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Cord blood (CB)-derived chimeric antigen receptor (CAR)-nat-
ural killer (NK) cells targeting CD19 have been shown to be
effective against B cell malignancies. While human CD56+ NK
cells can be expanded in vitro, NK cells can also be differentiated
from hematopoietic progenitor cells. It is still unclear whether
CAR-NK cells originate frommature NK cells or NK progenitor
cells in CB. Here, we determined that CAR-NK cells were pre-
dominantly derived from CD56� NK progenitor cells. We first
found that substantial numbers of CD19 CAR-NK cells were
produced from CD56� CB mononuclear cells after in vitro
culture for 2 weeks. Single-cell RNA sequencing analysis of
CD56�CD3�CD14�CD19� CB mononuclear cells revealed
that these cells could be subdivided into three subpopulations
based on the expression of CD34 and human leukocyte antigen
(HLA)-DR. NK cells originated primarily from CD34�HLA-
DR� cells. In addition, among the CD34�HLA-DR� cells, only
CD7+ cells could differentiate into NK cells. These results indi-
cate that CD56�CD7+CD34�HLA-DR� lineage marker (Lin)�

cells are the major origin of human CB-derived CAR-NK cells,
indicating the importance of developing methods to enhance
the quality and quantity of NK cells produced from these NK
progenitor cells.

INTRODUCTION
Autologous chimeric antigen receptor (CAR) T cell therapy has
demonstrated remarkable efficacy in patients with B cell leukemia/
lymphoma and multiple myeloma.1–4 However, CAR T cell therapy
is extremely expensive. In addition, several weeks are needed to
produce CAR T cells from autologous T cells. Natural killer (NK) cells
do not induce graft-versus-host disease when infused into allogenic
donors,5 making them attractive candidates as a source for universal
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cellular immunotherapy.6 This approach allows for the creation of
off-the-shelf products that can be employed for allogeneic recipients.
CARs can be expressed on NK cells to reprogram their specificity
toward a particular target.7–10 NK cells derived from various sources,
such as induced pluripotent stem cells,11 cord blood (CB),7,8 or NK
cell lines,12,13 are utilized in the generation of CAR-NK cells.

CB-derived CAR-NK cells targeting CD19 have been shown to be effec-
tive against B cell malignancies in clinical trials.8,14 At present, CB-
derivedCAR-NKcells targeting variousothermolecules are being tested
clinically.5,6 Purified CD56+ NK cells can be expanded by stimulation
with K562-based feeder cells and interleukin (IL)-2.7,15 It is also known
that human NK cells can be differentiated from hematopoietic progen-
itor cells in vitro.16–23 CD3-, CD14-, and CD19-depleted CB mononu-
clear cells (MNCs), which include many immature hematopoietic cells,
were used to establish CAR-NK cells8 in some clinical trials. It remains
unclear whether CB-derived CAR-NK cells originated frommatureNK
cells orNKprogenitor cells. In this study,weaimed to clarify this issue to
improve methods for generating CAR-NK cells from CB cells.

RESULTS
CAR-NK cells originate predominantly from CD56– NK

progenitor cells in human CB

CAR-NK cells that targeted CD19 and secreted IL-15 were established
according to previous reports7,10 (Figure 1A).We tested CB cells from
ical Development Vol. 32 December 2024 ª 2024 The Author(s).
r Inc. on behalf of The American Society of Gene and Cell Therapy.
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Figure 1. CAR-NK cells derived from CB originate

predominantly from CD56– NK progenitor cells

(A) A scheme showing the protocol to produce CD19

chimeric antigen receptor (CAR)-natural killer (NK) cells

derived from cord blood (CB) mononuclear cells (MNCs).

(B) Increase in CD3�CD56+ NK cell numbers during in vitro

culture (n = 6). (C) Representative flow cytometric analysis

of the expression of CD56, CD3, and CAR in CD19

CAR-NK cells. (D) (Left) Flow cytometry profiles and

percentages of CD3�CD56+ NK cells produced from

sorted CD3�CD56+ or CD3�CD56� CB cells after 14 day

culture shown in (A). (Middle) Numbers of NK cells

produced from 1 � 105 CD3�CD56+ or CD3�CD56� CB

MNCs. (Right) Numbers of CD56+ cell- or CD56� cell–

derived NK cells produced from 1 � 105 CB MNCs were

estimated by multiplexing the number of NK cells yielded

from 1 � 105 CD3�CD56+ or CD3�CD56� cells with their

frequency in CB MNCs. A representative result of

experiments using K562-4-1BBL-mbIL-15 cells as feeder

cells is shown. Results from other CB samples are shown

in Figure S1. Results of the experiments using other

feeder cells are shown in Figures S2 and S3. (E)

Estimated numbers of CD56+ cell- or CD56� cell-derived

NK cells yielded from 1 � 105 CB MNCs. Summary of the

results from 5 CB samples is shown. (F) 51Cr release

assay for measuring specific lysis of Raji B cell lymphoma

cells by CD19 CAR-NK cells or non-transduced NK

cells produced from CD3�CD56+ or CD3�CD56� cells.

Representative results from experiments with four

different donors are shown. (G) (Left) Proliferation of

CD19 CAR-NK cells derived from CD56� or CD56+ CB

cells in response to repeated stimulation with GFP-

expressing Nalm6 cells (effector:target [E/T] ratio = 3).

(Right) Flow cytometric analysis 48 h after the fourth

challenge with GFP-expressing Nalm6 cells. (H) Flow

cytometric analysis of the expression of CAR or NK cell

receptors in NK cells derived from CD56+ or CD56� CB

MNCs. Representative results from three independent

experiments are shown. Results of other samples are

shown in Figure S4D. The feeder cells used were as

follows: K562-4-1BBL-mbIL-15 cells in (B)–(E), K562-4-

1BBL-mbIL-15-mbIL-21 cells in (F) and (H), and K562-4-

1BBL-mbIL-21 cells in (G). Throughout the figure, error

bars represent the standard deviation (SD).
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30 different donors and found that NK cells were efficiently expanded
from 14 samples, and these samples were used in this study. After
2 weeks of culture, the number of CD3�CD56+ NK cells increased
by 78.7-fold (Figure 1B). CD19 CAR was efficiently transduced into
NK cells (Figure 1C).

CD3�CD56+ NK cells or CD3�CD56� cells were purified by fluores-
cence-activated cell sorting (FACS) and separately subjected to 2 week
culture using K562 cells transduced with 4-1BBL and membrane-
bound (mb)IL-15 as feeder cells to generate NK cells (Figure 1D).
NK cells were produced from not only CD3�CD56+ NK cells but
also CD3�CD56�NK cells (Figure 1D). For example, in a CB sample,
1 � 105 CD3�CD56+ cells or CD3�CD56� cells yielded 3.9 � 106 or
2.4� 106 CD56+CD3�NK cells, respectively, after 2 weeks of culture.
2 Molecular Therapy: Methods & Clinical Development Vol. 32 Decemb
Since the frequencies of CD56+CD3� cells and CD56�CD3� cells in
this CB sample were 4.3% and 54.3%, respectively, these results sug-
gest that 1.7� 105 (=3.9� 106� 0.043) CD56+ cell-derived NK cells
and 1.3 � 106 (=2.4 � 106 � 0.543) CD56� progenitor cell-derived
NK cells could be produced from 1.0 � 105 CB MNCs (Figure 1D).
The results of the same analysis using other CB samples (n = 5;
Figure S1) also showed that a significantly higher number of
CAR-NK cells were produced from CD3�CD56�NK progenitor cells
than from CD3�CD56+ NK cells (Figure 1E). In addition, NK cells
were predominantly produced from CD3�CD56� NK progenitors
in 4 of 6 experiments using K562 feeder cells expressing 4-1BBL,
mbIL-15, and mbIL-21 and also in 2 of 2 experiments using those
expressing 4-1BBL and mbIL-21 (Figures S2 and S3). Both CD56+

cell-derived NK cells and CD56� cell-derived NK cells showed
er 2024
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significant cytotoxicity upon co-culture with CD19+ B cell lymphoma
cells (Figures 1F, S4A, and S4B). CD56� cell-derived NK cells showed
greater proliferative potential in response to repeated antigen stimu-
lation compared with CD56+ cell-derived NK cells (Figures 1G and
S4C). In addition, both CD56� cell-derived NK cells and CD56+

cell-derived NK cells could eradicate GFP-expressing Nalm6 cells
even after the fourth round of tumor challenge (Figures 1G and
S4C). The expression levels of receptor molecules such as CD16,
NKG2D, NKp46, NKp30, NKp80, and NKG2A in the CD56� cell-
derived CAR-NK cells were comparable with those in the CD56+

cell-derived CAR-NK cells (Figures 1H and S4D).

CB-derived NK cells originate predominantly from

CD7+CD34–HLA-DR–CD56–Lin– cells

Single-cell RNA sequencing (RNA-seq) analysis of CD56�CD3�

CD14�CD19� CB MNCs, which had the potential to produce
CD56+CD3� NK cells (Figure 2A), revealed that these cells were sub-
divided into five subpopulations (Figures 2B, 2C, S5A, and S5B). The
first was enriched with cells expressing CD34+ hematopoietic stem
and progenitor cells. The second and third were enriched with cells
showing high expression of HLA-DR but not FCGR3A, presumably
dendritic cells. The fourth was enriched with HLA-DR+FCGR3A+

monocytic cells. The fifth was enriched with cells that did not express
either CD34 or HLA-DR; this population included cells expressing
killer cell lectin-like receptor B1 (KLRB1), IL2RB, killer cell lectin-
like receptor K1 (KLRK1), or ETS1,24 suggesting that it was enriched
with cells committed to the NK cell lineage.23

Consistent with the results of single-cell RNA-seq analysis, the
CD56�CD3�CD14�CD19� (hereafter called CD56� lineage marker
[Lin]�) CB MNCs were subdivided by flow cytometric analysis into
the following three distinct cell populations: CD34�HLA-DR+,
CD34+HLA-DR+/�, and CD34�HLA-DR� (Figures 2D and S5C).
These three populations were purified and separately cultured to
generate NK cells. After 14 days of culture, NK cells were produced
almost exclusively from CD34�HLA-DR� cells (Figures 2D, 2E,
and S5C).

Single-cell RNA-seq analysis showed that CD7-expressing cells were
almost exclusively detected in the CD34�HLA-DR� cell population,
whichwas subdivided intoCD7+ andCD7� populations (Figure S6A).
In addition, among several cell surface antigens that were reported to
be expressed on NK cells or NK progenitor cells,23 CD7 expression
could be used to subdivide CD34�HLA-DR�CD56�Lin� cells into
2 distinct subpopulations (Figure S6B), which were then separately
cultured to generate NK cells. NK cells were produced from CD7+

cells but not from CD7� cells (Figures 2F, 2G, and S6C). CD19
CAR-NK cells generated from CD7+CD34�HLA-DR�CD56�Lin�

cells showed significant cytotoxic potential against B cell leukemia/
lymphoma cells (Figure 2H). CD7+CD34�HLA-DR�CD56�Lin�

cells were also observed in peripheral blood mononuclear cells
(PBMCs) (Figure S6D). Taken together, these results indicate that
CD7+CD34�HLA-DR�CD56�Lin� cells are the major origin of
CB-derived NK cells.
Molecular T
DISCUSSION
In this study, we demonstrated that CAR-NK cells derived from CB
originated predominantly from CD56� NK progenitor cells rather
than from CD56+ mature NK cells. We also showed that CD56� cell-
derived CAR-NK cells demonstrated greater potential to proliferate in
response to repeated antigen stimulation than CD56+ cell-derived
CAR-NK cells. Moreover, we identified CD7+CD34�HLA-DR�

CD56�Lin� CB cells as NK progenitors. These cells are likely to differ-
entiate from the previously reported CD7+CD34+ NK progenitors.25,26

We intend to conduct a thorough analysis of the characteristics of
CD7+CD34�HLA-DR�CD56�Lin� NK progenitors and develop
methods to expand and efficiently differentiate these cells into NK cells
to improve the quality and quantity of CB-derived CAR-NK cells.

Previous studies have reported the differentiation of NK cells from
CD34+ cells in human bone marrow or CB following culture with
various cytokines, including IL-15.23,25–27 Some studies have reported
that co-culture with stromal cells is needed to produce NK cells from
CD34+ cells.16,17,19,28 However, these studies indicated that 3–5 weeks
of culture were required to yield NK cells, with low efficiencies inmost
cases. We discovered that the CD34� fraction of CB cells contained
NK cell-committed progenitor cells that led to the production of a
substantial number of NK cells after just 2 weeks of culture.

We need to optimize our culture method to efficiently produce
CAR-NK cells from CB. The quality of CB cells is highly variable14

and must be carefully assessed when selecting the source of
CAR-NK cells. Crosstalk between NK progenitor cells and myeloid
or B cells that are part of the CD56� cell population may enhance
or suppress NK cell production from CD56� cells. In some samples
in our experiments, CD56�CD3� cells persisted after 14 day culture
of CD56� CB MNCs, suggesting that more NK cells can be obtained
by extending the culture time. In addition, small numbers of T cells
were generated from CD3�CD14�CD19�CD34+HLA-DR+/� CB
MNCs in 1 of 3 samples, suggesting that T cell generation must be
carefully monitored during CAR-NK cell production.
MATERIALS AND METHODS
Cells

CB cells were obtained from the Kinki Cord Blood Bank and the
Hyogo Cord Blood Bank after informed consent was obtained from
donors. This study was approved by the institutional review boards
of the Osaka University Graduate School of Medicine, Kinki Cord
Blood Bank, and Hyogo Cord Blood Bank. Raji cells were purchased
from the Japan Collection of Research Bioresources Cell Bank. K562
cells expressing mbIL-15 and 4-1BBL (K562-4-1BBL-mbIL-15
cells)10 were kindly provided by St. Jude Children’s Research
Hospital. We established K562-4-1BBL-mbIL-21 cells and K562-4-
1BBL-mbIL-15-mbIL-21 cells by retrovirally transducing K562
cells (ATCC) with 4-1BBL, mbIL-15, or mbIL-21 complementary
DNA (cDNA). Expression of 4-1BBL, mbIL-15, and mbIL-21 was
examined by flow cytometry using anti-4-1BBL (BioLegend, 5F4),
anti-IL-15 (R&D, #34559), and anti-IL-21 (BioLegend, 3A3-N2)
herapy: Methods & Clinical Development Vol. 32 December 2024 3
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Figure 2. NK cells derived from CB originate predominantly from CD7+CD34–HLA-DR–CD56–Lin– cells

(A) Flow cytometry profiles and percentages of CD3�CD56+ NK cells produced from sorted CD3�CD56�CD14�CD19� CB MNCs after 7 or 14 day culture shown in

Figure 1A. (B) Uniformmanifold approximation and projection (UMAP) embedding of single-cell RNA-seq data for CD3�CD56�CD14�CD19�CBMNCs (n = 7,254 cells from

three CB samples). (C) Violin plots showing the expression of cell surface markers in each cell population. HSPC, hematopoietic stem or progenitor cells; pDC and cDC,

plasmacytoid and conventional dendritic cells, respectively. (D and E) Flow cytometry profiles and percentages of CD3�CD56+ NK cells produced from CD34�HLA-DR+,

CD34+HLA-DR+/�, or CD34�HLA-DR� cells purified from CD3�CD56�CD14�CD19� CB MNCs after 14 day culture. Numbers of total cells and NK cells produced from

1.5� 104 sorted cells are plotted in bar graphs. Representative results from a CB sample are shown. Results from other samples are shown in Figure S5C. A summary of the

results from three independent CB samples is shown in (E). (F and G) Flow cytometry profiles and percentages of CD3�CD56+ NK cells produced from CD7+ or CD7� cells

purified from CD34�HLA-DR�CD56�Lin� CBMNCs. Numbers of NK cells produced from the indicated populations are plotted in bar graphs. Representative results from a

CB sample are shown in (F). Those from other samples are shown in Figure S6C. A summary of the results from three independent CB samples is shown in (G). (H) (Left) Flow

cytometry profiles of CD19 CAR-NK cells derived from CD7+CD34�HLA-DR�CD56�Lin� CB MNCs. (Right) 51Cr release assay for measuring specific lysis of Raji or Nalm6

cells by CD19CAR-NK cells or non-transduced NK cells produced fromCD7+CD34�HLA-DR�CD56�Lin�CBMNCs. In all experiments except for (H), K562-4-1BBL-mbIL-

15 cells were used as feeder cells. In (H), K562-4-1BBL-mbIL-15-mbIL-21 cells were used. Throughout the figure, error bars represent the standard deviation (SD).
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monoclonal antibodies (mAbs). Single-cell cloning was performed to
establish the feeder cells used in the experiments.

Retrovirus production

pEQ-PAM3(-E) and pRDF plasmids were gifts from Toshio Kita-
mura (The University of Tokyo) and Keiichiro Mihara (Fujita Health
University), respectively. cDNAs of the variable regions of the k light
chain and the heavy chain of the anti-CD19mAb FMC6329 fused with
CD28, CD3z, and T2A-IL-15 cDNAs were inserted into the retroviral
vector. To generate viral supernatants, 293T cells were co-transfected
with the retroviral vector, pEQ-PAM3(-E), and pRDF using Lipofect-
amine 2000 reagent (Thermo Fisher Scientific).

Generation of CAR-NK cells

T cells were depleted from CBMNCs using CD3MicroBeads (Miltenyi
Biotec). T cell-depleted CB MNCs (3.75 � 105/mL) were co-cultured
with 100 Gy-irradiated K562-4-1BBL-mbIL-15 cells (2.5 � 105/mL)
in RPMI 1640 medium supplemented with 10% fetal bovine serum
and 20 IU/mL IL-2. After 1 week, retroviruses carrying CD19 CAR-
T2A-IL-15 cDNA were transduced into CB-derived NK cells using
RetroNectin (Takara Bio). The cells were then re-stimulated with
100 Gy-irradiated K562-4-1BBL-mbIL-15 cells, cultured for an addi-
tional week.

Flow cytometry and cell sorting

mAbs used in this study are listed in Table S1. Flow cytometry and
cell sorting were performed using a BD FACS Canto II or FACS
Aria II (BD Biosciences) and analyzed with FlowJo software (BD
Biosciences).

Cytotoxicity assays

Target cells (6 � 105) were labeled for 1.5 h with 25 mCi of [51Cr]
sodium chromate (PerkinElmer). Labeled target cells (1 � 104)
were incubated with effector cells for 4 h. 51Cr release in harvested
supernatants was measured with a gamma counter. The percentage
of specific lysis was calculated as previously reported.30

Cytotoxicity of CAR-NK cells was also assessed with a flow-cytometry-
based cytotoxicity assay that used GFP-expressing Nalm6 cells as tar-
gets. Target cells (1� 104) were incubated with effector cells at the indi-
cated effector:target ratio. For tumor rechallenge, cells were washed and
resuspended in the fresh medium containing the target cells.

Single-cell RNA-seq analysis

CB MNCs from three independent donors were stained with CD14,
CD19, CD3, CD56, and one of three different TotalSeq-C anti-human
hashtags (LNH-94; 2M2, Barcoded, BioLegend). CD56�CD3�CD14�

CD19� MNCs were sorted by FACS and then analyzed. A Chromium
Next GEM Single Cell 50 Library and Gel Bead Kit v.2 (10�Genomics)
was used to construct a single-cell RNA-seq library. Libraries were
sequenced on a NovaSeq 6000 platform in a 28 + 90-base paired-end
mode to yield a minimum of 20,000 reads per cell for gene expression.
The single-cell RNA-seq dataset was processed, explored, and visual-
ized using a Cellenics community instance (https://scp.bioimage.net/)
Molecular T
hosted by Biomage (https://biomage.net/). The data discussed in this
publication have been deposited in the Gene Expression Omnibus31

of the National Center for Biotechnology Information and are acces-
sible through GEO Series accession number GEO: GSE253575
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253575).

Statistical analysis

The unpaired two-tailed Student’s t test was used to determine statis-
tically significant differences between samples.

DATA AND CODE AVAILABILITY
The datasets generated during the current study are available from the corresponding
author upon reasonable request.
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