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Abstract: Aerobic exercise training and resistance exercise training are both well-known for their
ability to improve human health; especially in individuals with type 2 diabetes. However, there are
critical differences between these two main forms of exercise training and the adaptations that they
induce in the body that may account for their beneficial effects. This article reviews the literature
and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise
training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and
skeletal muscle glucose metabolism.
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1. Introduction

Exercise training is defined as planned bouts of physical activity which repeatedly occur over
a duration of time lasting from weeks to years. For the purposes of this review article, we have
divided exercise training into two general categories: (1) Aerobic exercise training, which consists of
weight bearing and non-weight bearing activities; and (2) resistance exercise training, which consists
of weight bearing activities that act against an external load. Both types of training can be developed
as progressive programs, which is defined as a planned increase in the duration, frequency, and/or
intensity of the activity throughout the training period. The objective of this article was to review the
literature on the effects of aerobic and resistance exercise training on the regulation of systemic glucose
homeostasis, skeletal muscle glucose transport and glucose metabolism, and then to highlight gaps
in our current understanding of these key adaptations. To accomplish this objective, we performed
searches of the scientific literature utilizing Google Scholar, Highwire, PubMed, and Scopus to identify
studies that contained the following keywords (alone and in combination): Aerobic exercise; aerobic
training; blood glucose; cycling; glucose homeostasis; elastic band; exercise; exercise adaptations;
exercise training; functional overload; glucose homeostasis; glucose metabolism; glucose transporter;
glucose uptake; facilitative glucose transporter (GLUT); glycolysis; glycolytic flux; glycogen content;
glycogen synthesis; hexosamine pathway; ladder climbing; overload; pentose phosphate pathway;
resistance exercise; resistance training; resistance training adaptations; running; sodium-dependent
glucose co-transporter (SGLT); skeletal muscle; sodium-dependent glucose co-transporter; swimming;
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synergist ablation; treadmill; type 2 diabetes; weight lifting; weight training; wheel cage. The identified
articles were then divided into either the aerobic or resistance exercise training categories based on
whether an external load was acted against during the exercise. Only studies using a 6-week training
intervention or longer were selected for this review, with the exception of one article. The training
period for this article was 3 weeks, and that information is clearly indicated in that section. We allowed
this one exception because it highlighted a key gap in the current literature regarding the mechanism(s)
underlying the effects of aerobic or resistance exercise training on muscle glucose transport.

2. Models of Aerobic and Resistance Exercise Training

Aerobic exercise training exists in a wide variety of forms, and the following list includes examples
of aerobic exercises that are routinely performed by individuals in self-initiated aerobic training
programs: aerobic classes, cycling, dancing, jumping jacks, jumping rope, rowing, running, skating,
skiing, swimming and walking. In aerobic training research studies, the most common forms of exercise
utilized in human subjects are treadmill running and cycle ergometer training [1-4], whereas in animal
studies the most common form is treadmill running [5-7]. Resistance exercise training also exists in a
variety of forms, and the following list includes examples of exercises that are routinely performed
with weights or elastic bands by individuals in self-initiated resistance training programs: bicep curl,
shoulder press, bench press, barbell squat, bent over row, and lateral band walk. In resistance training
research studies, the most common form of exercise utilized with human subjects is a weight-bearing
program involving the upper body, lower body and abdomen [8-10]. In contrast, in resistance training
studies involving rodents the most common form of exercise is weighted ladder climbing [11-14].
While aerobic exercise training activities are naturally common in both humans and animals due
to survival instincts (i.e., chasing down prey or running away from a predator), resistance exercise
training activities (i.e., carrying an external load) are not. Thus, there are fewer studies that have
investigated the physiological effects of resistance exercise training in animal models. To overcome this
challenge, a surgical approach was developed that rapidly and reproducibly induces loading/functional
overload in rodent skeletal muscle via the removal of one or more synergist muscles [15]. Importantly,
numerous studies have shown that functional overload induces the same adaptations as resistance
exercise training in skeletal muscle, including increases in muscle size and muscle strength [16-23].

3. Aerobic and Resistance Exercise Training-Induced Adaptations

Aerobic exercise training and resistance exercise training are both well-known for their ability to
induce specific beneficial adaptations in the human body. For aerobic exercise training, the predominant
adaptations are in the cardiorespiratory system and include: (1) A decrease in resting heart rate [24-26];
(2) a decrease in resting blood pressure [24-26]; and (3) an increase in maximal oxygen uptake (VO,
max) [27,28]. For resistance exercise training, the predominant adaptations are in the musculoskeletal
system and include: (1) An increase in muscle mass [29-31]; (2) an increase in muscle strength [32];
and (3) an increase in bone density [33,34]. For a thorough review on the effects of aerobic and resistance
training on these cardiovascular and musculoskeletal adaptations see the following article: [35].
In addition to these adaptations, both aerobic exercise training and resistance exercise training are
well-known for their ability to restore systemic glucose homeostasis in individuals with the metabolic
disease type 2 diabetes. In the following section on the regulation of systemic glucose homeostasis,
we describe how blood glucose levels are regulated in a healthy state, and then review the current
literature regarding how they are impacted by type 2 diabetes and exercise training.

4. Regulation of Systemic Glucose Homeostasis

4.1. Regulation in Healthy Individuals

In healthy individuals, systemic glucose homeostasis is tightly regulated to maintain fasted blood
glucose levels at <100 mg/dl (<5.5 mM), glycated hemoglobin Alc (HbAlc) levels at <5.7%, and blood
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glucose levels at <140 mg/dl (<7.8 mM) 2 hrs. following an oral glucose challenge [36]. There are
multiple tissues that coordinately regulate blood glucose levels, and the role of these tissues varies
dependent on the fed or fasted state of the individual. In the fasted state, the liver maintains systemic
glucose homeostasis via glycogenolysis and gluconeogenesis. In the fed state, glucose released from the
digestive system into the bloodstream causes a rise in blood glucose levels that triggers an increase in
insulin production and release from the 3-cells of the pancreas. The rise in blood insulin levels triggers
the following events: (1) inhibition of liver glycogenolysis, gluconeogenesis and glucose secretion;
(2) stimulation of adipose tissue glucose uptake; and (3) stimulation of skeletal muscle glucose uptake.
Thorough reviews on the regulation of systemic glucose homeostasis are provided in the following
articles: [37-39].

4.2. Dysregulation in Type 2 Diabetes

Type 2 diabetes is a chronic metabolic disease characterized by a dysregulation of systemic glucose
homeostasis. It is diagnosed when fasted blood glucose levels are >126 mg/dL (>7.0 mM), HbAlc
levels are >6.5%, and blood glucose levels are >200 mg/dL (>11.1 mM) 2 hrs. following an oral glucose
challenge [36]. While the exact causes of type 2 diabetes remain incompletely understood, numerous
studies have linked impairments in key glucoregulatory functions in the pathogenesis of the disease.
These include: (1) Impaired insulin-mediated inhibition of hepatic glucose output [40]; (2) impaired
insulin-stimulated glucose uptake into adipose tissue [41,42]; (3) impaired release of insulin from the
pancreas; and (4) impaired insulin-stimulated glucose uptake into skeletal muscle [43,44]. Thorough
reviews on the tissues and physiological processes involved in the dysregulation of systemic glucose
homeostasis in type 2 diabetes are provided in the following articles: [45—47].

4.3. Effects of Aerobic Training in Type 2 Diabetes

Aerobic exercise training is well-known for its ability to improve systemic glucose control in both
individuals and animals with type 2 diabetes. Studies in both men and women with type 2 diabetes have
demonstrated the following beneficial effects: (1) 8 weeks of aerobic walking (30 min/day, 3 days/week)
decreased HbAlc levels ~18% [8]; (2) 12 weeks of bicycle training (60 min/day, 3 days/week) decreased
fasted blood glucose levels ~14% [2]; (3) 16 weeks of cardiovascular machine-based training (60 min/day;,
3 days/week at 60-65% max heart rate) decreased fasted blood glucose levels ~10% and HbA1lc levels
~1% [48]; (4) 16 weeks of interval walking (3 min fast-3 min slow cycles; 60 min/session, 5 sessions/week)
decreased fed plus fasted blood glucose levels ~8.5% [3]; (5) 24 weeks of aerobic walking, running,
cycling or calisthenic exercises (60 min/day, 4 days/week at 60-70% max heart rate) decreased fasted
blood glucose levels ~28% and HbAlc levels ~7% [49]; (6) 26 weeks of progressive treadmill running
or cycle ergometer training (15-20 min/day, 3 days/week at 60% max heart rate, up to 45 min/day,
3 days/week at 75% max heart rate) decreased HbAlc levels ~7% [4]; (7) 36 weeks of treadmill walking
decreased HbAlc levels ~0.5% in subjects with the most severe diabetes (HbAlc >7.0%) [1]; (8) 52 weeks
of progressive treadmill running or cycle ergometer training (20 min/day, 2-3 days/week at 60% max
heart rate up to 60 min/day, 2-3 days/week at 75% max heart rate) decreased HbAlc levels ~15% [50];
and (9) 8 years of aerobic machine training (90 min/day, 3 days/week at 50-80% VO, max) decreased
HbAlc levels ~22% [51]. Similarly, studies in rodents demonstrated the following beneficial effects:
(1) 7 weeks of motorized wheel exercise (1 hour/day, 5 days/week at 5.2 meters/min) decreased blood
glucose levels ~12% in db/db mice compared to sedentary controls [6]; (2) 8 weeks of progressive
treadmill running (8% grade, 18 m/min, 5 days/week, 40 min/day up to 120/day) decreased blood
glucose levels ~20% at 15 and 30 min following an oral glucose challenge in Zucker fatty rats compared
to sedentary controls [5]; (3) 12 weeks of voluntary wheel running decreased fasting blood glucose
levels ~20% in diabetic db/db mice compared to sedentary controls [52]; (4) 12 weeks of swimming
(1 hour/day, 3 days/week) decreased blood glucose levels ~11% and HbAlc levels ~7% in diabetic
Zucker fatty rats compared to sedentary controls [53,54]; (5) 12 weeks of treadmill running (up to 17%
incline, 10-15 meters/minute, 1 hour/day, 5 days/week) decreased fasting blood glucose ~14% in fatty
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Zucker rats compared to sedentary controls [7]; and (6) 13 weeks of swimming resulted in 60% lower
fasted glucose, 52% lower fed glucose, as well as fatty Zucker rats were significantly more glucose
tolerant than sedentary controls [55].

4.4. Effects of Resistance Training in Type 2 Diabetes

Resistance exercise training has been shown to improve systemic glucose control in both individuals
and rodents with type 2 diabetes. Studies in both men and women with type 2 diabetes have
demonstrated the following beneficial effects: (1) 8 weeks of progressive free weight and weight
machine training involving arms and legs (2 days/week, 7 exercises/session, 3 sets of 10 repetitions at 60%
1 repetition max up to 100% of initial 1 repetition max) decreased HbA1lc levels ~18% [8]; (2) 16 weeks
of weight machine training involving arms and legs (3 days/week, 5 exercises/session, 8 repetitions
at 60-80% max, up to 8 repetitions at 70-80% max) reduced HbAlc levels ~13% [9]; (3) 16 weeks of
progressive free weight and weight machine training of arms and legs (3 days/week, 10 exercises/session,
progressing from 3 to 6 sets/week of 10-15 max repetitions) decreased fasted blood glucose levels
~28% and HbAlc levels ~14% [56]; (4) 16 weeks of free weight and weight machine training of arms
and legs (3 days/week, 7 exercises/session, 10 max repetitions) decreased fasted blood glucose levels
~7% and HbAlc levels ~5% [48]; (5) 24 weeks of progressive free weight and weight machine training
of the arms, legs and abdomen (3 days/week, 9 exercises/session, 8-10 repetitions at 50-60% max
progressing to 10 repetitions at 75-85% max) lowered HbAlc levels ~2% [10]; (6) 24 weeks of weight
machine training of arms and legs (4 days/week, 8 exercises/session, 2-3 sets of 8-10 max repetitions)
decreased fasted blood glucose levels ~9% and HbAlc levels ~3% [49]; (7) 24 weeks of weight machine
(i.e., bioDensity™) training of arms and legs (1 day/week, 5-10 min/day) reduced fasted blood glucose
levels ~11% and HbAlc levels ~8% in subjects with the most severe diabetes (HbAlc >7.5%) [57];
(8) 26 weeks of progressive machine weight training of arms, legs and abdomen (2 days progressing to
3 days/week, 7 exercises/session, 8-12 max repetitions) reduced HbAlc levels ~4% [4]; and (9) 52 weeks
of progressive machine weight training of arms, legs and abdomen (10 exercises/session, 1 set of 1 max
repetitions, 2 days/week up to 3 sets of 8-10 max repetitions, 3 days/week) decreased fasted blood
glucose levels ~15% and HbAlc levels ~8% [50].

In addition, studies in rodents have demonstrated similar beneficial effects of resistance training
on systemic glucose control. These studies found the following effects: (1) 7 weeks of progressive
weighted ladder climbing (80° incline, 10 climbs/session, 5 sessions/week starting with an external load
equal to 10% body weight and increasing up to 70% body weight) decreased fasted blood glucose levels
~30% in monosodium glutamate diet-induced diabetic rats [13]; (2) 8 weeks of progressive weighted
ladder climbing (85° incline, 10 climbs/session, 3 sessions/week starting with an external load equal
to 50% body weight and increasing up to 80% max load) reduced fasted blood glucose levels ~55%
and improved glucose tolerance 50% in diabetic Zucker fatty rats compared to sedentary controls [11];
and (3) 10 weeks of isometric wire hang training (3 min/bout, 3 bouts/session, 5 sessions/week)
decreased blood glucose levels ~30% 2 hrs. following an intraperitoneal glucose challenge in high fat
diet-induced hyperglycemic C57BL/6N mice compared to sedentary controls [58].

5. Skeletal Muscle Glucose Transport

Skeletal muscle plays a critical role in maintaining blood glucose homeostasis. Studies in healthy
individuals have demonstrated that in the post-prandial state that skeletal muscle is responsible for
taking up 70-90% of the glucose from the blood [59,60]. The following sections review the current
literature and highlight key gaps in our current understanding of the processes involved in the
regulation of glucose transport in skeletal muscle as well as the ability of both aerobic and resistance
exercise training to alter this process.

Skeletal muscle takes up glucose from the extracellular fluid into the cell via a surface membrane
sugar transport protein [61]. There are two major families of sugar transport proteins found in
mammalian cells: (1) The solute carrier family 2 (gene family SLC2) which consists of fourteen
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facilitative glucose transporters (GLUTs 1-14); and (2) the solute carrier family 5 (gene family SLC5)
which consists of six sodium-dependent glucose co-transporters (SGLTs 1-6). These two families differ
in their structural and functional characteristics. The GLUTs possess 12 transmembrane domains,
an N-linked glycosylation motif [62,63], and transport sugars via facilitated diffusion; whereas,
the SGLTs possess 14-15 transmembrane domains [64] and couple glucose with sodium transport to
facilitate cellular glucose uptake [65]. In addition to these characteristics, the GLUTs and SGLTs can
also vary greatly in their ability to transport different sugars, their subcellular localization, as well as
their susceptibility to chemical inhibitors. For a thorough description of these characteristics, please see
the following reviews on this topic [62,66-68]. Skeletal muscle expresses many sugar transporter
isoforms, including: GLUT1, GLUT3, GLUT4, GLUT5, GLUT6, GLUTS, GLUT10, GLUT11, GLUT12,
SGLT1, SGLT2, SGLT3, and SGLT4; and Table 1 provides a list of the different skeletal muscle models
in which each of these sugar transporter isoforms has been observed.

Table 1. Skeletal muscle sugar transporters. Members of the facilitated glucose transporters (GLUT) and
sodium-dependent glucose cotransporter (SGLT) families observed in human and rodent skeletal muscle.

Transporter Gene Muscle Models References
Human muscle [69,70]
C2C12 [71,72]
GLUT1 SLC2A1 Mouse muscle [73,74]
L6 myotubes [72,75]
Rat muscle [76,77]
Human muscle [78,79]
C2C12 [71]
GLUT3 SLC2A3 Mouse muscle [73,80]
L6 myotubes [81,82]
Rat muscle [83,84]
Human muscle [85,86]
C2C12 [71,72]
GLUT4 SLC2A4 Mouse muscle [87,88]
L6 myotubes [82]
Rat muscle [76,89]
Human muscle [90,91]
C2C12 [71]
GLUT5 SLC2A5 Mouse muscle [92]
L6 myotubes [93]
Rat muscle [94]
C2C12 [71]
GLUT6 SLC2A6 Mouse muscle [73,95]
Human muscle [96]
GLUT8 SLC2A8 Mouse muscle [95]
Human muscle [97]
GLUTI10 SLC2A10 Mouse muscle [73,95]
Human vastus lateralis
GLUT11 SLC2A11 (slow-twitch fibers) [98]
Human muscle [99,100]
C2C12 [71,101]
GLUT12 SLC2A12 Mouse muscle [102]
Rat muscle [103]
Human muscle [104]
SGLT1 SLC5A1 Mouse muscle [105]
SGLT2 SLC5A2 Mouse muscle [105]
Human muscle [106]
SGLT3 SLC5A4 Mouse muscle [107]
SGLT4 SLC5A9 Human muscle [104]
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5.1. Regulation of Basal Glucose Transport

GLUT1 is largely considered the GLUT isoform responsible for basal/non-insulin stimulated
muscle glucose transport due to its localization predominantly on the muscle cell surface [76,77,108].
This postulation is consistent with muscle-specific GLUT1 overexpression mouse studies demonstrating
a positive relationship between increasing GLUT1 levels and increases in basal muscle glucose
transport [108,109]. However, additional scrutiny of these studies demonstrated that despite an
~40-fold increase in GLUT1 protein in the muscles from the overexpression mice, there was only an
~9-fold increase in basal muscle glucose transport [109]. This finding suggests that in skeletal muscle the
mechanism regulating glucose transport via GLUT1 is more complex than just cell surface expression.
Consistent with that interpretation, recent work in L6 myoblasts demonstrated that mutation of GLUT1
Ser490 to Ala490 decreased basal muscle glucose transport 44% with only a 17% reduction in cell
surface localization [75]. Additional studies are needed utilizing muscle-specific GLUT1 null models
to definitively assess the contribution of GLUT1 to basal skeletal muscle glucose uptake.

5.2. Regulation of Acute Insulin—And Exercise/Contraction-Stimulated Glucose Transport

GLUT4 is the most abundant glucose transporter isoform expressed in skeletal muscle [110].
Unlike GLUT1 which resides almost exclusively on the cell surface, in the basal (non-insulin
stimulated) state, GLUT4 resides both on the cell surface (~20% of total GLUT4 protein) and in
GLUT#4 storage vesicles within the cell (~80% of total GLUT4 protein) [111,112]. In response to
stimulation by insulin or exercise/muscle contraction, GLUT4 translocates from intracellular storage
vesicles to the muscle cell surface where it plays an essential role in mediating acute insulin- and
exercise/muscle contraction-stimulated muscle glucose transport [87]. Notably, skeletal muscle insulin-
and contraction-stimulated GLUT4 translocation to the plasma membrane and t-tubules is additive
suggesting potential distinct pools of GLUT4 [89,113,114]. The intracellular signaling and docking
mechanisms by which GLUT4 translocation occurs has been and continues to be extensively studied.
Thorough reviews on this topic can be found in the following papers: [111,115-118].

5.3. Dysregulation of Insulin-Stimulated Glucose Transport in Type 2 Diabetes

In individuals with type 2 diabetes, the ability of insulin to stimulate skeletal muscle glucose
transport is impaired [119-122]. Studies in both human and rodents have demonstrated that this
impairment in insulin-stimulated muscle glucose transport is due to a disruption in GLUT4 translocation
to the muscle cell surface rather than an alteration in total muscle GLUT4 protein content [115,123].
While insulin-stimulated muscle GLUT4 translocation and glucose transport is impaired in type
2 diabetes, the ability of acute bouts of exercise or muscle contractile activity to stimulate GLUT4
translocation and glucose transport remains intact [124-127].

5.4. Regulation of Aerobic Exercise Training-Induced Glucose Transport

Aerobic exercise training has been shown to increase GLUT4 protein levels 20-70% in
human [128-136] and rodent skeletal muscle [137-141], suggesting that aerobic training would enhance
acute insulin- and exercise/muscle contraction-stimulated muscle glucose transport. Consistent with
this prediction, studies have demonstrated that aerobic training enhances insulin-stimulated muscle
glucose disposal 20-100% [131,134,142-146]. However, consistent with the aerobic training effect
of increased reliance on lipid utilization, work in human vastus lateralis muscle has demonstrated
that only 3 weeks of aerobic training decreases exercise-stimulated muscle GLUT4 translocation and
glucose transport at a given workload [128]. Additional studies are needed examining the relationship
between alterations in muscle glucose transport during exercise and changes in total muscle GLUT4
protein levels following a long-term (>6 weeks) aerobic training program.

Alterations in the intracellular signaling mechanisms regulating GLUT4 translocation represent one
possible explanation for how aerobic exercise training alters muscle glucose transport. An additional
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explanation is the involvement of other glucose transporter isoforms (Figure 1). Only a few studies
have examined the effects of aerobic exercise training on GLUT isoforms other than GLUT4, and these
studies examined GLUT1, GLUT5, GLUT8 and GLUT12. One study in humans did not see any
alteration in muscle GLUT1 protein content following 6 weeks of a progressive cycling program (30 min
at 70-75% max heart rate up to 50 min at 70-85% max heart rate) and strikingly saw a 72% decrease
in GLUTS protein levels [127]. In the muscle of endurance trained collegiate athletes, GLUT8 and
GLUT12 mRNA levels did not differ from sedentary controls [147], but GLUT12 protein levels increased
104% in human vastus lateralis following 6 weeks of a progressive cycling program [129]. However,
none of these studies completely include or exclude the potential involvement of GLUT1, GLUTS or
GLUT12 in this process. Since aerobic exercise training does not stimulate basal muscle glucose
transport, any additional transporters involved in aerobic training-induced changes in muscle glucose
transport would have to possess the ability to either alter their transport activity via post-translational
modification and/or translocate to the muscle cell surface. Intriguingly, studies have demonstrated that
GLUT1, GLUTS8 and GLUT12 each possess at least one of these characteristics. As described above,
while GLUT1 is localized predominantly on the muscle cell surface [76,77,108], its transport activity
can also be regulated by phosphorylation on Ser490 [75] and Ser226 [148]. In contrast, both GLUT8 and
GLUT12 contain an endocytic dileucine motif, and studies in 3T3L1 adipocytes or HEK293 cells have
shown that mutation of this motif alters their cell surface localization [149,150]. Additional studies are
needed to not only investigate the role of GLUT1, GLUT8 or GLUT12 in this process but also to assess
whether other GLUT isoforms may be involved.
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Figure 1. Model of aerobic and resistance exercise training effects on skeletal muscle glucose transporters
(GLUTs). Legend: GSV = GLUT storage vesicle.
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5.5. Regulation of Resistance Exercise Training-Induced Glucose Transport

Resistance exercise training increases glucose transport into skeletal muscle [151-153], and in
rodent models it is clear that this increase in glucose uptake occurs independent of changes in muscle
mass [152,153]. However, unlike aerobic exercise training that consistently increases muscle GLUT4
protein content, the ability of resistance exercise training to increase GLUT4 levels is less clear (Figure 1).
While 6 weeks of intense progressive resistance training increased GLUT4 protein levels ~40% in the
vastus lateralis of men with type 2 diabetes [151], the same training regimen failed to significantly
alter muscle GLUT4 protein content in the healthy controls [151]. In addition, in mouse rectus femoris
muscle, 10 weeks of isometric resistance exercise training increased GLUT4 protein levels ~70% [58]; yet,
no change in GLUT4 protein levels was observed in rat gastrocnemius following 7 weeks of progressive
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weighted vertical ladder climbing [13]. The findings suggesting no role for GLUT4 in resistance
training-induced muscle glucose transport are supported by recent work in muscle-specific GLUT4
knockout mice that demonstrated no impairment in plantaris muscle glucose transport following
5 days of functional overload, a model of resistance exercise training [73]. Collectively these results
suggest that GLUT4 is not the sole mediator of resistance exercise training-induced increases in muscle
glucose transport and propose that additional glucose transporter(s) play a role in this process.

While the identity of these additional glucose transporter(s) is currently unknown, studies have
suggested a possible role for GLUT1, GLUT3, GLUT6, GLUT10 and/or SGLT3. In the vastus lateralis
muscle of individuals with type 2 diabetes, 16 weeks of progressive resistance training increased
SGLT3 mRNA and protein levels compared to sedentary controls [106]. However, work in Xenopus
oocytes did not demonstrate any p-glucose transport by SGLT3 [107], and recent work in mouse
plantaris muscle demonstrated no effect of the chemical SGLT inhibitor, phlorizin, on functional
overload-induced muscle glucose transport [73]. Together these findings suggest that SGLTs are not
necessary for loading-mediated muscle glucose transport. In the plantaris muscle of both wild-type
and muscle-specific GLUT4 knockout mice, 5 days of functional overload increased the protein levels
of GLUT1 ~150-300%, GLUT3 ~130%, GLUT6 ~250% and GLUT10 ~200-250% [73], suggesting a
role for one or more of these GLUT isoforms in resistance training-induced muscle glucose transport.
This finding is consistent with studies performed in cardiac, smooth or skeletal muscle that investigated
these GLUT isoforms in the regulation of muscle cell growth, development, and redox buffering.
These studies demonstrated: (1) An ~150% increase in GLUT1 protein levels following pressure
overload in the heart [154]; (2) a transient but ~900% increase in GLUT3 mRNA levels during L6
myocyte fusion [83]; (3) an ~45% increase in GLUT3 protein levels in L6 myotubes following long-term
insulin-like growth factor-1 exposure [81]; and (4) an increase in oxidative stress following loss of
function mutations in GLUT10 arterial smooth muscle cells [155,156]. Future studies in muscle-specific
GLUT knockout mouse models are needed to fully assess the role of any of these GLUT isoforms in the
regulation of resistance training-induced muscle glucose transport.

6. Skeletal Muscle Glucose Metabolism

Glucose transported into skeletal muscle is phosphorylated by hexokinase to form
glucose-6-phosphate thereby trapping it in the cell. After this step there are four main cellular
fates of glucose, and the partitioning of glucose into these metabolic pathways has critical consequences
for future increases in muscle glucose transport and phosphorylation. The following sections review
the current literature and highlight key gaps in our current understanding of the important enzymes
and metabolites involved in the regulation of skeletal muscle glucose metabolism, as well as the ability
of both aerobic and resistance exercise training to alter these metabolic pathways (Figure 2).
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Figure 2. Major enzymes and metabolites of skeletal muscle glucose metabolism (A), and the effects
of exercise training on the four major metabolic pathways (B). Key: 6PGD, 6-Phosphogluconate
Dehydrogenase; G6PD, Glucose-6-Phosphate Dehydrogenase; GFPT, Glutamine-Fructose-6-Phosphate
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PDH, Pyruvate Dehydrogenase.

6.1. Hexokinase

Hexokinase is one of the most critical enzymes involved in skeletal muscle glucose metabolism,
as the phosphorylation of glucose prevents it from diffusing back out of the cell. In resting mouse
skeletal muscle, basal glucose uptake was not affected by an ~800% increase in hexokinase II protein
levels demonstrating that hexokinase activity does not limit skeletal muscle glucose transport in
the basal (non-insulin-stimulated) state [157]. Acute stimulation of skeletal muscle by insulin or
exercise/contraction increases hexokinase activity in both human and rodent skeletal muscle [158-160].
In contrast to the basal state, hexokinase expression/activity regulates muscle glucose transport in
response to insulin and exercise. In muscle-specific hexokinase II overexpression mice, muscle glucose
transport in response to both hyperinsulinemia and an acute 10 min bout of treadmill running was
increased ~30—40% [157], suggesting that under stimulated conditions hexokinase activity controls the
amount of muscle glucose transport. Consistent with those findings, in mice with a 50% reduction of
hexokinase activity, soleus muscle glucose transport was decreased ~70% following an acute 30 min
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bout of treadmill running [161]. However, in the gastrocnemius muscle of hexokinase knockdown
mice neither insulin nor exercise-mediated glucose transport was altered [161,162]. Together these
findings suggest that hexokinase can be a limiting factor to muscle glucose uptake, but only under
conditions of extremely elevated muscle glucose transport.

Numerous studies have shown that aerobic exercise training increases hexokinase protein and
activity levels ~25-100% in both human and rodent skeletal muscle [163-172]. In contrast, the effects
of resistance exercise training on muscle hexokinase levels is less clear. In the skeletal muscle of
healthy men, one study demonstrated a 28% increase in hexokinase activity following 10 weeks of
isokinetic strength training [173]; a second study demonstrated no change in hexokinase activity
following 12 weeks of high intensity resistance training [174]; and a third study found a ~40% decrease
in hexokinase activity following 24 weeks of high intensity progressive resistance training [175].

6.2. Cellular Fates of Glucose in Skeletal Muscle

6.2.1. Glycogen

Glycogen is the polysaccharide storage form of glucose in skeletal muscle. Glucose entering muscle
is committed to storage as glycogen when glucose-6-phosphate is converted to glucose-1-phosphate by
the enzyme, phosphoglucomutase. Further metabolism to UDP-glucose enables the enzyme glycogen
synthase (GS) to generate the multi-branched glucose polymers that are characteristic of a glycogen
particle. When cellular energy demands increase, glycogen can be degraded to glucose-1-phosphate
by the enzyme glycogen phosphorylase (GP), and then ultimately metabolized via glycolysis to make
adenosine triphosphate (ATP).

In non-stimulated skeletal muscle, glycogen levels are determined by the balance between
glycogen synthesis and glycogen degradation. Consistent with this statement, in muscle-specific GS
overexpression mice muscle glycogen levels are increased ~400% [176]; while in muscle-specific GS1
knockout mice muscle glycogen levels are decreased 65% in the fasted state [177].

Aerobic exercise training is well-known to increase glycogen levels and glycogen synthesis rates in
both human and rodent skeletal muscle. These studies demonstrated the following results: (1) 6 weeks
of stair climb training (4 days/week, 45 min/day at 65% VO,max) increased muscle glycogen synthesis
rates ~100% [171,178,179]; (2) 7 weeks of voluntary wheel running increased glycogen levels ~30%
in triceps muscles from female Sprague Dawley rats [179]; (3) 10 weeks of progressive high intensity
cycle ergometry training (3 days/week, 90-100% VO,;max, 4 X 5 min bouts up to 5 X 5 min bouts) and
progressive running (3 days/week at 30 min/day up to 40 min/day) increased glycogen levels ~80% in
vastus lateralis muscle [132]; (4) 12 weeks of indoor cycle training (60 min/day, 4 days/week at 75-90%
max heart rate) increased glycogen levels ~80% in vastus lateralis muscle [171,178,179]; (5) 20 weeks of
cycle ergometer training (1 hour/day, 4 days/week at 75-90% VO,max) increased muscle glycogen
levels ~150% [180]; and (6) endurance trained cyclists have ~65% higher muscle glycogen content than
untrained individuals 48-72 hours after an exhaustive cycling bout [181]. Thus, together these results
suggest that aerobic training-induced increases in muscle glycogen content occur to provide a greater
capacity to fuel future muscle contractions [182,183].

Unlike aerobic training, the effects of resistance exercise training on muscle glycogen levels are
more variable. In both men and women, the following effects have been reported: (1) 6 weeks of
progressive free weight and weight machine training of the upper body (3 days/week, 4 exercises/day,
10 sets/week up to 32 sets/week of 10 repetitions/set at 60% of 1 repetition max for each exercise) did
not alter glycogen content [184,185]; (2) 6 weeks of progressive weight machine training of the leg
(3 days/week, 3 exercises/session, 10 repetitions at 50% of 1 repetition max up to 8-12 repetitions
at 70-80% max) increased muscle glycogen levels ~14% [151]; (3) 16 weeks of weight machine
training involving arms and legs (3 days/week, 5 exercises/session, 8 repetitions progressing from
60-80% to 70-80% max) increased muscle glycogen levels ~30% [9]; (4) 16 weeks of progressive lower
body pneumatic training (3 days/week, 2 exercises/session, progressing from 60-65% to 75-80% of
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1 repetition max up) increased muscle glycogen levels ~45% [9,106]; and (5) 20 weeks of resistance
exercise training (2-3 days/week, 4 exercises/session, 3-5 sets/day of 8-10 repetitions) increased glycogen
levels ~20% in triceps brachii muscles [186]. In addition, the following results were demonstrated in
rodent skeletal muscle after resistance exercise training: (1) 12 weeks of squat training (3 days/week,
10 repetitions at 75% of one repetition max) increased gastrocnemius muscle glycogen levels 40-50% in
male Sprague-Dawley rats [152]; (2) 12 weeks of progressive weighted ladder climbing (80° incline,
4-8 climbs/day, 3 days/week with a load of 75% body weight up to 100% body weight) increased
muscle glycogen levels 950-3500% in female Wistar rats [12]; (3) 12 weeks of progressive weighted
ladder climbing (80° incline, 3-6 climbs/day, 4 days/week with a load of 10% body weight up to 200%
body weight) increased muscle glycogen levels 20-45% in male Wistar rats [12,14]; and (4) 4 days
of functional overload did not change soleus muscle glycogen levels in male Swiss albino mice [12].
Thus, taken together these data suggest that the type, duration, and intensity of the resistance training
program are important factors in determining the effects of resistance training on skeletal muscle
glycogen content.

6.2.2. Glycolytic Flux

Glucose transported into muscle enters glycolysis once fructose-6-phosphate is converted to
fructose-1,6-bisphosphate by the enzyme phosphofructokinase (PFK). Fructose-1,6-bisphosphate then
undergoes the multi-step, sequential conversion to pyruvate. Muscle pyruvate has two main fates:
(1) reduction to lactate; or (2) oxidation to acetyl-CoA by pyruvate dehydrogenase (PDH), which is
then further metabolized via the tricarboxylic acid (TCA) cycle. Complete oxidation of glucose through
the TCA cycle and mitochondrial electron transport chain yields 36 molecules of ATP.

Glucose flux through glycolysis plays a critical role in regulating skeletal muscle contractile
function. In humans, genetic loss of muscle PFK activity (known as Tarui disease or glycogen storage
disease type 7) is characterized by increases in skeletal muscle glucose-6-phosphate levels (~360-1740%),
fructose-6-phosphate levels (~280-1500%), and muscle glycogen levels (~75-350%) in the resting state;
along with impairments in exercise tolerance (i.e., shorter time to fatigue) [187]. This clinical profile is
mimicked in muscle PFK knockout mice which increased muscle glucose-6-phosphate levels (~320%)
and glycogen levels (~110%) at rest; along with decreased ATP levels (~50%) and a severely shortened
time to fatigue (<1.5 min) when subjected to treadmill running [188]. Impairments in exercise endurance
capacity were also observed in skeletal muscle specific-PDHal knockout mice [189], highlighting
the importance of the ATP generated from complete glucose oxidation in muscle contraction and
whole-body locomotion.

Aerobic exercise training results in variable changes in skeletal muscle glycolytic capacity. This is
demonstrated in studies conducted in both humans and rodents that showed 0-120% increases in
muscle PFK activity following aerobic training. These studies found: (1) 20 weeks of cycle ergometer
training (4 days/week, 1 hour/day at 75-90% VO,max) increased PFK activity ~120% in human vastus
lateralis muscle [180](2) 6 weeks of treadmill running (5 days/week, 6 bouts of 4.5 min at 40 m/min)
increased PFK activity 20-25% in rat soleus and deep vastus lateralis muscle, but not in the superficial
vastus lateralis or the diaphragm [190]; and (3) 16 weeks of voluntary wheel cage running increased
PFK activity ~87% in rat white gastrocnemius muscle [191], but did not alter it in the soleus, plantaris
or red gastrocnemius [191]. In contrast, studies have demonstrated that aerobic training increases
glucose oxidative capacity, as evidenced by the following findings: (1) 6 weeks of high intensity interval
training (3 days/week, 10 X 4 min intervals/day at ~90% VO,max,) increased PDH activity ~20% in
human vastus lateralis muscle [136]; and that (2) 8 weeks of cycle ergometer training (5 days/week,
1 hour/day at 75% VO;max) increased PDH activity ~30% in human vastus lateralis [192].

Similar to aerobic training, resistance exercise training induces changes in skeletal muscle that
favor an increase in the capacity of glucose flux through glycolysis. Studies performed in humans and
rodents demonstrated the following findings: (1) 14 weeks of progressive free weight training of arms
and shoulders (3 days/week, 3 exercises/session, 3 sets/exercise with increasing loads) increased PFK
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activity ~20% in human deltoid muscle [193]; (2) 24 weeks of progressive free weight squatting and
jumping training did not alter PFK activity in human vastus lateralis muscle [175]; and (3) 10 weeks of
isometric wire hang training (5 sessions/week, three 3-minute bouts/session) increased rectus femoris
muscle PFK mRNA levels ~320% in high fat diet-induced hyperglycemic C57BL/6N mice compared to
sedentary controls [58]. In addition, in mouse soleus muscle, 4 days of functional overload increased
3—[3H]—D—g1ucose conversion H,O ~50% [17], a process that occurs during the enolase reaction. Thus,
collectively, these findings suggest that both aerobic and resistance training increase the capacity of
skeletal muscle to utilize glucose through glycolysis to generate ATP.

6.2.3. Hexosamine Pathway

The hexosamine pathway is a glucose utilizing pathway that is initiated when fructose-6-phosphate
is converted to glucosamine-6-phosphate by the enzyme glutamine fructose-6-phosphate transaminase
1 (GFPT1). The hexosamine pathway produces UDP-N-acetylglucosamine and other nucleotide
hexosamines which are used for the glycosylation, N-linked GlcNAcylation, and O-linked
GlcNAcylation of proteins [reviewed in [194]]. Protein O-GlcNAcylation is one of the most commonly
studied modifications of hexosamine pathway activity and is controlled by the following two enzymes:
(1) O-GlcNAc transferase (OGT), which adds O-GIcNAc to proteins; and (2) O-GlcNAcase (OGA),
which removes O-GlcNAc from proteins.

Multiple studies in both human and rodent muscle have linked increased hexosamine pathway
activity to the development of muscle insulin resistance. In the vastus lateralis muscle of individuals
with type 2 diabetes, O-GlcNAcylated protein levels were ~50% higher compared to lean, healthy
controls [195]. In addition, while transgenic mice overexpressing GFPT1 exhibited a ~50% reduction in
insulin-stimulated muscle glucose disposal [196], muscle-specific OGT knockout mice exhibited
enhanced insulin-stimulated muscle glucose transport [195]. Thus, collectively these studies
demonstrate a direct positive relationship between activation of the hexosamine pathway and skeletal
muscle insulin resistance.

Since aerobic and resistance exercise training are associated with enhancements in skeletal muscle
insulin sensitivity and glucose transport, it could be postulated that exercise training would decrease
hexosamine pathway activity. To date, only two studies have directly examined the effects of exercise
training on the hexosamine pathway in skeletal muscle, and both examined the effects of aerobic
training. In the vastus lateralis of postmenopausal women, one year of progressive plyometric training
did not alter the mRNA levels of OGT or OGA compared to sedentary postmenopausal controls [197].
In contrast, six weeks of progressive treadmill running increased protein O-GlcNAcylation levels
~80-100% in both the soleus and extensor digitorum longus muscles of male Sprague Dawley rats [198].
Taken together these results suggest that exercise training-mediated adaptations in the hexosamine
pathway and protein O-GlcNAcylation levels in skeletal muscle may be gender and/or species specific.
However, given the conflicting findings and limited amount of studies investigating this interaction,
any current conclusions should be considered with caution. Additional studies are needed in humans
and rodent models from both sexes to fully assess the possible role of the hexosamine pathway in
training-induced alterations in muscle glucose transport and metabolism.

6.2.4. Pentose Phosphate Pathway

The pentose phosphate pathway is a glucose utilizing pathway that is initiated when
glucose-6-phosphate is converted to 6-phosphogluconolactone by glucose-6-phosphate dehydrogenase
(G6PD). It is used to make metabolites critical for skeletal muscle anabolism, including: (1) nicotinamide
adenine dinucleotide phosphate (NADPH) for reductive biosynthesis reactions such as lipogenesis;
(2) ribose 5-phosphate for nucleotide synthesis; and (3) erythrose-4-phosphate for aromatic amino acid
synthesis. A second important enzyme in this pathway, 6-phosphogluconate dehydrogenase (6PGD),
is responsible for the production of ribulose 5-phosphate from 6-phosphogluconate, and its activity is
often measured to assess pentose phosphate pathway activity [199-201].
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In non-stimulated skeletal muscle, the activity of the pentose phosphate pathway is low compared
to most other tissues [202,203]. This finding is perhaps not surprising since skeletal muscle is a
differentiated cell type, and at rest does not have the biosynthetic demands of proliferative cell types
such as the liver. In contrast, studies have demonstrated an increase in the activity of the pentose
phosphate pathway in skeletal muscle in response to damage/regeneration. In individuals with
Duchenne’s muscular dystrophy, a condition characterized by a cycle of skeletal muscle degeneration
and regeneration, muscle G6PD activity is increased ~400% and 6PGD activity ~300% compared to
healthy age-matched controls [199]. In rat skeletal muscle, administration of the myotoxic agent
Marcaine stimulated G6PD activity ~350% and 6PGD activity ~140% [200], while a muscle damaging
bout of downhill running increased G6PD activity ~100-350% [204]. In addition, an acute bout of
10 min of high intensity tetanic contractions increased rat muscle ribose-5-phosphate levels [205].
Collectively these findings suggest that activation of the pentose phosphate pathway occurs in skeletal
muscle to provide substrates for muscle repair processes.

The role of the pentose phosphate pathway in mediating either aerobic exercise training-induced
or resistance exercise training-induced adaptations in skeletal muscle glucose metabolism has not
yet been investigated. However, recent work utilizing transgenic mice expressing key signaling
proteins involved in mediating exercise training-induced adaptations in muscle, such as the
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1x) and Akt isoform
1 (Aktl), suggest an involvement of the pentose phosphate pathway in this process. PGC-1« is a
transcriptional co-activator found in skeletal muscle that plays a critical role in mediating aerobic exercise
training-induced increases in mitochondrial biogenesis, substrate metabolism, and fiber type switching
(reviewed in [206]). Intriguingly, in skeletal muscle of muscle-specific PGC-1x overexpression mice
there is an increase in key pentose phosphate pathway metabolites, including: 6-phosphogluconate,
ribulose-5-phosphate, ribose-5-phosphate, NADPH, and sedoheptulose-7-phosphate [207]. Aktl is a
kinase found in skeletal muscle that plays a critical role in mediating resistance exercise training-induced
muscle hypertrophic growth and protein synthesis (reviewed in [208,209]). In skeletal muscle of
muscle-specific Aktl overexpression mice there is also an increase in key pentose phosphate pathway
metabolites and enzymes, including: ribose-5-phosphate, G6PD and 6PGD [201]. While taken together
these results suggest that exercise training may stimulate glucose flux via the pentose phosphate
pathway in skeletal muscle, additional studies examining skeletal muscle from exercise trained humans
or rodents are needed to fully assess a role for this metabolic pathway in exercise training-induced
adaptations in skeletal muscle glucose metabolism.

7. Conclusions

Both aerobic and resistance exercise training are beneficial in ameliorating the hyperglycemia
associated with the metabolic disease, type 2 diabetes. This beneficial blood glucose lowering effect can
be at least partially attributed to training-stimulated alterations in skeletal muscle glucose transport
and glucose metabolism. This review of the current literature found that the effects of aerobic training
are often larger in magnitude than those elicited by resistance training, and we speculate that this
difference can be attributed to one or more of the following factors: (1) Duration of the training program;
(2) intensity of the training; (3) prior training experience; (4) specific skeletal muscle examined; and/or
(5) number of muscle groups stimulated by the exercise. In addition, throughout this review a number
of key gaps in our current understanding of how both aerobic and resistance training alter skeletal
muscle glucose transport and metabolism were identified. These key gaps included: (1) Mechanism
underlying decreased exercise/contraction-stimulated glucose transport following aerobic training;
(2) identity of the glucose transporter isoform(s) involved in mediating resistance training-stimulated
muscle glucose transport; and (3) the exact proportion of glucose that enters each cellular fate in skeletal
muscle in response to aerobic and resistance training. Future endeavors focused on determining the
molecular and cellular factors that are responsible for the ability of exercise training to elicit beneficial



Nutrients 2019, 11, 2432 14 of 24

effects on systemic glucose homeostasis, skeletal muscle glucose transport and/or skeletal muscle
glucose metabolism should seek to fill in these critical knowledge gaps.
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