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Abstract

The inflammatory hypothesis posits that sustained neuroinflammation is sufficient to induce

neurodegeneration and the development of Alzheimer’s disease (AD) and Alzheimer’s

dementia. One potential source of inflammation is the intestine which harbors pro-inflamma-

tory microorganisms capable of promoting neuroinflammation. Systemic inflammation is

robustly associated with neuroinflammation as well as low levels of brain derived neuro-

trophic factor (BDNF) in the systemic circulation and brain. Thus, in this pilot study, we

tested the hypothesis that intestinal barrier dysfunction precedes risk of death, incident AD

dementia and MCI, cognitive impairment and neuropathology. Serum BDNF was associated

with changes in global cognition, working memory, and perceptual speed but not risk of

death, incident AD dementia, incident MCI, or neuropathology. Neither of the markers of

intestinal barrier integrity examined, including lipopolysaccharide binding protein (LBP) nor

intestinal fatty acid binding protein (IFABP), were associated with risk of death, incident AD

dementia, incident mild cognitive impairment (MCI), change in cognition (global or domains),

or neuropathology. Taken together, the data in this pilot study suggest that intestinal barrier

dysfunction does not precede diagnosis of AD or MCI, changes in cognition, or brain pathol-

ogy. However, since MCI and AD are related to global cognition, the findings with BDNF and

the contiguous cognitive measures suggest low power with the trichotomous cognitive sta-

tus measures. Future studies with larger sample sizes are necessary to further investigate

the results from this pilot study.

Introduction

Many factors, including both genetic and environmental, contribute to the development of

clinical and pathological phenotypes of Alzheimer’s disease (AD). The development of AD is
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likely the consequence of a myriad of factors such as disease, infection, stress, and environ-

mental exposure to toxins. One concept that is gaining interest is the inflammatory hypothesis

whereby sustained inflammation (e.g., IL-1β, IL-6, TNF-α, CRP) results in accumulation of

amyloid-β and/or microglial activation sufficient to induce neurodegeneration [1]. Although

studies report varying levels of neuroprotection with anti-inflammatory drugs (some show no

protection) and interventions that reduce inflammation (e.g., horticultural therapy, mindful-

ness), evidence suggests that reducing inflammation may protect against or delay AD demen-

tia [2–10]. Therefore, it is possible that conditions that promote systemic inflammation may

promote the development and progression of AD.

One potential source of inflammation is the intestine which harbors a diverse collection of

pro-inflammatory microorganisms including bacteria, viruses, and fungi. The intestinal bar-

rier allows the absorption of water, electrolytes, and nutrients while at the same time prevent-

ing the pro-inflammatory contents of the intestine (e.g., lipopolysaccharide (LPS)) from

reaching the systemic circulation where they can promote inflammation and the production of

pro-inflammatory cytokines. Intestinal barrier dysfunction induces inflammation and pro-

motes inflammation-mediated diseases [11–14]. Since LPS is found in the brain tissue of AD

patients [15], it is possible that intestinal barrier dysfunction is a trigger for neuroinflamma-

tion and precedes cognitive dysfunction.

There is reciprocal relationship between inflammation and levels of brain derived neuro-

trophic factor (BDNF) whereby high levels of cytokines are reported to be associated with low

BDNF [16]. BDNF is widely distributed throughout the central and peripheral nervous systems

and is critical for the survival and function of neurons as well as memory formation and recall

[17–24]. Studies show that BDNF is reduced in people with dementia, mild cognitive

impairment (MCI), and AD and that higher BDNF in the brain [25–30] and systemic circula-

tion [31–38] is associated with a slower rate of cognitive decline in individuals diagnosed with

MCI or AD. A few studies have demonstrated that serum BDNF levels are associated with inci-

dent dementia [39], but there is a dearth of literature examining the co-morbid associations

between intestinal barrier integrity and serum BDNF and if they are associated with AD

dementia in older adults. To address these knowledge gaps, we integrated clinical data and

postmortem brain histopathology indices with serum markers of barrier integrity and BDNF

in older adults participating in the Religious Order Study (ROS). Specifically, this pilot study

examined if systemic markers of intestinal barrier integrity (LPS binding protein (LBP), intes-

tinal fatty acid binding protein (IFABP)) or serum BDNF levels collected from older adults

without clinical evidence of AD dementia were associated with risk of death, incident AD

dementia or MCI, or cognitive impairment. In decedents who had undergone brain autopsy,

tissue was examined to determine if the markers of barrier integrity and BDNF were related to

postmortem indices of AD-Related Dementia (ADRD) neuropathologies.

Materials and methods

Subjects

Data came from older adults participating in ROS, a community-based cohort study of chronic

conditions of aging in older Catholic nuns, priests, and lay brothers recruited from approxi-

mately 40 groups across the United States [40, 41]. Participants agreed to annual clinical evalu-

ations and blood draws, as well as brain donation at the time of death. Age in years, sex, and

education were collected from self-reported information interview. This study was reviewed

and approved by the Institutional Review Board of Rush University Medical Center. All partic-

ipants signed an informed consent.
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Serum samples used for the analyses were collected from all subjects with a clinical cogni-

tive diagnosis of no cognitive impairment to determine if systemic biomarkers (IFABP, LBP,

BDNF) were associated with the subsequent development of MCI or AD dementia. Subject

characteristics are detailed in Table 1.

Cognitive assessment and clinical diagnoses

Each year, cognitive tests were administered to subjects which were used to generate a com-

posite measure of global cognition [40, 41]. The global cognition score was calculated as were

the scores for five subdomains: episodic memory, semantic memory, working memory, per-

ceptual speed, and perceptual orientation (visuospatial ability) scaled and centered by subtract-

ing the baseline mean and dividing by the baseline standard deviation (SD). Clinical diagnosis

was made each year. Dementia was determined using guidelines of the joint working group of

the National Institute of Neurological and Communicative Disorders and Stroke and Alzhei-

mer’s Disease and Related Disorders Association [42]. Individuals with cognitive impairment

but without dementia were diagnosed as mild cognitive impairment (MCI), and the remainder

were designated as no cognitive impairment (NCI) [43, 44]. Individuals with other dementias

were not included in the study. After death, a neurologist blinded to autopsy data reviewed

available cognitive and clinical data to assign a summary clinical diagnosis. The last valid diag-

nosis (NCI, MCI, or AD) following cognitive testing and clinical assessment was used to char-

acterize each subject.

Table 1. Characteristics of study participants (n = 88).

Mean (SD) or n (%)

Age, years# 76.398 (5.728)

Sex, male, n (%) 26 (29.55%)

Education, years 18.727 (3.473)

Length of follow up, years 13.692 (5.974)

Global cognition# 0.353 (0.453)

Episodic memory# 0.466 (0.479)

Perceptual orientation# 0.205 (0.694)

Perceptual speed# 0.386 (0.719)

Semantic memory# 0.288 (0.606)

Working memory# 0.299 (0.757)

Incident MCI, n (%) 65 (73.86%)

Incident AD, n (%) 41 (46.59%)

Death, n (%) 70 (79.55%)

Global AD pathology 0.719 (0.614)

β-amyloid 4.354 (4.250)

Tau tangles 8.081 (9.584)

Lewy bodies, n (%)¶ 18 (20.45%)

BDNF�# 19,250.918 (5369.517)

IFABP�# 1,149.265 (1042.795)

LBP�# 24,746.246 (13287.815)

AD, Alzheimer’s disease; BDNF, brain derived neurotrophic factor; IFABP, intestinal fatty acid binding protein; LBP,

lipopolysaccharide binding protein; MCI, mild cognitive impairment; SD, standard deviation.
#baseline data,

�raw data,
¶sample size = 67.

https://doi.org/10.1371/journal.pone.0240342.t001
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Postmortem brain analyses

To date, 67 subjects had brain autopsies with neuropathologic assessments. Brain removal, tis-

sue sectioning and preservation, and a uniform examination with quantification of postmor-

tem outcomes followed previously published protocols [40, 41]. Postmortem measures

included presence of pathologic AD based on National Institute on Aging criteria, a continu-

ous measure summarizing the burden of AD pathology, as well as β-amyloid load and tangles.

In addition, the presence of Lewy body disease (LBD) pathology was recorded.

Serum IFABP, LBP, and BDNF

Serum samples were evaluated for the following biomarkers. (1) IFABP. IFABP is an intracellu-

lar protein specifically and abundantly expressed in epithelial cells in the intestine. When intes-

tinal mucosa damage occurs, IFABP is released into the circulation [45], whereby higher levels

of systemic IFABP indicate intestinal barrier damage [46]. IFABP levels in the serum were

measured via ELISA per manufacturer instructions (Hycult Biotech Inc, Plymouth Meeting,

PA, USA). (2) LBP. LBP plays a role in the innate immune response by binding to LPS, a lipid

present in the outer membrane of all Gram-negative bacteria, to facilitate the association

between LPS with CD14 resulting in the release of cytokines in response to LPS [47]. LBP levels

in the serum were measured via ELISA per manufacturer instructions (Hycult Biotech Inc,

Plymouth Meeting, PA, USA). (3) BDNF. BDNF is a neurotrophic factor that supports the dif-

ferentiation, maturation, and survival of neurons [48]. BDNF levels in the serum were mea-

sured via ELISA per manufacturer instructions (R&D Systems Inc, Minneapolis, MN, USA).

Statistical analysis

Values below the level of detection of the assay were assigned half of the corresponding mini-

mum value for each variable. β-amyloid and neurofibrillary tangles were square-root trans-

formed to improve normality. Thereafter, data for IFABP, LBP, and BDNF were standardized

such that each variable had a mean of 0 and a standard deviation of one. All statistical analyses

controlled for age (age at death for brain pathology, age at sample collection for all the other

analyses), sex and education. We first assessed the association of serum IFABP, LBP, and

BDNF with risk of death, incident AD dementia and incident MCI using Cox proportional

hazards models, controlling for age, sex, and education. Next, using longitudinal cognitive

data collected, we applied linear mixed-effects models to test the association of IFABP, LBP,

and BDNF with change in global cognition as well as the five cognitive domains (episodic

memory, perceptual orientation, perceptual speed, semantic memory, and working memory).

In these latter analyses, in addition to controlling for age at baseline, sex, and education, terms

for interaction with time were also included. These linear mixed-effects models included sub-

ject-specific random terms for the intercept and time. Finally, we assessed the association

between IFABP, LBP, and BDNF with continuous measures of the burden of AD pathology, β-

amyloid, and neurofibrillary tangles, using linear regression, adjusted for demographics. Sub-

sequently, a logistic regression was used to assess the association of IFABP, LBP, and BDNF

with the presence of cortical Lewy bodies.

This was a pilot study; therefore, we performed a series of power analyses to estimate sam-

ple sizes needed for a larger study in the future. The power of each of the models of the associa-

tion of a biomarker with an outcome depends on an effect size (defined below for each of the

models), on the number of variables controlled for (i.e., 3), and on the proportion of the varia-

tion in the biomarker explained by the three variables controlled for (i.e., 0.05, as guided by

the data). The effect size for Cox regression when the outcome is time to the occurrence of an

event is the hypothesized hazard ratio (HR); the proportion of persons (π1) for whom the
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event of interest is observed (not censored) also influences power. Guided by our data, we cal-

culated the power with the HR = 0.84 and 03C01 = 0.8. The effect size for logistic regression of

the binary outcome presence of AD dementia depends on the hypothesized odds ratio (OR)

per standard deviation (SD) of the biomarker. Again, we are guided by the data and considered

an OR = 0.7, which corresponds to a probability of AD dementia of 0.4 if the biomarker is 1

SD higher than a reference group in which the probability of AD dementia is 0.5. The effect

size for linear regression when the outcome is a continuous measure of the neuropathologies is

the percentage of variation in the neuropathology explained by the biomarker (03C02). We cal-

culated the power for an effect size π2 = 5%. All tests were 2-sided at a significance level of

0.05.

Power calculations were performed using PASS 2008 [49]. All other statistical analyses were

programmed in SAS version 9.4 (SAS Institute, Inc., Cary, NC, USA) and R [50].

Ethics approval

Clinical and postmortem data and biospecimens used in this study were obtained from the

Rush Alzheimer’s Disease Center (RADC). This study was reviewed and deemed exempt by

the Rush University Medical Center Institutional Review Board. The RADC protocols and col-

lection of data in this study was performed in accordance with the ethical standards of Rush

University Medical Center and with the 1964 Helsinki declaration and its later amendments or

comparable ethical standards.

Results

Characteristics of the study participants are given in Table 1. Briefly, of the 88 participants,

30% were male, the mean age was 76.4 years of age at baseline with a mean length of follow up

13.7 years. Of the 88 participants, 65 (74%) developed MCI and 41 (47%) developed AD

dementia. Cognitive testing was conducted annually. All 41 participants who were diagnosed

with AD were first diagnosed with MCI. Twenty-four participants were diagnosed as MCI,

nine with amnestic MCI and 18 with non-amnestic during annual testing (three participants

had a combination of amnestic and non-amnestic MCI).

First, we examined the relationship between BDNF and risk of death, incidence of AD

dementia, and MCI. There were no associations between BDNF and risk of death and incident

MCI. However, BDNF was associated with incident AD dementia (HR = 0.699, 95% CI:

0.496–0.985, p = 0.041; Table 2). Fig 1 shows the cumulative incidence of AD dementia for par-

ticipants with 10th percentile, 50th percentile and 90th percentile of BDNF, indicating that par-

ticipants with a higher level of serum BDNF were less likely to develop AD dementia

compared with those who had a lower level of BDNF. We then examined the association

between BDNF and change in global cognition, and in secondary analyses, the five cognitive

domains. BDNF was associated with change in overall global cognition (interaction p = 0.028),

as well as working memory (interaction p = 0.004), and perceptual speed (interaction

p = 0.015), but not with episodic memory (interaction p = 0.051), semantic memory (interac-

tion p = 0.172), nor perceptual orientation (interaction p = 0.129) (Table 3). Fig 2 demon-

strates that subjects with a higher level of serum BDNF exhibited a slower decline in global

cognition (Fig 2A), working memory (Fig 2D), and perceptual speed (Fig 2E), compared with

those who had a lower level of BDNF. Finally, we examined the association between BDNF

and neuropathologies and found no significant associations of BDNF with any of the neuropa-

thologies examined (Table 4). The power in this study was limited. Autopsy and neuropatho-

logic assessments from 67 subjects were used in this analysis; however, this sample size yields
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less than 50% statistical power to detect 5% of variation. Power calculation suggests that a sam-

ple size of 144 is needed to test these associations with 80% power.

Next, we examined the association between IFABP and LBP with risk of death, incident AD

dementia, MCI, and changes in global cognition including the five domains. There were no

associations between markers of barrier integrity and risk of death, incident AD dementia, or

incident MCI (Table 2). Likewise, there were no associations between IFABP and LBP with

change in global cognition, and in secondary analyses, change in any of the five cognitive

domains (Table 3). We then examined the association of IFABP and LBP with

Table 2. Association with risk of incident MCI, AD and death.

HR (95% CI) P-value

IFABP Death 1.103 (0.885–1.373) 0.383

MCI 0.871 (0.671–1.131) 0.301

AD 0.898 (0.633–1.274) 0.547

LBP Death 0.871 (0.661–1.147) 0.324

MCI 1.093 (0.821–1.455) 0.541

AD 0.965 (0.677–1.374) 0.841

BDNF Death 0.828 (0.634–1.082) 0.167

MCI 0.810 (0.613–1.071) 0.140

AD 0.699 (0.496–0.985) 0.041�

In all analyses, a Cox regression was used, controlling for age at study baseline, sex, and education. IFABP, LBP, and

BDNF were standardized in all the analyses. AD, Alzheimer’s disease; BDNF, brain derived neurotrophic factor; CI,

confidence interval; HR, hazard ratio; IFABP, intestinal fatty acid binding protein; LBP, lipopolysaccharide binding

protein; MCI, mild cognitive impairment.

https://doi.org/10.1371/journal.pone.0240342.t002

Fig 1. Higher serum BDNF is associated with lower cumulative incidence of AD dementia. Dashed Line: 10th

percentile of BDNF, Dotted Line: 50th percentile of BDNF, Solid Line: 90th percentile of BDNF. BDNF was

standardized. BDNF, brain derived neurotrophic factor.

https://doi.org/10.1371/journal.pone.0240342.g001
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neuropathologies including global AD pathology, β-amyloid, tau tangles, and Lewy Bodies

(Table 4) and found no associations. Note that the power for these analyses was limited. With

a sample size of 88, the statistical power was less than 35% to detect a hazard ratio of 0.84, and

less than 40% to detect an odds ratio of 0.7. Power calculation suggests that a sample size of

319 is needed for Cox analysis and 261 for logistic analysis to test these associations with 80%

power.

Discussion

Our data demonstrate that serum BDNF is associated with cognitive decline and the develop-

ment of AD dementia. Specifically, BDNF is lower in individuals who eventually develop AD

dementia and BDNF is associated with the rate of change in global cognition and most

strongly associated with the declining cognitive abilities of working memory and perceptual

speed. These findings are in keeping with the literature. Lower levels of BDNF in both the

brain and serum (mRNA, protein) are associated with AD [25, 28–30, 38, 51, 52]. Samples ana-

lyzed in this study were collected when participants were cognitively normal, before the devel-

opment of impairment suggesting that a reduction in BDNF may occur very early in the

pathogenesis of neurodegeneration. Indeed, BDNF is decreased in the pre-clinical stages of

AD and serum BDNF levels are associated with cognition and may predict a slower rate of cog-

nitive decline [36, 53]. To date, a single study has shown that dementia-free individuals with

Table 3. Association of BDNF, IFABP, LBP with cognition (global cognition and domains: Episodic memory, semantic memory, working memory, perceptual

speed, perceptual orientation).

Level Slope

Estimate (SE) P-value Estimate (SE) P-value

IFABP Global cognition 0.031 (0.057) 0.590 0.014 (0.012) 0.221

Episodic memory 0.025 (0.057) 0.662 0.021 (0.014) 0.134

Semantic memory -0.040 (0.070) 0.571 0.014 (0.013) 0.275

Working memory 0.001 (0.085) 0.993 0.007 (0.008) 0.376

Perceptual speed 0.087 (0.083) 0.302 -0.001 (0.012) 0.951

Perceptual orientation 0.049 (0.073) 0.504 0.002 (0.008) 0.791

LBP Global cognition -0.046 (0.063) 0.466 0.004 (0.013) 0.760

Episodic memory -0.024 (0.063) 0.701 -0.001 (0.016) 0.943

Semantic memory -0.044 (0.076) 0.561 0.020 (0.015) 0.174

Working memory -0.112 (0.092) 0.227 0.012 (0.009) 0.192

Perceptual speed 0.018 (0.090) 0.841 0.002 (0.013) 0.879

Perceptual orientation -0.075 (0.078) 0.345 0.005 (0.009) 0.567

BDNF Global cognition -0.036 (0.059) 0.539 0.026 (0.012) 0.028�

Episodic memory 0.018 (0.059) 0.760 0.028 (0.014) 0.051

Semantic memory -0.057 (0.071) 0.423 0.018 (0.013) 0.172

Working memory -0.099 (0.086) 0.254 0.023 (0.008) 0.004��

Perceptual speed -0.024 (0.083) 0.770 0.027 (0.011) 0.015�

Perceptual orientation -0.057 (0.072) 0.433 0.012 (0.008) 0.129

Analyses were performed using linear mixed-effects models, adjusting for age at baseline, sex and education. IFABP, LBP, and BDNF were standardized in all the

analyses. Slope represents change per year. BDNF, brain derived neurotrophic factor; IFABP, intestinal fatty acid binding protein; LBP, lipopolysaccharide binding

protein; SE, standard error.

�P-value < 0.05,

��P-value < 0.01 in bold means statistical significance.

https://doi.org/10.1371/journal.pone.0240342.t003
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higher BDNF are less likely to develop dementia and AD [39]. Our findings recapitulate the

outcomes of this previous study and demonstrate that serum BDNF, assessed when subjects

were cognitively normal, is associated with cognitive decline during 10 years after sample col-

lection. These findings may have important public health consequences and suggest that

Table 4. Association of BDNF, IFABP, and LBP with neuropathologies (global AD pathology, β-Amyloid, Tau

Tangles, Lewy bodies).

Estimate (SE) P-value

IFABP Global AD Pathology 0.009 (0.081) 0.913

β-Amyloid -0.101 (0.146) 0.490

Tau Tangles 0.093 (0.177) 0.602

Lewy Bodiesⱡ -0.292 (0.331) 0.379

LBP Global AD Pathology -0.031 (0.078) 0.695

β-Amyloid -0.168 (0.141) 0.238

Tau Tangles 0.018 (0.172) 0.916

Lewy Bodiesⱡ 0.126 (0.299) 0.673

BDNF Global AD Pathology -0.024 (0.078) 0.754

β-Amyloid -0.072 (0.142) 0.611

Tau Tangles -0.052 (0.172) 0.764

Lewy Bodiesⱡ 0.109 (0.297) 0.713

All statistical analyses, were controlled for age at death, sex, and education. IFABP LBP, and BDNF were

standardized in all analyses. Linear regression was used unless otherwise stated.
ⱡLogistic regression. AD, Alzheimer’s disease; BDNF, brain derived neurotrophic factor; IFABP, intestinal fatty acid

binding protein; LBP, lipopolysaccharide binding protein; SE, standard error.

https://doi.org/10.1371/journal.pone.0240342.t004

Fig 2. Higher serum BNDF is associated with slower rate of cognitive decline over time. Dashed Line: 10th

percentile of BDNF, Dotted Line: 50th percentile of BDNF, Solid Line: 90th percentile of BDNF. (A) Global Cognition,

(B) Episodic Memory, (C) Semantic Memory, (D) Working Memory, (E) Perceptual Speed, and (F) Perceptual

Orientation. BDNF was standardized. BDNF, brain derived neurotrophic factor.

https://doi.org/10.1371/journal.pone.0240342.g002
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BDNF may be a robust clinical biomarker to identify older adults at risk for developing AD

dementia which can facilitate early interventions to prevent dementia.

Evidence indicates that inflammation is a critical factor that precedes the development of

AD [54]. Thus, we proposed that intestinal barrier dysfunction (which leads to systemic and

neuroinflammation) might precede incident AD or MCI, cognitive dysfunction, and neuropa-

thology. However, we did not find any significant associations between markers of intestinal

barrier integrity (IFABP, LBP) with risk of death, incident AD or MCI, cognitive dysfunction,

or neuropathology. It could be that intestinal barrier dysfunction does not precede these events

(and is not a causative factor) or it could be interpreted that the markers that we selected to

assess barrier integrity were not appropriate to capture the specific type of barrier dysfunction

that is present prior to development of incident AD dementia, MCI, or cognitive dysfunction.

In this study, we assessed IFABP (which indicates intestinal epithelial cell damage) and LBP

(which indicates immune response to intestinal barrier dysfunction); however, a disrupted api-

cal junctional complex (AJC) is the most common cause of intestinal barrier dysfunction.

Unfortunately, there is no reliable serum marker to assess AJC integrity in the intestine [55–

57], therefore we cannot assess this potential mechanism. If intestinal barrier dysfunction is

due to disrupted AJC, then additional analyses will need to be conducted once these tools are

developed and only then can we conclusively determine if intestinal barrier dysfunction pre-

cedes incident AD dementia, MCI, cognitive dysfunction, and/or neuropathology. Nonethe-

less, based on the data generated in this pilot study, loss of intestinal barrier integrity does not

precede diagnosis of AD dementia or MCI, cognitive decline, or neuropathology.

There are several limitations in this study. As already mentioned, our assessments of the

intestinal barrier were limited to measurements of serum IFABP and LBP [45] which may not

accurately represent the type of barrier dysfunction that precedes cognitive decline. The devel-

opment of additional assays in the future to detect systemic markers of changes in AJC may be

useful in determining if another type of barrier dysfunction is present. The other alternative is

to examine intestinal or sigmoid biopsy samples for AJC proteins but these samples are not

available in the participants that were included in this study. Finally, our sample size was small

and the statistical power was limited for some of the analyses we performed. Some of the insig-

nificant findings may be a result of insufficient statistical power (supported by power calcula-

tions); therefore, findings need to be validated in a larger cohort. Additionally, the MCI group

was heterogenous and included a mix of amnestic, non-amnestic, and a combination of amnes-

tic/non-amnestic participants, and this variability may reduce power. Future studies appropri-

ately powered to evaluate these sub-types are needed to more fully characterize these transitions.

Taken together, this pilot study suggests that a reduction in BDNF may occur early in the

pathogenesis of neurodegeneration and may be a critical event leading to AD and/or may be a

useful biomarker to identify subjects at risk for AD. Lastly, the data suggest that intestinal bar-

rier integrity does not appear to be associated with the development of AD clinical or patho-

logic phenotypes. Barrier integrity is suggested to be compromised in AD which means

intestinal involvement may occur later in disease pathology. While loss of barrier integrity in

AD is potentially not involved in the early events leading to MCI or AD, it may promote neu-

roinflammation and amyloid-β overproduction leading to AD progression.
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