or is the conservation of synteny merely random chance? The availability of tools to engineer the C. elegans genome (Golic 2013) might allow this question to be addressed by assaying the function of selected operons compared with their individual component genes each expressed under their own promoters.

Finally, it is clear from this work and previous studies that SL trans-splicing and operon organization arose prior to the divergence of the Enoplea and Chromadorea. An important question is whether "nematode" SL trans-splicing and operons predate the foundation of the phylum. It will thus be important to establish whether they are also present in the other, so far uncharacterized, phyla that are closely related to the nematodes.

Acknowledgments

We thank Allison Bancroft and Richard Grencis for providing T. muris RNA. The Bristol (N2) C. elegans N2 strain was provided by the Caenorhabditis Genetics Center, which is funded by National Institutes of Health Office of Research Infrastructure Programs (P40 OD010440). This work was funded by a Biotechnology and Biological Sciences Research Council project grant BB/J007137/1.

Literature Cited

Allen, M. A., L. W. Hillier, R. H. Waterston, and T. Blumenthal, 2011 A global analysis of C. elegans trans-splicing. Genome Res. 21: 255-264.
Beech, R. N., A. J. Wolstenholme, C. Neveu, and J. A. Dent, 2010 Nematode parasite genes: what's in a name? Trends Parasitol. 26: 334-340.
Blumenthal, T., D. Evans, C. D. Link, A. Guffanti, D. Lawson et al., 2002 A global analysis of Caenorhabditis elegans operons. Nature 417: 851-854.
Dana, C. E., K. M. Glauber, T. A. Chan, D. M. Bridge, and R. E. Steele, 2012 Incorporation of a horizontally transferred gene into an operon during cnidarian evolution. PLoS ONE 7: e31643.
Davis, R. E., and S. Hodgson, 1997 Gene linkage and steady state RNAs suggest trans-splicing may be associated with a polycistronic transcript in Schistosoma mansoni. Mol. Biochem. Parasitol. 89: 25-39.
Denker, J. A., D. M. Zuckerman, P. A. Maroney, and T. W. Nilsen, 2002 New components of the spliced leader RNP required for nematode trans-splicing. Nature 417: 667-670.
Dereeper, A., V. Guignon, G. Blanc, S. Audic, S. Buffet et al., 2008 Phylogeny.fr: robust phylogenetic analysis for the nonspecialist. Nucleic Acids Res. 36: W465-W469.
Evans, D., D. Zorio, M. MacMorris, C. E. Winter, K. Lea et al., 1997 Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis. Proc. Natl. Acad. Sci. USA 94: 9751-9756.
Ganot, P., T. Kallesøe, R. Reinhardt, D. Chourrout, and E. M. Thompson, 2004 Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol. Cell. Biol. 24: 7795-7805.

Ghedin, E., S. Wang, D. Spiro, E. Caler, Q. Zhao et al., 2007 Draft genome of the filarial nematode parasite Brugia malayi. Science 317: 1756-1760.
Golic, K. G., 2013 RNA-guided nucleases: a new era for engineering the genomes of model and nonmodel organisms. Genetics 195: 303-308.
Graber, J. H., J. Salisbury, L. N. Hutchins, and T. Blumenthal, 2007 C. elegans sequences that control trans-splicing and operon pre-mRNA processing. RNA 13: 1409-1426.
Gu, T., S. Orita, M. Han, 1998 Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulval induction. Mol. Cell. Biol. 18: 4556-4564.
Guiliano, D. B., and M. L. Blaxter, 2006 Operon conservation and the evolution of trans-splicing in the phylum Nematoda. PLoS Genet. 2: e198.
Harrison, N., A. Kalbfleisch, B. Connolly, J. Pettitt, and B. Müller, 2010 SL2-like spliced leader RNAs in the basal nematode Prionchulus punctatus: New insight into the evolution of nematode SL2 RNAs. RNA 16: 1500-1507.
Hastings, K. E. M., 2005 SL trans-splicing: easy come or easy go? Trends Genet. 21: 240-247.
Hobert, O., 2002 PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32: 728-730.
Holterman, M., A. van der Wurff, S. van den Elsen, H. van Megen, T. Bongers et al., 2006 Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Mol. Biol. Evol. 23: 1792-1800.
Huang, P., E. D. Pleasance, J. S. Maydan, R. Hunt-Newbury, N. J. O'Neil et al., 2007 Identification and analysis of internal promoters in Caenorhabditis elegans operons. Genome Res. 17: 1478-1485.
Jacob, F., D. Perrin, C. Sánchez, J. Monod, and S. Edelstein, 1960 The operon: a group of genes with expression coordinated by an operator. C. R. Acad. Sci. Paris 250: 1727-1729.
Johnson, P. J., J. M. Kooter, and P. Borst, 1987 Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell 51: 273-281.
Jones, T., W. Otto, M. Marz, S. Eddy, and P. Stadler, 2009 A survey of nematode SmY RNAs. RNA Biol. 6: 5-8.
Lawrence, J., 1999 Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9: 642-648.
Lee, K.-Z., and R. J. Sommer, 2003 Operon structure and transsplicing in the nematode Pristionchus pacificus. Mol. Biol. Evol. 20: 2097-2103.
Liu, C., A. Oliveira, C. Chauhan, E. Ghedin, and T. R. Unnasch, 2010 Functional analysis of putative operons in Brugia malayi. Int. J. Parasitol. 40: 63-71.
MacMorris, M., M. Kumar, E. Lasda, A. Larsen, B. Kraemer et al., 2007 A novel family of C. elegans snRNPs contains proteins associated with trans-splicing. RNA 13: 511-520.

Marlétaz, F., A. Gilles, X. Caubit, Y. Perez, C. Dossat et al., 2008 Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol. 9: R94.
Maroney, P. A., Y. T. Yu, M. Jankowska, and T. W. Nilsen, 1996 Direct analysis of nematode cis- and trans-spliceosomes: a functional role for U5 snRNA in spliced leader addition transsplicing and the identification of novel Sm snRNPs. RNA 2: 735745.

Meldal, B. H. M., N. J. Debenham, P. De Ley, I. T. De Ley, J. R. Vanfleteren et al., 2007 An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol. Phylogenet. Evol. 42: 622-636.
Mitreva, M., D. P. Jasmer, D. S. Zarlenga, Z. Wang, S. Abubucker et al., 2011 The draft genome of the parasitic nematode Trichinella spiralis. Nat. Genet. 43: 228-235.
Morton, J. J., and T. Blumenthal, 2011 Identification of transcription start sites of trans-spliced genes: uncovering unusual operon arrangements. RNA 17: 327-337.
Pettitt, J., N. Harrison, I. Stansfield, B. Connolly, and B. Müller, 2010 The evolution of spliced leader trans-splicing in nematodes. Biochem. Soc. Trans. 38: 1125-1130.
Pettitt, J., B. Müller, I. Stansfield, and B. Connolly, 2008 Spliced leader trans-splicing in the nematode Trichinella spiralis uses highly polymorphic, noncanonical spliced leaders. RNA 14: 760-770.
Protasio, A. V., I. J. Tsai, A. Babbage, S. Nichol, M. Hunt et al., 2012 A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 6: e1455.
Satou, Y., K. Mineta, M. Ogasawara, Y. Sasakura, E. Shoguchi et al., 2008 Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol. 9: R152.
Schiffer, P. H., M. Kroiher, C. Kraus, G. D. Koutsovoulos, S. Kumar et al., 2013 The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics 14: 923.
Spieth, J., G. Brooke, S. Kuersten, K. Lea, and T. Blumenthal, 1993 Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell 73: 521-532.
Tsai, I. J., M. Zarowiecki, N. Holroyd, A. Garciarrubio, A. SanchezFlores et al., 2013 The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496: 57-63.
Zaslaver, A., L. R. Baugh, and P. W. Sternberg, 2011 Metazoan operons accelerate recovery from growth-arrested states. Cell 145: 981-992.
Zuker, M., 2003 Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415.

Communicating editor: M. P. Colaiácovo

GENETICS

Supporting Information
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162875/-/DC1

Operons Are a Conserved Feature of Nematode Genomes

Jonathan Pettitt, Lucas Philippe, Debjani Sarkar, Christopher Johnston, Henrike Johanna Gothe,
Diane Massie, Bernadette Connolly, and Berndt Müller

Figure S1 RT-PCR detection of polycistronic RNA. The exon-intron structures of the amplicons used to identify polycistronic RNAs are shown, with exons represented by boxes (shaded to identify the genes from which they are derived using the same colour coding that was used in Figures 1A and 3A). Cream coloured boxes represent the intercistronic regions. The positions of the SL trans-splice acceptor sites are indicated. Images of representative RT-PCR products produced from each pair of primers are shown to the right of each amplicon cartoon. Reactions were carried out in the presence or absence of reverse transcriptase, + or - , respectively. M indicates DNA size markers.

Figure S2 Multiple sequence alignment of SNA-2 homologues. Residues conserved in 50\% or more of the homologues are shaded black (identities) or grey (similarities). Species prefixes used as follows: Tsp - T. spiralis; Rcu - R. culicivorax; Asu - A. suum; Llo - L. loa; Bma - B. malayi; Wba - W. bancrofti; Hco - H. contortus; Ace - A. ceylanicum; Cre - C. remanei; Cel - C. elegans.

Table S1 Operonic status of T. spiralis genes that produce SL trans-spliced transcripts.

T. spiralis Gene ${ }^{1}$	Tsp-SL Number	EST	T. spiralis Gene Operon Status ${ }^{2}$	C. elegans homologue	C. elegans Gene Operon Status	C. elegans Operon Number
Tsp_04323	3	ES566285	Upstream	ZK829.7	Upstream	4484
Tsp_04801	1	ES565008	Upstream	prmt-1	Upstream	5508
Tsp_07643	3	ES272890	Upstream	Y57G11C. 22	Upstream	4661
Tsp_09747	3	ES565435	Upstream	$f k b-2$	Upstream	1903
Tsp_10562	3	ES566995	Upstream	K10C3.4	Upstream	1566
Tsp_10928	3	ES570931	Upstream	C17E4.6	Upstream	1544
Tsp_08576	2	ES568840	Upstream	ung-1	Upstream	3746
Tsp_00718	5	ES570675	Upstream	ufd-1	Downstream	4512
Tsp_01411	2	ES560816	Upstream	C16A3.4	Downstream	3364
Tsp_02079	3	ES570654	Upstream	idi-1	Downstream	3480
Tsp_06176	12	ES565259	Upstream	T04G9.4	Downstream	X147
Tsp_06763	4	BG353375	Upstream	C18E3.5	Downstream	1152
Tsp_08492	4	ES567181	Upstream	wwp-1	Downstream	1934
Tsp_08574	3	BQ692442	Upstream	vps-28	Downstream	1708
Tsp_08643	3	ES565814	Upstream	pdha-1	Downstream	2336
Tsp_11146	3	ES566810	Upstream	hpo-11	Downstream	1368
Tsp_09859	3	ES570398	Upstream	gpdh-2	Downstream	3795
Tsp_12645	12	ES567036	Upstream	acs-16	Non-Operonic	
Tsp_00181	2	ES569343	Upstream	Y53F4B. 42	Non-Operonic	
Tsp_01518	2	ES563585	Upstream	tomm-1	Non-Operonic	
Tsp_02629	2	ES569407	Upstream	tsp-11	Non-Operonic	
Tsp_04773	3	ES565760	Upstream	apd-3	Non-Operonic	
Tsp_05351	1	ES565863	Upstream	smn-1	Non-Operonic	
Tsp_05770	2	ES570548	Upstream	jnk-1	Non-Operonic	
Tsp_09338	1	ES567564	Upstream	rpl-32	Non-Operonic	
Tsp_09639	2	ES568996	Upstream	aldo-1	Non-Operonic	
Tsp_10534	3	ES570566	Upstream	skr-1	Non-Operonic	
Tsp_11514	3	ES568803	Upstream	rps-9	Non-Operonic	
Tsp_12763	3	ES565626	Upstream	cyn-7	Non-Operonic	
Tsp_13841	2	ES273211	Upstream	Y37D8A. 17	Non-Operonic	
Tsp_00182	4	ES570621	Downstream	swd-2.2	Upstream	4248
Tsp_00331	8	ES569101	Downstream	ubl-1	Upstream	3088
Tsp_00685	2	ES568435	Downstream	mrps-17	Upstream	3372
Tsp_00837	12	ES568088	Downstream	rrbs-1	Upstream	5416
Tsp_03905	2	ES563877	Downstream	F53F4.10	Upstream	5392
Tsp_04143	10	ES565871	Downstream	C06A8.2	Upstream	2731
Tsp_08528	2	ES569156	Downstream	Y55F3AM. 9	Upstream	4642
Tsp_11545	9	ES564614	Downstream	atp-5	Upstream	5272
Tsp_00424	1	ES562658	Downstream	F44E7.4	Downstream	5565
Tsp_00734	2	ES560968	Downstream	F54C8.7	Downstream	3584
Tsp_02509	2	ES569909	Downstream	ard-1	Downstream	4412

Tsp_02873	9	ES569583	Downstream	eif-3F	Downstream	2424
Tsp_03622	12	ES565661	Downstream	clpf-1	Downstream	3108
Tsp_05308	2	ES562011	Downstream	T09B4.9	Downstream	1304
Tsp_06507	2	ES561596	Downstream	raga-1	Downstream	2528
Tsp_06818	12	ES563737	Downstream	Y62E10A. 10	Downstream	4544
Tsp_08736	12	ES567003	Downstream	lars-2	Downstream	1396
Tsp_11177	3	ES563835	Downstream	rlbp-1	Downstream	1416
Tsp_08003	4	ES566741	Downstream	ins-1	Non-Operonic	
Tsp_00064	11	ES564912	Downstream	$m / p-1$	Non-Operonic	
Tsp_00608	1	ES568215	Downstream	ppt-1	Non-Operonic	
Tsp_00609	1	ES564896	Downstream	mdt-19	Non-Operonic	
Tsp_00958	2	ES564918	Downstream	vha-8	Non-Operonic	
Tsp_01274	2	ES564040	Downstream	asg-1	Non-Operonic	
Tsp_03114	3	BG353703	Downstream	pdhb-1	Non-Operonic	
Tsp_03857	3	ES570432	Downstream	exc-7	Non-Operonic	
Tsp_06181	3	ES569208	Downstream	idh-2	Non-Operonic	
Tsp_06812	1	ES564176	Downstream	B0035.1	Non-Operonic	
Tsp_06870	2	ES273592	Downstream	rpl-33	Non-Operonic	
Tsp_07223	4	ES566475	Downstream	amph-1	Non-Operonic	
Tsp_07289	3	ES273487	Downstream	M153.2	Non-Operonic	
Tsp_08373	3	ES565720	Downstream	dyn-1	Non-Operonic	
Tsp_11596	4	ES565698	Downstream	cpl-1	Non-Operonic	
Tsp_12613	2	ES565903	Downstream	lip-1	Non-Operonic	
Tsp_14129	10	ES564415	Downstream	ace-1	Non-Operonic	
Tsp_01343	3	ES273458	Ambiguous	fnta-1	Upstream	4008
Tsp_07410	3	ES569154	Ambiguous	ent-7	Upstream	1542
Tsp_11644	1	BG732210	Ambiguous	rpb-7	Upstream	1924
Tsp_00266	2	ES570691	Ambiguous	C10H11.8	Downstream	1780
Tsp_00680	2	ES561947	Ambiguous	arl-5	Downstream	3636
Tsp_01365	3	ES569529	Ambiguous	hpl-2	Downstream	3701
Tsp_02416	4	BG353715	Ambiguous	B0205.6	Downstream	1644
Tsp_04477	3	ES565704	Ambiguous	kin-10	Downstream	1456
Tsp_05422	3	ES569822	Ambiguous	C50D2.7	Downstream	2012
Tsp_05915	2	ES565057	Ambiguous	D2085.3	Downstream	2380
Tsp_07955	3	ES563974	Ambiguous	prmt-7	Downstream	1528
Tsp_08270	3	ES570232	Ambiguous	Y32H12A. 4	Downstream	3802
Tsp_09368	2	ES568561	Ambiguous	Ism-8	Downstream	4176
Tsp_10835	3	ES565721	Ambiguous	co9G9.1	Downstream	4310
Tsp_11447	12	ES569795	Ambiguous	C05C10.3	Downstream	2751
Tsp_10765	2	ES567336	Ambiguous	T25G3.1	Ambiguous	
Tsp_00026	2	ES563422	Ambiguous	F52E4.5	Non-Operonic	
Tsp_00262	2	ES567711	Ambiguous	pitp-1	Non-Operonic	
Tsp_00717	4	ES273452	Ambiguous	T07D1.2	Non-Operonic	
Tsp_01078	2	ES564803	Ambiguous	F21F3.7	Non-Operonic	
Tsp_01228	4	ES570063	Ambiguous	cco-2	Non-Operonic	
Tsp_01287	4	ES562009	Ambiguous	mtrr-1	Non-Operonic	

Tsp_01573	2	ES565382
Tsp_01930	1	ES570094
Tsp_03184	7	BG353788
Tsp_03217	13	BQ541428
Tsp_03724	2	ES569761
Tsp_04029	2	ES273134
Tsp_04084	1	ES568229
Tsp_04141	7	ES565838
Tsp_04152	3	ES566044
Tsp_05204	3	ES567104
Tsp_07239	1	ES564125
Tsp_08116	5	BG354896
Tsp_09247	3	ES563796
Tsp_09527	4	ES566597
Tsp_10184	2	BG353445
Tsp_10493	10	ES563996
Tsp_10907	2	ES570466
Tsp_11214	4	ES563030
Tsp_01291	3	ES568398
Tsp_01684	13	BG353107
Tsp_01730	2	ES563676
Tsp_05024	3	ES566087
Tsp_05180	2	ES568248
Tsp_06564	4	ES566240
Tsp_06972	2	ES564495
Tsp_07066	2	ES569769
Tsp_08234	4	ES570299
Tsp_08309	4	ES564762
Tsp_00048	3	ES570469
Tsp_00176	7	BG732141
Tsp_00183	3	ES560678
Tsp_01361	4	ES272901
Tsp_02307	3	ES562862
Tsp_02829	1	BG322177
Tsp_04483	7	ES273272
Tsp_06831	2	ES566483
Tsp_09589	2	ES566654
Tsp_11375	4	ES561664
Tsp_08545	7	ES273001
Tsp_00870	3	ES569690
Tsp_03751	3	ES569638
Tsp_08048	3	ES563226
Tsp_09957	2	ES567293
Tsp_05009	3	ES569586
Tsp_10058	3	ES569899
Tsp_00219	8	ES563383

Ambiguous	F37A8.5	Non-Operonic	
Ambiguous	ifa-1	Non-Operonic	
Ambiguous	F53F4.3	Non-Operonic	
Ambiguous	cmd-1	Non-Operonic	
Ambiguous	nrfl-1	Non-Operonic	
Ambiguous	BEOOO3N10.1	Non-Operonic	
Ambiguous	F52D10.2	Non-Operonic	
Ambiguous	T18D3.9	Non-Operonic	
Ambiguous	C15H9.5	Non-Operonic	
Ambiguous	C32E8.5	Non-Operonic	
Ambiguous	swt-1	Non-Operonic	
Ambiguous	F35G12.7	Non-Operonic	
Ambiguous	F31D4.2	Non-Operonic	
Ambiguous	$m t c h-1$	Non-Operonic	
Ambiguous	ck-1	Non-Operonic	
Ambiguous	cpz-1	Non-Operonic	
Ambiguous	kin-19	Non-Operonic	
Ambiguous	C32F10.8	Non-Operonic	
Non-Operonic	rpl-6	Upstream	3836
Non-Operonic	rsp-6	Upstream	4252
Non-Operonic	ubxn-4	Upstream	3520
Non-Operonic	C01G5.6	Upstream	4180
Non-Operonic	lin-53	Upstream	1552
Non-Operonic	npp-1	Upstream	4340
Non-Operonic	rla-0	Upstream	1624
Non-Operonic	ubh-4	Upstream	2328
Non-Operonic	C01A2.5	Upstream	1696
Non-Operonic	mnat-1	Upstream	2070
Non-Operonic	exos-4.1	Downstream	4532
Non-Operonic	ced-9	Downstream	3666
Non-Operonic	cua-1	Downstream	3792
Non-Operonic	mms-19	Downstream	5533
Non-Operonic	Y50D4C. 3	Downstream	5559
Non-Operonic	gdi-1	Downstream	4580
Non-Operonic	cts-1	Downstream	3660
Non-Operonic	dpy-11	Downstream	5120
Non-Operonic	F45F2.9	Downstream	5196
Non-Operonic	rba-1	Downstream	1552
Non-Operonic	drh-3	Downstream	1979
Non-Operonic	smr-1	Ambiguous	
Non-Operonic	rps-4	Ambiguous	
Non-Operonic	B0491.5	Ambiguous	
Non-Operonic	rpl-7	Ambiguous	
Non-Operonic	ncs-7	Non-Operonic	
Non-Operonic	cec-1	Non-Operonic	
Non-Operonic	hcf-1	Non-Operonic	

Tsp_00352	2	ES569781	Non-Operonic	C16E9.2	Non-Operonic	
Tsp_01044	1	ES273428	Non-Operonic	kin-2	Non-Operonic	
Tsp_01088	4	BG322014	Non-Operonic	sli-1	Non-Operonic	
Tsp_02150	1	ES273162	Non-Operonic	flp-14	Non-Operonic	
Tsp_03394	2	ES570427	Non-Operonic	T03F1.12	Non-Operonic	
Tsp_04026	1	ES561895	Non-Operonic	pcyt-1	Non-Operonic	
Tsp_05440	4	ES568782	Non-Operonic	sulp-4	Non-Operonic	
Tsp_05646	3	ES569812	Non-Operonic	K09E9.1	Non-Operonic	
Tsp_05819	4	ES570798	Non-Operonic	C25F6.7	Non-Operonic	
Tsp_05837	3	ES561164	Non-Operonic	ZK795.1	Non-Operonic	
Tsp_05990	1	ES273061	Non-Operonic	ppm-1	Non-Operonic	
Tsp_06158	12	ES567235	Non-Operonic	B0272.3	Non-Operonic	
Tsp_06305	11	ES566685	Non-Operonic	ife-3	Non-Operonic	
Tsp_06353	1	ES569025	Non-Operonic	ppk-2	Non-Operonic	
Tsp_07030	3	ES569609	Non-Operonic	mecr-1	Non-Operonic	
Tsp_07118	2	ES563420	Non-Operonic	Y82E9BR. 3	Non-Operonic	
Tsp_07593	7	ES567967	Non-Operonic	ZK809.3	Non-Operonic	
Tsp_07622	12	ES563060	Non-Operonic	F17A9.2	Non-Operonic	
Tsp_07825	2	ES569035	Non-Operonic	lipl-6	Non-Operonic	
Tsp_07989	6	BG520790	Non-Operonic	pck-1	Non-Operonic	
Tsp_08023	1	ES563253	Non-Operonic	Y54E10BR. 2	Non-Operonic	
Tsp_09739	3	ES273513	Non-Operonic	rab-10	Non-Operonic	
Tsp_10501	12	ES564714	Non-Operonic	F58F12.1	Non-Operonic	
Tsp_10907	2	ES561739	Non-Operonic	lin-19	Non-Operonic	
Tsp_11867	7	BG302133	Non-Operonic	hmg-1.2	Non-Operonic	
Tsp_12507	2	ES568668	Non-Operonic	rps-14	Non-Operonic	
No match	2	BG354854	Unknown	dcn-1	Upstream	3172
Ambiguous	2	BQ693036	Unknown	$i c l n-1$	Downstream	4324
Ambiguous	2	ES561812	Unknown	T02C12.3	Downstream	3148
Ambiguous	3	ES563178	Unknown	pkc-1	Downstream	5312
No match	2	ES568194	Unknown	gst-1	Downstream	3572
Ambiguous	3	ES566071	Unknown	F53B1.8	Non-Operonic	
Tsp_00916	1	ES564849	Unknown	clc-3	Non-Operonic	
Tsp_09335	4	ES566864	Unknown	plp-1	Non-Operonic	
No match	12	ES561871	Unknown	glr-1	Non-Operonic	
No match	3	BQ693326	Unknown	K09E9.4	Non-Operonic	
No match	2	ES567398	Unknown	cdc-42	Non-Operonic	

[^2] trans-spliced mRNAs the distances from the initiation codon position in the cDNA (with A in ATG set as 0) are indicated. ' n ' indicates how many times the sequence was found.

T. spiralis mRNA 5' ends				
zgpa-1	genome AA -205 -- -214 -- -179 - -192 - -229 - -228 -	CTGTACTACAGTTTGACAGTAATCCTATTCTGTGATGCAGTCGTGTAATTATTTGCTTCACGCGTATTTTTTGAAGATTAATTGAACTGTGTCACATTAATGTG $------------------------------2 T G C A G T C G T G T A A T T A T T T G C T T C A C G C G T A T T T T T T G A A G A T T A A T T G A A C T G T G T C A C A T T A A T G T G$ $-------------------C T A T T C T G T G A T G C A G T C G T G T A A T T A T T T G C T T C A C G C G T A T T T T T G A A G A T T A A T T G A A C T G T G T C A C A T T A A T G T G ~$ ACGCGTATTTTTTGAAGATTAATTGAACTGTGTCACATTAATGTG $--------A G T T T G A C A G T A A T C C T A T T C T G T G A T G C A G T C G T G T A A T T A T T T G C T T C A C G C G T A T T T T T T G A A G A T T A A T T G A A C T G T G T C A C A T T A A T G T G ~$ $--------G T T T G A C A G T A A T C C T A T T C T G T G A T G C A G T C G T G T A A T T A T T T G C T T C A C G C G T A T T T T T T G A A G A T T A A T T G A A C T G T G T C A C A T T A A T G T G ~$ $\star \star \star \star \star *$	$\begin{aligned} & \mathrm{n} \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	GenBank KF442420
dif-1	genome Tsp-SL10/dif-1	TTGTTCGGCGAATTGTATACAGATAAATATGGTGGAAAATGATTCGAAATCGATCGATTTGGTGAAACCACGTCAAGATACGGATCCACTGAGAAATTTCTTAGC GGTAATATTTACTGAATTCAAGATAAAT $\overline{A T G G T G G A A A A T G A T T C G A A A T C G A T C G A T T T G G T G A A A C C A C G T C A A G A T A C G G A T C C A C T G A G A A A T T T C T T A G C ~}$	5	KF442421
aph-1 trans- spliced	$\begin{aligned} & \text { genome } \\ & \text { Tsp-SL11/aph-1 } \\ & \text { Tsp-SL1/aph-1 } \\ & \text { Tsp-SL7/aph-1 } \\ & \text { Tsp-SL12/aph-1 } \\ & \text { Tsp-SL14/aph-1 } \\ & \text { Tsp-SL9/aph-1 } \end{aligned}$	ATCAATATGTATATTCTTTTTAGGATTATATTAATAATCGCCTTGAGAAGCATTCCGTCCGAGTACACGTTTCAACTATGGGATTTCAAGAATTCACAGGATAT - -TACCTTTGAACCCACTTCAAGGATTATATTAATAATCGCCTTGAGAAGCATTCCGTCCGAGTACACGTTTCAACTATGGGGTTTCAAGAATTCACAGGATAT -AGGTATTTACCAGATCTAAAAGGATTATATTAATAATCGCCTTGAGAAGCATTCCGTCCGAGTACACGTTTCAACTATGGGATTTCAAGAATTCACAGGATAT -AACCTGCACGACTTGTTCGAAGGATTATATTAATAATCGCCTTGAGAAGCATTCCGTCCGAGTACACGTTTCAACTATGGGATTTCAAGAATTCACAGGATAT ACGAATTTACCGTATTTGTCAAGGATTATATTAATAATCGCCTTGAGAAGCATTCCGTCCGAGTACACGTTTCAACTATGGGATTTCAAGAATTCACAGGATAT ATACCGTTCAATTAATTTTGAAGGATTATATTAATAATCGCCTTGAGAAGCATTCCGTCCGAGTACACGTTTCAACTATGGGATTTCAAGAATTCACAGGATAT -- AGACGTGGTTATTTATTGAAGGATTATATTAATAATCGCCTTGAGAAGCATTCCGTCCGAGTACACGTTTCAACTATGGGATTTCAAGAATTCACAGGATAT	1 2 2 2 1 1	$\begin{aligned} & \text { KF442422 } \\ & \text { KF442423 } \\ & \text { KF442423 } \\ & \text { KF442425 } \\ & \text { KF442426 } \\ & \text { KF442427 } \end{aligned}$
non- trans- spliced	$\begin{aligned} & \text { genome } \\ & -201 \\ & -205 \\ & -211 \end{aligned}$	ATCTTACTGTAGCTTTATTTGAACGAAAACTGTTGAATGTTATTGTTGCTTTCTTTTTAGCTTTTTACTTTTTATGTAAAATCTGTGTTTGTGGTAAAAAGTCA -----------------GAACGAAAACTGTTGAATGTTATTGTTGCTTTCTTTTTAGCTTTTTACTTTTTATGTAAAATCTGTGTTTGTGGTAAAAAGTCA ---------------ATTTGAACGAAAACTGTTGAATGTTATTGTTGCTTTCTTTTTAGCTTTTTACTTTTTATGTAAAATCTGTGTTTGTGGTAAAAAGTCA 	2 1 1	KF442428
cpt-2	$\begin{array}{ll} \text { genome } & \text { TCA } \\ -204 & --- \end{array}$	TTTTTACTGTCTGCACATTATTGTTTACATAGTGTAAGAGCTGTTGTATTTTGAGAAACAAATTTGTGTGCTTGAATTGCTTGCATTTCTTTTAATTCGAACACATT -ATTATTGTTTACATAGTGTAAGAGCTGTTGTATTTTGAGAAACAAATTTGTGTGCTTGAATTGCTTGCATTTCTTTTAATTCGAACACATT $\star \star \star \star \star \star * * * * * * * * * * * *$	9	KF442419
nuaf-3	genome Tsp-SL12/nuaf-3	TTATTATATCAATAATTTCCTAGTTTGGCGTAAATGTTGGCTATTAGACGAGCTTTACTTAAAAATCGCTGCTTGTTTAATCAAACTAATGCAATCAGTGGAAAG ACGAATTTACCGTATTTGTCAAGTTTGGCGTAAATGTTGGCTATTAGACGAGCTTTACTTAAAAATCGCTGCTTGTTTAATCAAACTAATGCAATCAGTGGAAAG	7	KF442418

T. muris mRNA 5' ends				
zgpa-1	genome GATC -232 --- -254 --	CACTTACGAATTACTGTCCTGCTGATGCCAGATGCGGGCAGCGCGTATGCTGCGTGAAGTCTTGCGCTCAGTTTTCCATGGATGAAAACGAATATCCCGCGGGCT AGATGCGGGCAGCGCGTATGCTGCGTGAAGTCTTGCGCTCAGTTTTCCATGGATGAAAACGAATATCCCGCGGGCT ATTACTGTCCTGCTGATGCCAGATGCGGGCAGCGCGTATGCCGCGTGAAGTCTTCCGCTCAATTTTCCATGGATGAAAAACGAATATCCCGCGGGCT	3 3	KF442429
dif-1	$\begin{aligned} & \text { genome } \\ & \text { Tmu-SL12/dif-1 } \\ & \text { Tmu-SL1/dif-1 } \\ & \text { Tmu-SL4/dif-1 } \end{aligned}$	CGAATGCCAATTGATTTGACAGGAGTTCGCAAATGGAGGATGAGGAAGTGGTTCCAAGTGAACATATGCGAACGGATCCCTTGAAGAACTTTGTCGCTGGTGGC -GTTAAATTTACCCCTCAAAAGGAGTTCGCAAATGGAGGATGAGGAAGTGGTTCCAAGTGAACATATGCGAACGGATCCCTTGAAGAACTTTGTCGCTGGTGGC GGTTATTTACCCTGTTAACAAGGAGTTCGCAAATGGAGGATGAGGAAGTGGTTCCAAGTGAACATATGCGAACGGATCCCTTGAAGAACTTTGTCGCTGGTGGC GGTTAAGTTTACCCAATTGAAGGAGTTCGCAAATGGAGGATGAGGAAGTGGTTCCAAGTGAACATATGCGAACGGATCCCTTGAAGAACTTTGTCGCTGGTGGC	1 1 2	KF442430 KF442431 KF442432
aph-1 trans-	$\begin{aligned} & \text { genome } \\ & \text { Tmu-SL13/aph-1 } \\ & \text { Tmu-SL6/aph-1 } \end{aligned}$	GCAGTGGGCCCTGTTTGATCGTTTGGCCATAATCTTCAGCGTGGAGAATCATGGGCCTTTTCGGAATTCGTCGGTTGCAGCTTGATAGCCTTTGGACCTTCTTTG -GGTATTTACCCAACGTTGACTGCGTGGAGAATCATGGGCCTTTCGGAATTCGTCGGTTGCAGCTTGATAGCCTTTGGACCTTCTTTG $\underset{*}{\text { GGTTAATTACCCAATTTCAAAGCGTGGAGAATCATGGGCCTTTCGGAATTCGTCGGTTGCAGCTTGATAGCCTTTGGACCTTCTTTG }}$	1 1	$\begin{aligned} & \text { KF442433 } \\ & \text { KF442434 } \end{aligned}$
non-transspliced	genome ACA -245 --- -273 -- -275 -- -269 -- -229 -- -228 --	TAACCTGCGAATCACTTTATTGTCCCTCGAGTGGGCGATTTGCTGATCTTTACCTGATTGTCGGCGTATCACTCACGGGACAGCGTCCCTTCGATGTACATGATC GATTTGCTGATCTTTACCTGATTGTCGGCGTATCACTCACGGGACAGCGTCCCTTCGATGTACATGATC -GAATCACTTTATTGTCCCTCGAGTGGGCGATTTGGTGATCTTTACATGATTGTCGGCGTATCACTCACGGGACAGCGTCCCTTCGATGTACATGATC GCGAATCACTTTATTGTCCCTCGAGTGGGCGATTTGCTGATCTTTACCTGATTGTCGGCGTATCACTCACGGGACAGCGTCCCTTCGATGTACATGATC CACTTTATTGTCCCTCGAGTGGGCGATTTGCTGATCTTTACCTGATTGTCGGCGTATCACTCACGGGACAGCGTCCCTTCGATGTACATGATC -ACCTGATTGTCGGCGTATCACTCACGGGACAGCGTCCCTTCGATGTACATGATC CCTGATTGTCGGCGTATCACTCACGGGACAGCGTCCCTTCGATGTACATGATC	1 1 1 1 3 1	KF442435
cpt-2	genome AGTC AGTC \qquad - - --- -- --- ---	AGTTCATCGTGCTATAAATTGTAGCGACGCGACAACAATGCTCCGTCGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTTGGGCAGCATGTTCAAGTTGGGAC CAGTTCATCGTGCTATAAATTGTAGCGACGCGACAACAATGCTCCGTTGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTTGGGCAGCATGTTCAAGTTGGGAC AGTTCATCGTGCTATAAATTGTAACGACGCGACAACAATGCTCCGTCTTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTTGGGCAGCATGTTCAAGTTGGGAC AGTTCATCGTGCTATAAATTGTAGCGACGCGACAACAATGCTCCATCGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTTGGGCAGCATGTTCAAGTTGGGAC --------GTGCTATAAATTGTAGCGACGCGACAACAATGCTCCGTCGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTGGGCAGCATGTTCAAGTTGGGAC -----------ATATAAATTGTAGCGACGCGACAACAATGCTCCGTCGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTGGGCAGCATGTTCAAGTTGGGAC \qquad ATAAATTGTAGCGACGCGACAACAATGCTCCGTCGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTGGGCAGCATGTTCAAGTTGGGAC - ATAAATTGTAGCGACGCGACAACAATGCTCCGTCGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTGGGCAGCATGTTCAAGTAGGGAC --------------------AAATTGTAGCGACGCGACAACAATGCTCCGTCGTTGCCCGTCAGCTTGGCTTGGCTGCTGGTTTTTGGGCAGCATGTTCAAGTTGGGAC 	1 4 1 1 1 1 1 1 1	KF768019
nuaf-3	genome Tmu-SL01/nuaf-3 Tmu-SL12/nuaf-3	GCAACCATCAATTTGGTTTTAGCATGAACGTTAGCAGACGTGCGTCTTTCGTTATTCGACAACTTCGTTGCGTCAAGCGTTCGCTTCGACAGTGCTCTTCCGC GGTTATTTACCCTGTTAACAAGCATGAACGTTAGCAGACGTGCGTCTTTCGTTATTCGACAACTTCGTTGCGTCAAGCGTTCGCTTCGACAGTGCTCTTCCGC GGTTAAATTTACCCCTCAAAAGCATGAACGTTAGCAGACGTGCGTCTTTCGTTATTCGACAACTTCGTTGCGTCAAGCGTTCGCTTCGACAGTGCTCTTCCGC	4 9	$\begin{gathered} \text { KF511776KF } \\ 511777 \end{gathered}$

Table S3 Primers used for the amplification of 5'RACE products.

mRNA 5' ends	Primers
Tsp-cpt-2	GGCAAGGCAGCTCTGTATCGGAA and Gene Racer 5' primer
	(CGACTGGAGCACGAGGACACTGA).
Tsp-nuaf-3	$1^{\text {st }}$ PCR: CACTTTCCATGATAATGCAGCCTGTGG and Gene Racer 5' primer.
	$2^{\text {nd }}$ PCR: GCCAGTGATTCATTCCAAGCC and Gene Racer 5' nested primer
	(GGACACTGACATGGACTGAAGGAGTA).
Tsp-zgpa-1	$1^{\text {st }}$ PCR: AGTTCTGTCGCTTCCAACAACGCAT and Gene Racer 5' nested primer.
	$2^{\text {nd }}$ PCR: CGCTTCCAACAACGCATCTATACTAC and Gene Racer 5' nested primer.
Tsp-dif-1	$1^{\text {st }}$ PCR: TGCTGCAGCCGAAGAAGTACAACGC and Gene Racer 5' nested primer.
	$2^{\text {nd }}$ PCR: CCGAAGAAGTACAACGCAAACAGC and Gene Racer 5' nested primer.
Tsp-aph-1	$1^{\text {st }}$ PCR: ACTTCTTGTAAGAAGACAAACAAGAAAACGG and Gene Racer 5' nested primer.
	$2^{\text {nd }}$ PCR: GATCGTGCATGATCACGCAGAGA and Gene Racer 5' nested primer.
Tmu-nuaf-3	$1^{\text {st }}$ PCR: GCCATGATGTCAACACTCAATC and Gene Racer 5' nested primer.
	$2^{\text {nd }}$ PCR: CCGACGACAAATACGCCATTGG and Gene Racer 5' nested primer.
Tmu-zgpa-1	$1^{\text {st }}$ PCR: GGAATAGCTTAACCAACAGACCCTTT and Gene Racer 5' nested primer.
	$2^{\text {nd }}$ PCR: AGTAAACAAGATACAAGCCACTCACC and Gene Racer 5' nested primer.
Tmu-dif-1	$1^{\text {st }}$ PCR: TTCGTCTGGGTGCCTTTGTTGGAG and Gene Racer 5' nested primer.
	$2^{\text {nd }}$ PCR: GAAAATACAAGGCGAATAGCGGAGC and GR 5' nested primer.
Tmu-aph-1	$1^{\text {st }}$ PCR: ATGAGTGCGGTAGGCCAATAGTTCC and Gene Racer 5' nested primer.
	$2^{\text {nd }}$ PCR: AGAAGGTTTAGCAGTGCAACTACGCC and Gene Racer 5' nested primer.

Table S4 Primers used for the detection of processing intermediates of polycistronic transcripts by PCR.

Transcripts	Primers
Tsp-cpt-2~nuaf-3	GAAGCATGTTCCAAGCAGCATTC
	GCCAGTGATTCATTCCAAGCC
Tsp-zgpa-1~dif-1	AAGCAAAATTGGCGAAAAGGACCGAAG
	TGCTGCAGCCGAAGAAGTACAACGC
Tsp-dif-1~aph-1	TGCTGGAGCTTTGTCAGGTATGATG
(1 ${ }^{\text {st }} \mathrm{PCR}$)	ACTTCTTGTAAGAAGACAAACAAGAAAACGG
Tsp-dif-1~aph-1 (2 ${ }^{\text {nd }}$ PCR)	CGGGCGAGAGGATCAAATGC
	GATCGTGCATGATCACGCAGAGA
Tmu-zgpa-1~dif-1 (1 ${ }^{\text {st }} \mathrm{PCR}$)	TTGTTCGCGGGCAAGGCTTAG
	TTCGTCTGGGTGCCTTTGTTGGAG
Tmu-zgpa-1~dif-1 ((2 ${ }^{\text {nd }} \mathrm{PCR}$)	TGATCGAAAGTGTAGAGCGGATACGG
	GAAAATACAAGGCGAATAGCGGAGC
Tmu-dif-1~aph-1 (1 ${ }^{\text {st }} \mathrm{PCR}$)	TGCTGGAGCTTTGTCAGGTATGATG
	ATGAGTGCGGTAGGCCAATAGTTCC
Tmu-dif-1~aph-1 (2 ${ }^{\text {nd }}$ PCR)	CGGGCGAGAGGATCAAATGC
	AGAAGGTTTAGCAGTGCAACTACGCC

[^0]: Copyright © 2014 by the Genetics Society of America
 doi: 10.1534/genetics.114.162875
 Manuscript received February 12, 2014; accepted for publication June 6, 2014; published Early Online June 13, 2014.
 Available freely online through the author-supported open access option.
 Supporting information is available online at http://www.genetics.org/lookup/suppl/ doi:10.1534/genetics.114.162875/-/DC1.
 The T. spiralis and T. muris mRNA 5^{\prime} ends with/without SL sequences are deposited in GenBank (accession nos. KF442418-KF442435, KF511776, KF511777, and KF768019).
 ${ }^{1}$ Corresponding author: School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK. E-mail: j.pettitt@abdn.ac.uk

[^1]: The status of each T. spiralis gene was determined using criteria given in Materials and Methods. The status of C. elegans genes was obtained from WormBase (Release WS237). Eleven EST matches were absent from the T. spiralis data relative to the C. elegans data as the corresponding T. spiralis gene could not be identified (see Materials and Methods). Full details of the individual EST sequence matches are given in Table S1.
 ${ }^{\text {a }}$ Genes not annotated as operons, but having intergenic spacing with respect to their neighbors, that suggests they may be organized in an operon.

[^2]: ${ }^{1}$ In some cases we found the EST sequence matched to multiple genes (Ambiguous), or we failed to find a match in T. spiralis draft genome (No match) and we were thus unable to determine the operonic status.
 ${ }^{2}$ A number of genes are present on short contigs, so we were unable to determine its operonic status.

