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As one of the most troublesome complications in patients with chronic renal disease, the etiology of uremic pruritus remains
unknown, and the current therapeutic approaches are limited and unsatisfactory. To identify potential biomarkers for improving
diagnosis and treatment and obtain a better understanding of the pathogenesis of uremic pruritus, we compared serummetabolome
profiles of severe uremic pruritus (HUP) patients with mild uremic pruritus (LUP) patients using ultraperformance liquid
chromatography-quadruple time-of-flight mass spectrometry (UPLC-QTOFMS). Partial least squares discriminant analysis (PLS-
DA) showed that the metabolic profiles of HUP patients are distinguishable from those of LUP patients. Combining multivariate
with univariate analysis, 22 significantly different metabolites between HUP and LUP patients were identified. Nine of the 22
metabolites in combination were characterized by a maximum area-under-receiver operating characteristic curve (AUC = 0.899)
with a sensitivity of 85.1% and a specificity of 83.0% distinguishing HUP and LUP. Our results indicate that serum metabolome
profiling might serve as a promising approach for the diagnosis of uremic pruritus and that the identified biomarkers may improve
the understanding of pathophysiology of this disorder. Because the 9 metabolites were phospholipids, uremic toxins, and steroids,
further studies may reveal their possible role in the pathogenesis of uremic pruritus.

1. Introduction

Uremic pruritus (UP) is one of the most common and
uncomfortable symptoms in chronic kidney disease (CKD)
patients, especially in hemodialysis patients [1]. The preva-
lence of uremic pruritus is quite high and is reported in
approximately 40% to 50% of CKD patients, and it has a
significant association with a lower quality of life, poor sleep,
depression, and increased mortality [2]. Although many
studies have demonstrated that many factors are related to
the occurrence of UP, the etiology and pathophysiology of
uremic pruritus have not yet been found [3–5]. Over the past
few decades, there have been a variety of traditional causes of
treatment, but there is no specific treatment for patients with

UP and many of the available therapeutic modalities are not
satisfactory [6].

As an alternative approach for biomarker discovery,
metabolomics (or metabolite profiling) enables the iden-
tification of small-molecule metabolites in biofluids and
tissues that are sensitive to altered pathology [7]. Over the
past several years, ultraperformance liquid chromatogra-
phy coupled to time-of-flight mass spectrometry (UPLC-
MS), which is an information-rich analytical technique, has
become an advanced and useful tool [8]. Compared to other
biomarker approaches, metabolomics might provide more
insight into pathogenesis [9]. Importantly, serum tests based
on metabolic profiles are relatively inexpensive, rapid, and
automated. Although metabolomics has been widely used
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in molecule discovery for early diagnosis for UP, disease
detection, targeted therapy, and drug response [7], no studies
have been performed leading to biomarker discovery for early
diagnosis for UP in CKD patients.

We hypothesize that there are specific biomarkers that
may be detected in the serum of uremic pruritus patients. To
identify potential biomarkers for the noninvasive diagnosis
of uremic pruritus, we conducted a UPLC-QTOF MS-based
serum metabolomics analysis for uremic pruritus patients
and used multi- and univariate statistical analyses of the
metabolome data to identify specific biomarkers for ure-
mic pruritus. The diagnostic performances of the identified
biomarkers were evaluated using receiver operating charac-
teristic (ROC) curve analysis. The study used the method
previously published by our group [10, 11]. In this pilot
study, metabolic profiling of serum sample was conducted to
explore potential diagnostic biomarkers for uremic pruritus
and improve the understanding of pathogenesis in this
disorder and the patients’ quality of life.

2. Materials and Methods

In this study, we followed the methods previously published
by our group [10, 11].

2.1. Study Group. Two hundred uremic patients who needed
hemodialysis were recruited. A visual analogue scale (VAS)
measuring the general severity of pruritus from 0 (no itch)
to 10 (maximum imaginable itch) was used to measure
the severity of itching during the last 3 days [12, 13]. The
mild pruritus group (LUP) included 47 patients (VAS score
of 0–3), the moderate pruritus included 81 patients (VAS
score of 3–7), and the severe and very severe pruritus group
(HUP) contained 72 patients (VAS score of 7–10). Selected
mild pruritus and severe pruritus groups participated in
the experiment. Venous blood samples were obtained from
patients recruited at the Department of Nephrology, Chang-
hai Hospital of the Second Military Medical University. The
patient characteristics are shown in Table 1. Written consent
was collected from all of the patients who participated in this
study. The protocol of the study and the procedures designed
for sample collection were reviewed and approved by the
ethical committee of the SecondMilitary Medical University,
Shanghai, China.

2.2. Sample Collection and Preparation. Blood sample collec-
tion from the patient was done on the same day. Parameters,
including gender, age, duration of HD, and haemoglobin,
serum albumin, transferrin saturation (TSAT), serum fer-
ritin (fer), creatinine, corrected calcium, phosphate, total
cholesterol, triglyceride, and iPTH levels, from each patient
were recorded at the time of sampling. Venous blood was
collected into a 5mL vacutainer tube containing the chelating
agent ethylene diamine tetraacetic acid (EDTA). The tube
was centrifuged at 3000 rpm for 15 minutes. The supernatant
(serum sample) was aliquoted and stored at −80∘C until
analysis. No sample underwent more than two freeze-thaw
cycles prior to LC-MS analysis.

The serum samples (100𝜇L) were thawed at 4∘C followed
by the addition of 400𝜇L methanol/acetonitrile (1 : 1/v : v).
Themixturewas then vortexed vigorously for 30 s followed by
centrifugation at 14000×g for 15min at 4∘C.The supernatant
(50 𝜇L) was transferred to an autosampler vial and an aliquot
of 4 𝜇L was injected for LC-MS analysis.

2.3. Global Metabolite Profiling. In this study, using the
method previously published by our group [10], the UPLC-
QTOF/MS analyses were performed on an Agilent 1290
Infinity LC system configured with an Agilent 6530 accurate-
mass quadrupole time-of-flight (QTOF) mass spectrometer
(Agilent, Palo Alto, USA). An ACQUITY UPLC HSS T3
column (2.1mm × 100mm, 1.8 𝜇m, Waters, Milford, MA,
USA) was used. The serum samples were separated at 45∘C
with a flow rate of 0.4ml/min. The mobile phase was water
with 0.1% formic acid (A) and methanol with 0.1% formic
acid (B). The gradient program was as follows: 100% A
(0–2min), 100%–85%A (2–10min), 85%–70%A (10–14min),
70%–5% A (14–17min), 5% A (17–19min), and 5%–100% A
(19-20min), followed by a 5-minute column reequilibration.

The MS experiments were performed on an Agilent
6530 accurate-mass quadrupole time-of-flight (QTOF) mass
spectrometer (Agilent, Santa Clara, CA, USA). The cone gas
was nitrogen with a flow of 11 L/h. The following detection
parameters were used: fragment voltage, 120V; capillary volt-
age, 3.5 kV; gas temperature, 350∘C; and source temperature,
120∘C. To guarantee mass accuracy and reproducibility, the
full MS scan mode was monitored at the mass range of
50–1000 m/z. In the analyzing process, 10mM purine (m/z
121.0508) and 2mM hexakis phosphazene (m/z 922.0097)
were used as internal standards. The centroid data were
collected from the instrument. Subsequently, aMS/MS exper-
iment was performed and the experiment parameters were
set as follows: MS spectrum acquisition rate, 2 spectra/s;
MS/MS spectrum acquisition rate, 0.5 spectra/s; andmedium
isolation window, 4m/z; and collision energy, 20V.

2.4. Data Handing. For data processing, we used the method
previously published by our group [14].

3. Results

3.1. StudyGroups andTheir Characteristics. Between Septem-
ber 2014 and December 2015, 200 eligible hemodialysis (HD)
patients who met the inclusion and exclusion criteria were
enrolled in this prospective study; of these patients, 72
were diagnosed as HUP and 47 were LUP, based on their
VAS scores. The demographic and clinical characteristics of
the prospective cohort are shown in Table 1. The baseline
characteristics were comparable in each group. The results
showed that the parameters were not significantly different
between HUP and LUP, except for the serum albumin and
iPTH levels.

3.2. Serum Metabolic Profiles. There is a clear separation
trend between HUP and LUP (Figures 1(a) and 1(b)). In
order to validate the model, we performed 200 iterations of
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Table 1: Demographic description of HD patients with UP.

Parameters LUP HUP 𝑝 value
Age, years 57.34 ± 13.41 60.05 ± 16.91 NS
Male/female 24/23 42/30 --
Dialysis, months 3.70 ± 0.52 3.69 ± 0.44 NS
Hb, g/l 117.06 ± 14.84 101.21 ± 15.39 <0.001
𝐾𝑡/𝑉 1.38 ± 0.32 1.30 ± 0.36 NS
TSAT, % 24.16 ± 11.92 22.23 ± 10.41 NS
Fer, 𝜇g/l 128.09 (73.63–263.8) 152.58 (74.68–280.51) NS
iPTH, pg/ml 226 (181.5–399.2) 300.7 (145.4–539) <0.001
Calcium, mmol/L 2.46 ± 0.26 2.45 ± 0.27 NS
Serum albumin, g/L 39.06 ± 3.33 40.49 ± 2.78 NS
Creatinine, mmol/L 968.70 ± 260.27 1070.93 ± 645.25 NS
Phosphate, mmol/L 1.78 ± 0.50 1.94 ± 0.67 NS
Total cholesterol, mmol/L 3.83 ± 0.87 4.05 ± 1.08 NS
Triglyceride, mmol/L 2.05 ± 1.32 2.12 ± 2.14 NS
Data are expressed as the mean ± SD or as median (first and third quartile), as appropriate.

permutation testing. These permutation tests compare the
advantages of the original model fitting and the fitting of the
randomly permuted model. As shown in Figures 1(e) and
1(f), the verification diagram shows that the original model
is valid. The criterion of validity is as follows: all R2 (cum)
and Q2 (cum) values on the left are lower than the values on
the right, while the blue regression line of Q2 (cum) points
has a negative intercept.

3.3. The Discovery and Identification of Metabolic Biomarkers.
Metabolites were carefully screened before being approved
as potential biomarkers. First, significant original variables
were extracted from the S-plot, which is a covariance-
correlation-based procedure, thereby reducing the risk of
false positives inmetabolite selection.The S-plot (Figures 1(c)
and 1(d)) derived from the first component of the combined
model explained most of the variables in the dataset, in
which the ions farthest away from the origin contributed
significantly to the clustering of the two groups and may
thus be considered potential biomarkers. Next, the variable
importance for projection (VIP), reflecting the importance
of variables, was applied to filter the important metabolites
in the model (VIP ≥ 1). Unpaired Student’s 𝑡-tests were
performed as the final testing procedure, and the critical 𝑝
value was set to 0.05 for significantly differential variables.
Following the criterion above, 22 metabolite ions (as shown
in Table 2) were selected as potential biomarkers related to
uremic pruritus. In addition, the bar plots for the relative
intensity of 22 potential biomarkers are given in Figure 2.

3.4. Diagnostic Performance of Metabolites Identified in
Uremic Pruritus. To further validate the potential diag-
nostic effectiveness of these metabolite signatures, the
receiver operating characteristic curve (ROC curve) was plot-
ted individually using the relative intensities of thesemetabo-
lites (data not shown). Stepwise regression analysis was used
to screen the optimal metabolites in combination. LysoPE

(20:3(5Z,8Z,11Z)/0:0), LysoPC(20:2(11Z,14Z)), LysoPC(16:0),
p-cresol glucuronide, phenylacetic acid, hypotaurine, 4-
aminohippuric acid, kynurenic acid, and androstenedione,
belonging to phospholipids, uremic toxins, and steroids, were
identified as potential biomarkers for uremic pruritus.

Figure 3(a) shows the prediction results using the model
constructed by the nine candidate markers for the two
groups. Binary logistic regression was used to combine the
nine variables into a multivariable. The results indicated that
a panel of nine metabolites generated an AUC of 0.899,
with a sensitivity of 85.1% and a specificity of 83.0% for
distinguishing HUP and LUP (Figure 3(b)). According to the
highest prediction sensitivity (85.1%) and specificity (83.0%)
of the ROC curves, an optimal cutoff value of 0.3891 was
obtained. Based on this cutoff value, it was found that 61
of the 72 samples (84.7%) were correctly classified as HUP.
This finding indicated that this simplified serum metabolite
signature was a “good” classifier of HUP and LUP patients.

4. Discussion

In this study, we present ametabolomics approach for screen-
ing potential biomarkers related to UP. By applying UPLC-
QTOF MS technology and multivariable statistical analysis
methods, 22 significantly different metabolites between HUP
patients and LUP patients were identified, and, through
stepwise regression analysis, 9 of the 22 metabolites (LysoPE
(20:3(5Z,8Z,11Z)/0:0), LysoPC(20:2(11Z,14Z)), LysoPC(16:0),
p-cresol glucuronide, phenylacetic acid, hypotaurine, 4-
aminohippuric acid, kynurenic acid, and androstenedione) in
combination were characterized by a maximum area-under-
receiver operating characteristic curve (AUC = 0.899), with a
sensitivity of 85.1% and a specificity of 83.0% for distinguish-
ing HUP and LUP. Therefore, these nine compounds, which
are phospholipids, uremic toxins, and steroids, can be further
investigated to reveal their possible roles in the pathogenesis
of UP and to help diagnose UP.
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Table 2: Summary of the potential biomarkers related to UP.

Number 𝑚/𝑧 TR (min) Adduct Metabolites Formula VIP 𝑝 value
(1) 424.34 10.14 M + NH4 3-Oxocholic acid C24H38O5 5.27 0.03
(2) 137.05 1.02 M + H Phenylacetic acid C8H8O2 5.19 0.04
(3) 426.36 10.66 M + NH4 Cholic acid C24H40O5 4.51 0.04
(4) 290.16 3.12 M + Na L-Agaritine C12H17N3O4 4.14 0.03
(5) 568.34 10.31 M + Na LysoPC(20:3(8Z,11Z,14Z)) C28H52NO7P 2.94 0.04
(6) 269.09 1.42 M + H L-Homocysteine C8H16N2O4S2 2.82 0.03
(6) 267.07 1.42 M −H L-Homocysteine C8H16N2O4S2 1.75 0.02
(7) 205.16 0.64 M + NH4 N1-Acetylspermidine C9H21N3O 2.67 0.01
(8) 110.01 0.58 M + H Hypotaurine C2H7NO2S 2.53 0.01
(9) 130.05 1.06 M + H Pyroglutamic acid C5H7NO3 2.30 0.05
(10) 526.29 10.27 M + Na LysoPE(20:3(5Z,8Z,11Z)/0:0) C25H46NO7P 2.24 0.02
(11) 450.36 10.44 M + Na Stearoylcarnitine C25H49NO4 1.56 0.03
(12) 482.33 10.11 M + H LysoPC(15:0) C23H48NO7P 1.38 0.04
(13) 127.04 4.14 M + Na 3-Hydroxybutyric acid C4H8O3 1.36 0.02
(14) 217.10 4.70 M + Na 4-Aminohippuric acid C9H10N2O3 1.26 0.03
(15) 570.36 10.89 M + Na LysoPC(20:2(11Z,14Z)) C28H54NO7P 1.20 0.03
(16) 190.08 1.06 M + H Kynurenic acid C10H7NO3 1.01 0.00
(17) 540.33 10.57 M + FA −H LysoPC(16:0) C24H50NO7P 8.32 0.01
(18) 331.18 7.56 M + FA −H Androstenedione C19H26O2 4.11 0.02
(19) 507.21 6.53 M + FA −H 6-Dehydrotestosterone glucuronide C25H34O8 3.36 0.03
(20) 283.12 6.58 M −H p-Cresol glucuronide C13H16O7 2.12 0.03
(21) 524.28 10.27 M + FA – H LysoPE(18:1(9Z)/0:0) C23H46NO7P 1.69 0.04
(22) 586.31 9.79 M + FA −H LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)) C28H48NO7P 1.61 0.02

In the present study, the pattern of uremic toxins was
disturbed in UP patients, which is consistent with the
literature. Uremic syndrome is characterized by the retention
of various solutes that would normally be excreted by the
kidneys [15]. These uremic solutes have been reported to
activate itch fibers, including the profound changes that
occur with hyperparathyroidism-associated metabolic bone
disease, increased systemic inflammation, and structural
alterations in the skin related to dehydration and immune
dysregulation of uremia [16]. These factors have been sug-
gested to be possible underlying causes of UP [17, 18].
Therefore, these significantly changed uremic toxins may
serve as a triggering factor for UP and need to be further
investigated to reveal their detailed mechanism of action.

LysoPE(20:3(5Z,8Z,11Z)/0:0), LysoPC(20:2(11Z,14Z)), and
LysoPC(16:0) are phospholipids, which suggested that per-
turbations of phospholipid metabolism are involved in
the pathogenesis of UP. Previous studies have shown that
LysoPCs can induce nephrotoxicity through oxidative stress
[19]. Furthermore, abundant evidence indicates that LysoPCs
induce multiple proinflammatory activities, including stim-
ulating monocytes/macrophages to produce IL-1𝛽, the gen-
eration of reactive oxygen species, and the promotion
of cell growth migration [20, 21]. There are also studies
showing that LysoPC is a chemoattractant to T lympho-
cytes and monocytes, which all play an important role
in inflammation in the skin [22, 23]. In addition, the
serum P concentration, as a factor in UP, was reported to
be associated with increased LysoPC concentrations [24].

Therefore, abnormal phospholipid metabolism may be
involved in the pathogenesis of UP by inducing inflammation
and increasing the serum P concentration.

Steroids such as androstenedione are also downregulated
in UP patients; however, the observation of lower levels of
androstenedione in HUP compared to LUP is not completely
understood. Although further functional work is needed,
we posit one hypothesis that may explain this observation.
Androstenedione is the precursor of testosterone, which
is an anabolic steroid and is involved in the growth of
muscle, bone, and body hair [25]. Both androstenedione
and testosterone can be aromatized to estrogen, which are
also responsible for bone age maturation [26]. Therefore,
decreased androstenedione may indicate abnormal bone
function in uremic patients, which is reported to be the cause
of UP.

5. Conclusions

The present study indicates that serummetabolome profiling
might serve as a promising approach for the treatment of
UP and that the identified biomarkers may improve the
understanding of pathophysiology of this disorder. Further
studies are warranted regarding their possible role in the
pathogenesis in UP.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Multivariate data analysis. (a) PLS-DA score map for the HUP and LUP patients in positive mode; (b) PLS-DA score map for the
HUP and LUP patients in negativemode; (c) S-plot of the PLS-DAmodel in positivemode; (d) S-plot of the PLS-DAmodel in negativemode;
(e) validation plot obtained from 200 permutation tests in positive mode; (f) validation plot obtained from 200 permutation tests in negative
mode.
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Figure 2: Bar plots showing fluctuations in relative signal intensities of potential biomarkers for HUP and LUP patients.
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Figure 3: (a) ROC curves based on the binary logistic regressionmodel using the combination of nine serummetabolites; (b) their prediction
plots based on the optimal cutoff value obtained from the ROC curves.
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