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The trophic interactions of entomopathogenic fungi in different ecological niches
viz., soil, plants, or insect themselves are effectively regulated by their maneuvered
metabolomes and the plethora of metabotypes. In this article, we discuss a holistic
framework of co-evolutionary metabolomes and metabotypes to model the interactions
of biocontrol fungi especially with mycosed insects. Conventionally, the studies involving
fungal biocontrol mechanisms are reported in the context of much aggrandized fungal
entomotoxins while the adaptive response mechanisms of host insects are relatively
overlooked. The present review asserts that the selective pressure exerted among the
competing or interacting species drives alterations in their overall metabolomes which
ultimately implicates in corresponding metabotypes. Quintessentially, metabolomics
offers a most generic and tractable model to assess the fungal-insect antagonism
in terms of interaction biomarkers, biosynthetic pathway plasticity, and their co-
evolutionary defense. The fungi chiefly rely on a battery of entomotoxins viz.,
secondary metabolites falling in the categories of NRP’s (non-ribosomal peptides),
PK’s (polyketides), lysine derive alkaloids, and terpenoids. On the contrary, insects
overcome mycosis through employing different layers of immunity manifested as altered
metabotypes (phenoloxidase activity) and overall metabolomes viz., carbohydrates,
lipids, fatty acids, amino acids, and eicosanoids. Here, we discuss the recent findings
within conventional premise of fungal entomotoxicity and the evolution of truculent
immune response among host insect. The metabolomic frameworks for fungal–insect
interaction can potentially transmogrify our current comprehensions of biocontrol
mechanisms to develop the hypervirulent biocontrol strains with least environmental
concerns. Moreover, the interaction metabolomics (interactome) in complementation
with other -omics cascades could further be applied to address the fundamental
bottlenecks of adaptive co-evolution among biological species.

Keywords: fungal interactions, entomotoxins, insect defense, metabolomes, metabotypes

INTRODUCTION

The kingdom of fungi has undergone critical metabolic advancements in defining its ecological
interactions as an antagonistic or ammensalic, a commensalic, and a parasitic partner (Box 1)
(Kempken and Rohlfs, 2010). The Inter- and intra- specific interactions in nature under the
influence of various environmental factors are mediated through an array of metabotypes
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BOX 1 | Glossary.
Antagonistic interactions: the biotic interactions in ecosystem where one species is benefited at the cost of another interacting species. The antagonistic interactions
are variously manifested as parasitism, predation, or antibiosis.
Ammensalism: ecological interaction between the organism of different species where one organism is inhibited or destroyed while the other remains unaffected.
Commensalism: the interaction among the members of two different species where one species is selectively benefitted whereas another one remains unaffected.
Interactome: the whole set of molecular interactions among the nucleic acids, proteins, or metabolites in a cell, tissue, organ, or an organism. The term is generally
applied to the intra- or inter-molecular interaction of protein or proteinaceous entities.
Metabolomes: the collection of gross metabolites representing the current physiological state of an organism.
Metabolomics: it refers to the discipline involving the global evaluation of biochemical events in terms of the metabolite cues representing a particular physiological
state of a cell, tissue, organ, or an organism.
Metabotypes: the metabolic phenotypes expressed or observed externally in response to intrinsic or environmental stimuli indicating a particular physiological state
of an organism.
Trophic interactions: interaction among the organism at different levels of the food chain or food web.

or metabolic phenotypes. These metabotypes, specifically the
secondary metabolites, develop during the courses of ecological
interactions of fungi and primarily belongs to polyketide,
non-ribosomal peptides (NRP’s), alkaloid (lysine derived), and
terpenoid classes (Sheridan et al., 2015). Biochemically, we can
define these metabolic entities as “a heterogeneous class of low
molecular weight compounds that, unlike primary metabolites,
are not essential for the vital life functions i.e., growth or
reproduction. However, these metabolites are extremely active
at significantly low concentrations, and, can distinctly function
as means of chemical communication or any sort of ecological
interaction between fungi and its partners under a variety
of environmental conditions (Karlovsky, 2008; Wiemann and
Keller, 2014). Hence, an insight of the esoteric dynamic
interplay of metabolic phenotypes and overall metabolomes
under the ecological interface of fungal–insect interactions can
provide an impetus to the ongoing efforts of developing the
hypervirulent biocontrol strains with applications in sustainable
agriculture, environment, and health through curbing the pest-
borne diseases.

Entomopathogenic fungi with nearly 750 species and 90
genera constitute the largest group of natural enemies to
the pest insects nuisance to mankind in different ways.
Most of the species from the classes, Zygomycetes and
Ascomycetes, and Division – Amastigomycota, are known
to be entomoparasitic (Roberts et al., 1991; Hajek, 1997;
Roy et al., 2006; Molnár et al., 2010; Vega et al., 2012).
Commercially, about 170 pest control agents are developed and
marketed so far based on the 12 different entomopathogenic
fungal species (de Faria and Wraight, 2007). The most
pronounced species viz., Metarhizum anisopliae (Metsch.)
Sorokin, Beauveria bassiana, Vullemin, Isaria fumosorosea, and
B. brongniartii etc. (de Carolina Sánchez-Pérez et al., 2014),
are well documented for the production of enzymes as well
as chemically diverse and biologically potent entomotoxic
metabolites.

ENTOMOPATHOGENIC FUNGI:
DISTRIBUTIONS

The entomopathogenic fungi, being the natural enemies to the
umpteen varieties of insect and arachnid species exhibits a

proportional cosmopolitan distribution. The entomopathogenic
fungi are distributed to a myriad of habitats viz., soil, above or
below ground plant parts, and host insect themselves in both
aquatic as well as terrestrial environments.

Soil
The soil being one of the most diverse environments for
microbiological entities serves as the natural home for
entomopathogenic fungal species. The different classes of
biocontrol fungi have been documented from the soil (Keller
et al., 2003; Meyling and Eilenberg, 2006). Functionally, the soil
provides nutrients besides protection from the aerial anomalies
like dehydration and harmful radiations. Soil usually shelters the
fungal microflora under the suitable conditions of pH, humidity,
and temperature (Keller and Zimmermann, 1989). The various
soil conditions which primarily govern the distribution and
density of entomopathogenic fungi includes geographical
locations, climatic conditions, habitat type, cropping system, soil
properties, and the numerous biotic as well as abiotic factors
(Quesada-Moraga et al., 2007). The Inter- and intra-species
chemical ecology of fungi is mainly regulated by accessibility to
the nutrients and space, which governs their successful infection
in host. The expression of fungal toxins and metabolites increase
their ecological competitiveness to infect the corresponding
host. The secretion of mycotoxin, zearalenone by Fusarium
spp. helps the fungus to suppress the growth of competing
species, and hence best reserve its host colonization conditions
(Utermark and Karlovsky, 2007). The most renowned of the
species includes, Trichoderma which produces a variety enzyme
toxins viz., chitinases, glucanases, and proteases, all together
helps it to compete best over their rival and host species making it
most ubiquitous fungi in nature (Benítez et al., 2010). Moreover,
a plethora of insects or plant hosts available in soil serves as the
source of potential nutrients for fungi (Vega et al., 2009). Hence,
soil ecosystem represents an amenable environment which
facilitates the fungal species to fulfill its important ecological
functions related with host mycoses and nutrition.

Plants
A large number of biocontrol fungi are reportedly harbored by
plants as endophytes or epiphytes (Arnold and Lewis, 2005).
Here exist the synergistic interactions between the host plant
and the fungi, which provide a defense shield to the host
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through its chemical weaponry of entomotoxic metabolites
(Alabouvette et al., 2009). Plant-associated fungi are functionally
classified as mycorrhizal, pathogenic, epiphytic, endophytic,
and saprotrophic fungi (Porras-Alfaro and Bayman, 2011). The
plant associated fungal species influence the chemical ecology
of host plants toward the various biotic and abiotic stresses
through either of the interactions viz., antagonism, parasitism,
or mutualism effecting direct production of functional or elicitor
metabolites. The most significant and well studied mechanism is
the induction of “systemic acquired resistance (SAR)” mediated
by plant stress metabolites viz., salicylic acid, jasmonic acid,
ethylene, and a variety of pathogenesis-related (PR) proteins
(Tripathi et al., 2008). The latent infection of maize varieties
by F. verticillioides, producing mycotoxins viz., fumonisins,
fusarins, and fusaric acids often positively regulates the yield
and vegetative growth of the host plant. However, the increased
production of fumonisin, owing to the altered abiotic or biotic
conditions seldom cause infection of maize kernels resulting in
the “ear-rot” disease in host (Glenn et al., 2008). The similar
examples may include the species of Beauveria, Lecanicillium, and
Trichoderma, which are best characterized to induce SAR in their
respective host plants (Ownley et al., 2009).

Host Insects
The entomopathogenic fungi enter and infect their target host
through direct contact, making the former a more successful
insecticide than their bacterial counterparts. The development of
infection stages through conidia adhesion, penetration of insect
cuticle by appresoria, and subsequent mycelia development are
mediated through a range of hydrolytic enzymes viz., proteases,
chitinases, lipases, and lipoxygenases (de Carolina Sánchez-
Pérez et al., 2014). Once entered the insect host, the fungal
mycelia grows as naked yeast-like propagules (blastospores),
mechanically damaging the haemocoel and subsequently release
a battery of entomotoxic metabolites. Although, the trophic
interactions among the species are influenced by an infinite
number of parameters of both biotic and abiotic origins, we
would like to construe our interpretations in terms of the selected
sets of metabotypes and altered metabolomes in fungal-insect
antagonistic trophic interface (Box 1). The theoretical model
of the present section of the review can best be visualized in
Darwin’s famous exposition;

“It follows that any being, if it vary, however, slightly in any
manner profitable to itself, under the complex and sometimes
varying conditions of life, will have a better chance of surviving,
and thus be naturally selected.”

(Chapter III – Struggle for existence, Origin of Species, Charles
Darwin)

The majority of the well characterized insect associated fungi
belongs to the order Entomophthorales (Phylum: Glomeromycota)
and order Hypocreales (Phylum: Ascomycota), existing in both or
either of their sexual (telomorph) or asexual (anamorph) phases
of life cycle. The most significant of the insect associated fungi are
isolated as anamorphs of the genus ‘Cordyceps’ viz., Beauveria,
Lecanicillium, and Isaria (Blackwell, 2010). The commercial
strains of Metarhizium and Beauveria are alone known to infect
more than 200 species of different insect pests responsible

for agricultural havocs (Toledo et al., 2008). The in vivo
interactions between the entomopathogenic fungi and their
insect host are antagonistic in nature, with hyperparasitic efficacy
(Zimmermann, 2007; Vega et al., 2009). Here, both the pathogen
(fungi) and the host (insect) evolves simultaneously in multiple
dimensions viz., behaviorally, physiologically, ecologically, and
metabolically to attain the necessary fitness to survive (Roy et al.,
2006). These bizarre ecological relations are maintained with the
help of a highly evolved biosynthetic machinery to produce the
necessary mycotoxins which defines the trophic interactions of
all entomopathogenic fungi. The chemistry of fungal interactions
with insects is governed by a spectrum of cryptic metabolites
falling into four major classes’ viz., NRP’s, alkaloids, terpenes,
and polyketides (Rohlfs and Churchill, 2011). The major genera
of domesticated entomopathogenic fungi (shown here using
the classification system proposed by Alexopoulos and Mims,
1979), their insect host, related toxic metabolites, and commercial
adaptations are summarized in Table 1.

ANTAGONISTIC METABOLOMES:
FUNGAL–INSECT TROPHIC
INTERACTIONS

The active production of induced defense metabolites serves as a
key defense mechanism against host insect’s counter immunity.
Analogous antagonistic defense mechanisms are very common
in plants, but are largely unexplored among fungi and their insect
hosts. Here, we discuss the entomopathogenic fungi as the study
model among their fungal counterparts. Most notable genera are
the Metarhizium, Beauveria, and Aspergilli etc. which relies upon
the polyketides, alkaloids, and NRP’s (non-ribosomal peptides)
as their chemical shield or offensive tools of metabolites (Rohlfs
and Obmann, 2009; Döll et al., 2013; Singh and Kaur, 2014a).
Further, the in vivo expression of the toxin metabolite types
and their relative quantities depends upon the respective insect
host and numerous other factors (Skrobek et al., 2008). Either
induced or intrinsic, expression of defense metabolites among the
antagonistically interacting species triggers a state of metabolic
plasticity.

Fungal Metabotypes and Their
Entomotoxicity Mechanisms
The expression of metabolic phenotypes in fungi is a highly
stringent process governed by the forces of natural selection
ensuring its survival under altered ecological conditions.
Although not necessary toward the major functions of growth
and reproduction, secondary metabolites enable the fungi to
survive and compete in an ecologically challenging environment
viz., the presence of competing microorganisms, nutrient
limitation, and protection against insect’s fungivory or evasion of
host’s immune system (Wiemann and Keller, 2014). The fungal
interactions with host insects drive their biosynthetic machinery
to undergo altered metabolic states which we have envisaged
using the Kyoto encyclopedia of genes and genomes (KEGG)
pathway maps (Kanehisa and Goto, 2000), in Figure 1. Below, we
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TABLE 1 | The major fungal divisions with entomopathogenic members, entomotoxic metabolites, and host insect range.

Taxonomic
ranks↓

Entomotoxic metabolites Host Commercial formulations Reference

Division: Amastigomycota (Non-flagellated terrestrial fungi)

Subdivisions: ∗∗Ascomycotina (Telomorphs) and ∗Deuteromycotina (Anamorphs)

Genera

Cordyceps∗∗ Cordycepins Lepidopteran larvae – Kim et al., 2002; Kryukov et al.,
2014

Hypocrella∗∗/
Aschersonia∗

Ergosterol, Dustanin,
Hypocrellins,
3-hopane-triterpenes

Aleyrodidae, Coccidae families of
Hemiptera, and Nematodes

– Isaka et al., 2003; Jin-Ming, 2006;
Buttachon et al., 2013

Beauveria∗ Beauvericin, Bassianin,
Oosporein, and bassianolide

Lepidoptera, Coleoptera, Hemiptera,
Homoptera, and Hymenoptera

NaturalisTM, BotanigardTM, and
Mycotrol OTM, Boverol,
Brocaril, Ostrinil

Elsworth and Grove, 1977; Uma
Devi et al., 2008

Metarhizium∗ Swainsonine, and Destruxins Coleoptera, Hemiptera, Isoptera,
Homoptera, Heteroptera, Diptera
(Mosquitoes), Hymenoptera,
Siphonaptera and Lepidoptera

MET52TM, BioblastTM,
BioPathTM, Green Guard ULV,
and Green Muscle

Goettel et al., 2001; Quarles, 2013;
Singh and Kaur, 2014a

Paecilomyces∗

(Isaria)
Beauvericin, Beauverolides,
and Dipcolonic acid (DPA)

Hemiptera PFR-97, PreFeRal, and Pae-Sin Vey et al., 2001

Verticillium∗ hydroxycarboxylic acid,
cyclosporine, and Dipicolonic
acid, Bassianolide

Hemiptera and Thysanoptera (thrips) Mycotal, Vertalec, and
Bio-Catch

Vey et al., 2001

Tolypocladium∗ Efrapeptins, Tolypin,
Diketopiperazines

Diptera (Mosquitoes), Ephemeroptera
(Mayflies)

– Bandani, 2004; Bandani, 2008

Hirsutella Hirsutellin A and B Mites (Citrus rust mites- Phyllocoptruta
oleivora), Lepidotera (Galleria melonella)

Mycar McCoy et al., 1992; Aghajanzadeh
et al., 2006

Nomuraea rileyi∗

(Cordycep∗)
Ergosterol peroxide Lepidoptera, Coleoptera, Hemiptera AGO biocontrol nomuraea 50,

PreFeRal
Prompiboon et al., 2008; Onofre
et al., 2002

Torrubiella Torrubiellin B (2) Hemiptera (Coccoidea) – Isaka et al., 2012

Subdivision: Basidiomycotina

Genera

Septobasidium – Hemipteran scale insects – Delicately mutualistic (often
detrimental to insect spp.)

Hudson, 1986

Subdivision: Zygomycotina – specifically describing the newly classified members under the subdivision ‘Entomophthoromycotina’ as described by Humber
(2012).

Genera

Entomophaga – Orthoptera (grasshoppers), Coleoptera – Milner, 1997

Erynia – Hemiptera (aphids) – Milner, 1997; Pell et al., 2001

Entomophthora – Thysanoptera (thrips), Diptera
(houseflies)

– Pell et al., 2001

Zoophthora – Coleoptera, Diptera, Hemiptera,
Hymenoptera, Lepidoptera, Orthoptera,
Trichoptera

– Glare and Milner, 1991; Pell et al.,
2001

Division: Mastigomycota (Flagellated lower fungi)

Subdivision: Haplomastigomycotina

Coelomycidium∗ – Dipterans (specially black flies) – Kim, 2011

Myiophagus – Dipterans – Karling, 1948; Araújo and Hughes,
2016

Subdivision: Diplomastigomycotina

Lagendium – Dipterans (mosquito larvicidal) Laginex AS, Laginex 25,
LAGINEXTM

Kerwin et al., 1994; Hallmon et al.,
2000; Vyas et al., 2007

Leptogenia – Dipterans (mosquito larvicidal) – Lastra et al., 2004; Pelizza et al.,
2007, 2013

Pythium – Dipterans (Mosquito larvicidal) – Su et al., 2001

The fungal classification system was primarily adapted from Alexopoulos and Mims (1979).
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FIGURE 1 | Schematic representation of the fungal metabotypes and altered co-evolutionary insect metabolomes maneuvered during the
antagonistic interactions. The scheme of reference metabolic pathways is adapted from the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway maps.

introduce few of the umpteen metabotypes reportedly expressed
during the stages of insect mycoses and briefly discuss their
explicit entomotoxic effects. The chemical structures for these
toxic fungal metabolites are shown in Figure 2.

Non-Ribosomal Peptide (NRP’s)
Destruxins
The destruxins (Dxs) are structurally composed of an alpha-
hydroxy acid and five amino acid residues joined together by
amide and ester linkages to form a cyclic structure. There are 38
Destruxins or Dx analogs (Pedras et al., 2002), which is double the
earlier reported, 19 types (Gupta et al., 1989). They are divided
chemically into five basic groups labeled as A through E, plus
several subgroups of each. Destruxins A and B were first reported
in the Metarhizium isolates from Japan during 1960’s and were
synonymously named as “oospora destructor” or destruxins.
These cyclic depsipeptides have extensively been studied by plant
pathologists, microbiologists, and natural products chemists

for their toxic biochemical activities. The Dx – biosynthetic
pathway is assumed to be a non-ribosomal multifunctional
enzyme system (Kleinkauf and von Döhren, 1987, 1990; Turner,
2000). The insect specific toxicity of Dxs A, B, and E is well
documented with reported induction of acute muscular paralysis
in arthropods through the reversible opening of their muscle
cell membrane Ca+2 channels (Samuels et al., 1988; Dumas
et al., 1996). The ionophoric properties of Dx A also allow Ca+2

mobilizations across liposomal membrane barriers (Hinaje et al.,
2002). Alternatively, Dxs are also reported to cause the inhibition
of vacuolar (V-type) ATPase activity in the brush bordered
midgut (BBM) membrane of Galleria mellonella, however, its
structural stability is significantly compromised under the altered
physiological conditions inside the host (Bandani et al., 2001).
The Dx variants are further known for triggering the oxidative
stress mechanisms in host (Spodoptera litura) through up
regulating the levels of superoxide radicals and the systemic
suppression of insect immunity (Pal et al., 2007; Sowjanya Sree
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FIGURE 2 | Different entomotoxin structures and their respective biosynthetic classes in entomopathogenic fungi.

et al., 2008). More recently, Meng et al. (2013) have described a
yet another toxicity mechanism for Dx A on Spodoptera litura
with deleterious effects on its wing disc like proteins (SLAWD)
expressions, hence inducing the developmental abnormalities in
larval stages of development.

Efrapeptins
These are the complex mixture of peptide toxins reported from
the entomopathogenic soil hyphomycetes fungi, Tolypocladium
spp. (Gupta et al., 1992). The variant form, Efrapeptin F is also

known to significantly inhibit the activity of V-type ATPases,
which regulates the protons gradient (K+/H+) across the brush
bordered epithelium in insect mid-gut (Bandani et al., 2001).
Simultaneously, the toxin has been reported to adversely affect
the cell mediated immune mechanism in the host insect –
G. mellonella (Bandani, 2008).

Beauvericin
It’s an ionophoric cyclohexadepsipeptide of enniatin antibiotic
family which can permeate through biological membranes
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with enhanced entomotoxic activities (Gupta et al., 1991).
Structurally, a beauvericin molecule is consists of the alternating
amino acid units of the three D-hydroxyisovaleryl and three
N-methylphenylalanyl residues (Hamill et al., 1969). The
compound was first isolated from B. bassiana, but was later
reported from Fusarium, Verticillium, and Paecilomyces spp.
(Suzuki et al., 1977). The various diastereoisomers of beauvericin
(A, B, and C etc.) shows the insecticidal activities against
a spectrum of pest species viz., Artemia salina, Calliphora
erythrocephala, Aedes aegypti, Lygus, S. frugiperda, and Schizaphis
graminum (Grove and Pople, 1980; Jestoi, 2008; Wang and
Xu, 2012). Functionally, the ionophoric nature of beauvericin
allows the compound to form reversible complexes with
divalent (Ca+2, Ba+2) and monovalent (Na+1, K+1) ions, which
effectively disturb ionic equilibrium and pH potential across
the lipid bilayers resulting in loss of membrane associated
functions in insect host cells (Tang et al., 2005; Tonshin et al.,
2010).

Bassianolides
The bassianolides are structurally similar to beauvericin except
the alternate four subunit repeats of d-2-hydroxyisovaleric
acid (D-α-Hiv) and N-methyl Leucine (L-N-Me-Leu)
in the cyclooligomer depsipeptide COD making it an
octadepsipeptide (Suzuki et al., 1977). As an entomotoxic
COD, bassianolide from B. bassiana and V. lecanii is known
for inducing acute muscular atony among silkworm larvae
through the inhibition of acetyl-choline mediated muscle
contractions (Kanaoka et al., 1978; Nakajyo et al., 1983).
Few of the reports have suggested the predominant role
of bassianolides in fungal virulence as compared to other
cyclodepsipeptides i.e., beauvericin, (Champlin and Grula,
1979; Xu et al., 2009). The high efficacy of these compounds
as an effective entomotoxin can also be attributed to its
structural conformation with hydrophobic exterior and
relatively hydrophilic interior making it an ionophoric molecule.
A wide range of pest species are reportedly affected through
bassianolide exposure viz., Helicoverpa zea (Champlin and
Grula, 1979), chagas vector Triatoma infestans (Lobo et al.,
2015), and livestock pest Culicoides spp. (Narladkar et al., 2015)
etc.

Cyclosporines
Typically known for their immunosuppressive application for
organ transplant, cyclosporines were originally reported from
Tolypocladium niveum, and more recently from T. inflatum
(Weiser and Matha, 1988; Bushley et al., 2013). Specifically,
cyclosporine A is known to suppress the insect’s humoral
or innate immune responses (Fiolka, 2008; Kulkarni et al.,
2013). Earlier, the potential suppression of cyclosporine sensitive
glycoprotein based efflux pump system in insect cells was
recognized as the probable mechanism of insect mycoses
(Podsiadlowski et al., 1998). Concomitantly, Fiolka (2008)
have further proposed an alternate mechanism of cyclosporine
mediated entomoxicity i.e., decrease in the activity of insect’s
antimicrobial peptides and lysozymes which adversely effects its
survival.

Polyketide (PKs)
Oosporein
A non-reduced polyketide commonly reported from Beauveria
spp. (Vining et al., 1962; Strasser et al., 2000). Recently, Feng
et al. (2015) have verified the role of oosporein (bibenzoquinone
oosporein) in establishing the fungal virulence in host insects
through the inhibition of insect defense mechanisms viz., PPO
(pro-phenoloxidase) activity and down-regulation of antifungal
peptide expressions in host.

Bassianin
It represents a hexaketide compound with a 2-pyridone core
reported first from Beauveria spp. and associated with a
broad range of biological activities (McInnes et al., 1974).
Alternatively, the compound has been reported to inhibit the
Ca+2 dependent ATP’ase activities in mammalian erythrocytes
(Jeffs and Khachatourians, 1997). However, no elaborated reports
are yet available which discuss the specific entomotoxic effects
associated with bassianin.

Lysine Derived
Swainsonine
Swainsonine is chemically an indolizidine alkaloid molecule with
a fused piperidine and pyrrolidine ring system. This sugar analog
was first discovered in Australian native legume Swainsona
canescens (Colegate et al., 1979) followed by Astragalus and
Oxytropis (Molyneux and James, 1982) as a toxin metabolite
responsible for locoweed poisoning among livestock. Later
on, the compound was also reported from microbial sources
viz., Rhizoctonia leguminicola (Schneider et al., 1983) and
M. anisopliae (Hino et al., 1985). Functionally, swainsonine acts
as the reversible inhibitor of both lysosomal α-mannosidase
and mannosidase II enzymes which mainly catalyze the
cellular degradation of polysaccharides and asparagine-linked
glycoproteins, respectively (Elbein et al., 1981). These properties
of swainsonine have been well documented and maneuvered
to develop the anti-metastatic and anti-proliferative candidates
through laboratory based and clinical trial studies (Sun et al.,
2009; Li et al., 2012; Singh and Kaur, 2014b). Although many
studies have described the therapeutic potentials of swainsonine,
its entomotoxic properties and role in the entomopathogenic
virulence of Metarhizium are still largely unexplored. Recently,
Singh and Kaur (2014a) have reported the in vitro entomotoxic
properties of swainsonine isolated from M. anisopliae against the
lepidopteran target host (Spodoptera sp.) through the induction
of apoptotic cell death mechanisms. However, the potential role
of swainsonine as an entomotoxin for establishing the fungal –
insect chemical ecology requires further studies.

Dipicolinic Acid
The potent entomotoxic metabolite is variously been reported
from numerous entomopathogenic genera viz., Beauveria,
Paecilomyces, and Verticillum (Claydon and Grove, 1982). The
pyridine derivative compound i.e., dipicolinic acid (DPA) or
pyridine-2, 6-dicarboxylic acid is ubiquitously found in all
bacterial spores and confers them thermal resistance (Setlow
et al., 2006). In the context of entomotoxicity, the fungal DPA
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or their calcium salts are reportedly known to be active against
white fly larvae (Bemisia) and blowflies (C. erythrocephala) with
varying degrees of toxicity (Asaff et al., 2005).

Terpenoids and Steroids
The potent entomotoxic effects for fungal terpenoid and steroid
metabolites can be correlated analogously with those of plant
steroid where these metabolites serve as juvenile hormones which
alter the development and behavior of herbivore insects or
seldom induce direct toxicity (Schardl, 2001). The crude extracts
from acaricidal fungi Hypocrella raciborskii were characterized
for terpenoid and steroid metabolites viz., ergosterol, dustanin
and 3β-acetoxy-15α,22-dihydroxyhopane (a hopanoid) with
varying mechanism of insect deterrence and toxicity (Buttachon
et al., 2013). Further, Isaka et al. (2010) have reported the new
terpene compounds from entomopathogenic fungi Aschersonia
paraphysata with potential in vitro anti-malarial activity for
selected hopene metabolites i.e., 17(21)-hopene-6R,12β-diol.
Hence, one can summarize the antagonistic interactions for
terpenoid and steroid class of entomotoxic metabolites which
potentially facilitate in insect mycoses or deter the fungivory.

An imponderable number of fungal metabolites acting as
entomotoxins ensure their successful ecological succession to
overcome the antagonistic arthropod hosts. The fungi, like
any other organism are also subjected to the incessant process
of natural selection under different environmental conditions
including the host’s trophic interfaces with antagonistic
metabolomes.

INSECT’S CO-EVOLUTIONARY
METABOTYPES AND METABOLOME

The host insects too have developed the competitive co-
evolutionary defense mechanisms to survive the proportional
selection pressure from their respective mycoparasites. The
three main lines of insect defense i.e. cuticular, humoral, and
cellular responses together resist the entry of fungal pathogens
(Dubovskiy et al., 2013). The first and the most vital of the barrier
is cuticular, which prevent the entry of fungal infectious forms
i.e., conidia or blastospores, releasing a battery of entomotoxic
metabolites and hydrolytic enzymes viz., proteases, chitinases,
and lipases (Xiao et al., 2012; Ortiz-Urquiza and Keyhani, 2013).

Insect Defense Metabotypes
Once the fungal appresoria breach through the insect cuticle,
the enhanced antiproteolytic and phagocytic activities of insect
hemolyph and plasmatocytes, respectively, prevents the further
stages of fungal mycoses (Boguś et al., 2007). Besides, the
cuticular secretions with fungal enzyme inhibitors and increased
phenoloxidase activity (humoral components) are also reported
to impede the progression of mycoses (Dubovskiy et al., 2013).
However, the role of host insect metabolites is seldom considered
important during the different stages of microbial infection
and thus remains largely unexplored. Recently, Pedrini et al.
(2015) have reported the benzoquinone containing secretions
in tenebrionid insects (Tribolium castaneum) as the defensive

means against the infestation from entomopathogenic fungi
(B. bassiana). The arthropodal quinones can potentially impair
the invading pathogens through a number of non-specific
defensive phenomena viz., production of ROS (reactive oxygen
species) and melanin cross linking of infectious bodies (Nappi
et al., 2009). As shown in Figure 1, the phenoloxidase (PO)
activities in arthropods effectively maneuvers the phenylalanine
(Phe) conversion to tyrosine and a number of biosynthetic
pathway intermediates viz., 3,4 dihydroxyphenylalanine (DOPA),
Dopamine, and quinone derivatives before finally been converted
to melanin compounds (Vilmos and Kurucz, 1998; Fuchs
et al., 2014). The upregulation of insect PO activities and
melanin biosynthesis effectively cripples the fungal infections
inside the host insect through the effective deposition and
hardening around the hemocyte encapsulated infectious bodies
i.e., blastospores (Smilanich et al., 2009). Hence PO activity
simultaneously induced both humoral as well as cellular immune
response in arthropods. The melanic strains of G. mellonella
(greater wax moth) are known for their heightened resistance
to Metarhizium or Beuveria induced mycoses on account of
their up-regulated PO activity and thickened deposition of
cuticular melanin (Dubovskiy et al., 2013). Hence, the Pro-
PO mediated PO-cascade can undoubtedly be considered as an
essential component of insect’s innate immunity and thus is
tightly regulated by a series of enzyme competitive complexes
and signaling pathways i.e., Toll signaling pathways (Kan et al.,
2008). Quintessentially, the host-parasite selective co-evolution
has resulted in a state of competitive coercion for ecological
fitness and survival.

Altered Metabolomes and Insect’s
Immune Response
Carbohydrates, Lipids, and Fatty Acids
Yet another aspect of insect immunity can be framed using
the concept of “immunity bioenergetics’ under the condition
of insect mycoses. The estimated cost of immune response in
vertebrates is variedly calculated approximately 32%, thus, by
analogy, one can assume the respective metabolic expenditures
in case of insect mycoses or infections (Martin et al., 2008).
The humoral (PO-mediated) and cellular (hemocyte mediated)
immunity in infected insects entails bioenergetic cost among the
host which can be tracked in its metabolome. A recent progress
has led to the identification of the metabolic cues associated with
insect’s altered metabolomic response to the co-evolutionary
selection pressure by entomopathogenic fungi. Xu et al. (2015)
have reported the alteration in the levels of energy and nutrient
metabolism of silkworm moths infected with B. bassiana. As
indicated in Figure 1, the group has observed an upregulation
in the levels of carbohydrates, fatty acids, lipids, and amino
acids with simultaneous down regulation in eicosanoids and
amines. The proposed elevation in the amounts of carbohydrates
(sugars) was correlated to the increased ratio of monosaccharide
to disaccharide sugars owing to possible bio-conversion to
meet the heightened energy cost for immunity and metabolism
(Ardia et al., 2012). Another vital component of insect immune
response tractable in its metabolome is comprised of lipids,
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fatty acids, and eicosanoids i.e., prostanoids. Intriguingly,
the levels of various lipids viz., Phosphatidylethanolamine,
triglycerides, glycerophosphocholine, and 1-oleoyl-2-
palmitoylphosphocholine are reportedly increase in case of
both the fungal as well as bacterial infections of host insects
(Hoxmeier et al., 2015; Xu et al., 2015). The atypical elevations
of the lipid levels thus fulfill the heightened biomolecular
demands for energy generations, membrane repair, and signaling
pathway intermediates (Atella and Shahabuddin, 2002). Hence,
the alterations in the lipid levels may also serve as the potent
and generic biomarkers of insect immunity under immune
compromised conditions. Similarly, the fatty acids released from
triglycerides viz., hexadecenoic acid, heptadecenoic acid, and
octadecenoic acid further fulfill the energy demands through
β-oxidation (Athenstaedt and Daum, 2006).

Amino Acids
The upregulation of amino acid metabolism (asparagine,
glutamine, lysine) and transglutaminase activity (amino acid
cross links forming target clots) are often corresponded to
the enhanced humoral immune response among the infected
arthropods (Figure 1) (Bulet et al., 1991; Toubarro et al., 2013).
In contrast, the elevation in the levels of the free amino acids in
hemocoel might also be attributed to the proteolytic activities of
the invading microbial parasites (Harrison and Bonning, 2010).
An avant-garde experiment published by Graham et al. (2014)
describes the different diet preferences of locusts (Chortoicetes
terminifera) subjected to Metarhizium infection in vitro. The
authors observed that the locust which switched their feeding
to high carbohydrate diets survived the fungal infection more
effectively than their counterparts fed upon high protein diets.
Hence, a logical conjecture was drawn that the entomopathogenic
fungi can more efficiently harness the protein contents from
the insect hemocoel than the host themselves, and thus the
high mortality was observed among the protein rich diet fed
insects. Therefore, the meticulous and more robust metabolomic
experimental design is required to differentiate the free amino
acids and related metabotypes in hemocoel characterized for their
origin while the stages of mycosis.

Eicosanoids
They are the signaling metabolites produced from the oxygenated
poly-unsaturated fatty acids and functionally important for the
immune responses in insects (Stanley, 2006). In particular, the
insects infected with entomopathogenic fungi are reportedly

known to have the reduced levels of eicosanoids viz., 17-
hydroxyeicosatetraenoic acid (17-HETE) and protaglandins - E2
(PGE2) (Xu et al., 2015). The mechanism seems more pertinent
as the suppression of eicosanoids and prostanoids is analogously
reported in case of entomopathogenic bacteria and nematode
infections thus establishing their vital role in the insect’s innate
immunity (Hyrsl et al., 2010; Hwang et al., 2013; Hoxmeier et al.,
2015).

Additionally, the reduced host immunity can further be
implicated based on the upregulation of cytosine (nitrogenous
bases) and trimethyluric acid, a purine alkaloid (Xu et al., 2015).
Further, Diaz-Albiter et al. (2012) have suggested the deleterious
effects of uric acid components on insect’s ROS mediated
immunity, though the phenomena is quite unclear in case of
in vivo metabolome alterations following mycoses. Nonetheless,
there are many more esoteric facets of insect immunity
besides the intrinsic immune response and metabolomes which
needs to be delineated (Box 2). Quintessentially, the relative
selection pressure induced by the host-pathogen interaction
can thus be called as the main driving force behind the
altered insect immunity and adaptation in the challenged
environments.

CONCLUSION

The evolution of recalcitrant pest varieties and increased
environmental concerns owing to the use of synthetic chemical
pesticides has turned the attempts toward the development of
efficacious biopesticides, a non-trivial undertaking. However, the
relative progress in the development of efficient biopesticides
and their ground formulation are apparently stonewalled on
account of our surprisingly limited comprehension of the quasi
simplistic biocontrol mechanism. In recent years, a renewed
interest has grown among the researchers to delineate the
biocontrol mechanisms in more unconventional ways viz., target
pest behavior (Shang et al., 2015), de novo genome assemblies for
pathotype characterizations (Shang et al., 2016), host-pathogens
interaction transcriptomics (Chu et al., 2016), and metabolomics
(de Bekker et al., 2013; Xu et al., 2015) etc. Hence, the trophic
interactions of the ubiquitously distributed entomopathogenic
fungi in diverse environmental habitats can further be envisaged
in terms of their altered metabolomes which offers a generic
harbinger to address the key bottlenecks of associated biocontrol
mechanisms. The trophic interface between entomopathogenic

BOX 2 | The Gordian knot: biocontrol fungi and host insect’s interaction metabolomics.
The metabolites and metabolomes being the most generic cues governing the biological interactions are undoubtedly the most critical factors which govern fungal
biocontrol mechanisms. However, our present comprehensions are surprisingly limited regarding perplexes of host insect’s co-evolutionary metabolomes and the role
of environmental factors in shaping these interactions. The varying efficacy of broad range entomopathogenic fungi toward insects of similar classes further compels us
to re-examine our nebular hypothesis regarding the mechanisms of insect mycoses. The modern assumptions credit this differential effectiveness of entomopathogenic
fungi to the host insect’s co-evolution in the challenged environments through co-interactions with symbiotic microflora which passively confer a protective chemical
shield of anti-fungal metabolites or enhanced immune response (Toledo et al., 2011; Eleftherianos et al., 2013). However, it is still unclear about the chemical nature of
these metabolites, either of fungal or insect origin, which actually instigates the chain of conflicting events among the interacting species. Additionally, we don’t know
how these elicitor molecules (metabolites) affect the priming of co-evolutionary multi-trophic interactions among them at genomic platforms? Nonetheless, it can only
be assumed that the scarce data and information available thus far represent the tip of the iceberg with limited comprehensions for biocontrol sciences and fungal
trophic interactions.
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fungi and corresponding host insects has often been construed
for fungal entomotoxins which impairs their targets. However,
the proportional immune response conferring immunity in host
insects can also be extrapolated for altered metabolism and
defense biomarkers viz., PO-mediated melanin synthesis, insect
bioenergetics (carbohydrates, fatty acids, and lipid), free amino
acids, antimicrobial peptides, and eicosanoids. Additionally, the
regulatory networks and signal transduction pathways affected in
mycosed host insects could also be probed and correlated with
fungi mediated selective perturbations. Hence, a metabolomic
insight of the fungal–insect antagonistic interactions could
potentially reshape our current strategies to develop the selective,
broad target, and hypervirulent entomopathogenic fungal strains.
Besides the realms of much touted biocontrol applications, the
new facets of entomopathogenic fungi interactions as plant
endophyte, rhizopheric colonizer, and soil inhabitant can also be
addressed using the newfangled omic-approaches.
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