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ABSTRACT
Background  The neuroimaging mechanism of major 
depressive episodes with mixed features (MMF) is not 
clear.
Aims  This study aimed to investigate the functional 
connectivity of the default mode network (DMN) 
subsystems among patients with MMF and patients 
with major depressive disorder without mixed features 
(MDD

noMF).
Methods  This study recruited 47 patients with MDDnoMF 
and 27 patients with MMF from Beijing Anding Hospital, 
Capital Medical University, between April 2021 and June 
2022. Forty-five healthy controls (HCs) were recruited. 
All subjects underwent resting-state functional magnetic 
resonance imaging scanning and clinical assessments. 
Intranetwork and internetwork functional connectivity 
were computed in the DMN core subsystem, dorsal medial 
prefrontal cortex (dMPFC) subsystem and medial temporal 
lobe (MTL) subsystem. Analysis of covariance method was 
performed to compare the intranetwork and internetwork 
functional connectivity in the DMN subsystems among the 
MDD

noMF, MMF and HC groups.
Results  The functional connectivity within the DMN 
core (F=6.32, pFDR=0.008) and MTL subsystems (F=4.45, 
pFDR=0.021) showed significant differences among the 
MDDnoMF, MMF and HC groups. Compared with the HC 
group, the patients with MDDnoMF and MMF had increased 
functional connectivity within the DMN MTL subsystem, 
and the patients with MMF also showed increased 
functional connectivity within the DMN core subsystem. 
Meanwhile, compared with the MDD

noMF, the patients with 
MMF had increased functional connectivity within the DMN 
core subsystem (mean difference (MDDnoMF−MMF)=−0.08, 
SE=0.04, p=0.048). However, no significant differences 
were found within the DMN dMPFC subsystem and all the 
internetwork functional connectivity.
Conclusions  Our results indicated abnormal functional 
connectivity patterns of DMN subsystems in patients 
with MMF, findings potentially beneficial to deepen our 
understanding of MMF’s neural basis.

INTRODUCTION
Major depressive episode with mixed features 
(MMF) is a type of mood disorder that is often 
related to the switch of antidepressants or a 

lower response to them, increased risk for 
relapse, suicide, increased psychiatric comor-
bidities, poorer functioning and lower quality 
of life.1 Nearly one-third of patients with 
major depressive disorder (MDD) present 
mixed features.2 Moreover, MMF has a high 
risk for developing into bipolar disorder.3 4 
However, the pathophysiological mechanisms 
for MMF are not clear.

A growing number of neuroimaging 
studies suggest that patients with MDD have 
dysfunction in the resting-state brain func-
tional networks, especially the default mode 
network (DMN).5–7 The DMN is a prominent 
intrinsic connectivity network, relating to 
consciousness, self-reference, social inference 
and autobiographical memory.8 The DMN 
contains three subsystems: (1) the midline 
core subsystem, comprising the posterior 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Major depressive disorder (MDD) patients exhibit-
ed abnormal functional connectivity in the default 
mode network (DMN).

	⇒ The resting-state functional connectivity patterns of 
the DMN subsystems in MDD patients with mixed 
features (MMF) are unclear.

WHAT THIS STUDY ADDS
	⇒ The functional connectivity within the DMN core 
subsystem was significantly increased among the 
MMF patients compared with MDD patients without 
mixed features (MDD

noMF) and healthy controls (HCs).
	⇒ The functional connectivity within the DMN medial 
temporal lobe (MTL) subsystem was significantly 
increased both in the MMF patients and MDDnoMF 
patients compared with HCs.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These results indicated that the disrupted DMN sub-
system might be associated with the pathophysiolo-
gy of MMF patients.
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cingulate cortex (PCC) and anterior medial prefrontal 
cortex, relates to self-relevant and affective decisions; (2) 
the dorsal medial prefrontal cortex (dMPFC) subsystem, 
including the dMPFC, temporo-parietal junction, lateral 
temporal cortex and temporal pole, contributes to 
mentalizing and conceptual processing; and (3) the 
medial temporal lobe (MTL) subsystem, containing the 
ventral medial prefrontal cortex, posterior inferior pari-
etal lobule, retrosplenial cortex, parahippocampal cortex 
and hippocampal formation, is associated with autobi-
ographical memory.9

Several studies found increased connectivity within 
the DMN among patients with MDD. For example, an 
early meta-analysis of resting-state functional connectivity 
found that increased connectivity within the DMN of 
patients with MDD5. One study found the MDD patients 
exhibited increased connectivity within the dMPFC 
subsystem and between the dMPFC and MTL subsys-
tems.10 A more recent study found increased connectivity 
within the DMN core subsystem among older adults with 
MDD.11 On the other hand, many studies found decreased 
connectivity within the DMN among patients with MDD. 
One study with a large sample found decreased connec-
tivity within the DMN in recurrent MDD,12 and a recent 
meta-analysis of the functional connectivity of the DMN 
subsystems found slightly decreased functional connec-
tivity within the DMN core subsystem.13 Moreover, a study 
investigating the effect of antidepressants on the DMN 
subsystems found decreased connectivity within the DMN 
core subsystem and between the DMN core and dMPFC 
subsystems in adult patients with MDD at baseline.14 
Despite the inconsistent findings, these results indicate 
that the DMN could play an important role in the physio-
pathology of MDD.

The task-based functional neuroimaging studies found 
that MDD patients comorbid with manic symptoms 
exhibited higher activation in the parietal, temporal and 
frontal regions during emotional inhibition condition 
versus non-emotional condition,15 and the high levels of 
subthreshold manic symptoms were correlated with the 
higher right amygdala activity to happy faces.16 However, 
very few studies have examined the resting-state func-
tional connectivity in patients with MMF. Thus, it remains 
unclear whether the resting-state functional connectivity 
patterns of the DMN subsystems change in patients with 
MMF.

Based on the previous findings of DMN subsystems in 
the MDD, we hypothesised that patients with MMF might 
have abnormal connectivity within the DMN subsystems. 
Therefore, this study aimed to investigate the functional 
connectivity of subsystems within the DMN of patients 
with MMF.

METHODS
Study design and participants
This is a cross-sectional study. A total of 74 patients were 
recruited from the outpatient department of Beijing 

Anding Hospital, Capital Medical University, between 
April 2021 and June 2022. Among them, 47 were patients 
with MDD without mixed features (MDDnoMF) and 27 were 
patients with MMF. All patients were diagnosed according 
to the Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth Edition (DSM-5) by two experienced psychia-
trists. The patients who were diagnosed with MDD and 
had fewer than two manic/hypomanic symptoms were 
considered as patients with MDDnoMF. The patients who 
met the full diagnostic criteria for MDD and had at least 
three manic/hypomanic features (eg, an excessively 
elevated mood, inflated self-esteem or grandiosity, more 
talkative than usual or feeling pressured to keep talking, 
flight of ideas or racing thoughts, increase in energy 
or goal-directed activity, increased or excessive involve-
ment in activities that have a high potential for painful 
consequences, and decreased need for sleep) during the 
majority of days of the current or recent major depres-
sive episode were diagnosed as patients with MMF.17 
All patients were right-handed and 18–55 years of age. 
The patients were excluded if they had any co-existing 
or history of other psychiatric disorders, such as schizo-
phrenia or bipolar disorder, any major medical illnesses, 
a clinical diagnosis of neurological trauma, any history of 
substance or alcohol abuse, and any contraindications to 
magnetic resonance imaging (MRI) scanning. A total of 
45 age- and gender-matched healthy controls (HCs) were 
recruited through advertisements by the Beijing Anding 
Hospital, Capital Medical University. The study flowchart 
is presented in figure 1.

Clinical assessment
The sociodemographic data and clinical characteristics 
were collected by the use of a predesigned data collection 

Figure 1  Flowchart of enrolment of the subjects. fMRI, 
functional MRI; FD, frame-wise displacement; HC, healthy 
control; MDDnoMF, major depressive disorder without mixed 
features; MMF, major depressive episode with mixed 
features; SD, standard deviation.
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form. The severity of MDD was assessed with the 17-item 
Hamilton Depression Rating Scale (HAMD-17).18 The 
manic/hypomanic symptoms were measured using the 
Young Mania Rating Scale (YMRS).19

Data acquisition
All the subjects underwent resting-state functional MRI 
(fMRI) scanning using a Siemens Prisma 3.0 T MRI 
scanner with a 64-channel phased-array head coil. The 
structural images were acquired using the T1-weighted 
magnetization-prepared rapidly acquired gradient-
echo sequence with the following parameters: repe-
tition time (TR)=2530 ms; flip angle (FA)=15°; echo 
time (TE)=1.85 ms; matrix=256×256; field of view 
(FOV)=256×256 mm2; number of slices=192; slice thick-
ness=1 mm; voxel size=1×1×1 mm3. The resting-state 
fMRI images were acquired using a gradient-recall echo-
planar imaging pulse sequence with the following param-
eters: TR=2000 ms; TE=30 ms; FA=90°; matrix=64×64; 
FOV=200×200 mm2; number of slices=33; slice thick-
ness=3.5 mm; gap=0.7 mm; voxel size=3.13×3.13×4.2 mm3; 
phase encoding direction=anterior to posterior; 200 
volumes. During the scanning, the subjects were required 
to keep their eyes closed, remain awake, relax their minds 
and keep still without any head motion.

Data preprocessing
Data preprocessing was carried out using Data 
Processing & Analysis for (Resting-State) Brain Imaging 
(V.6.0_210501, http://rfmri.org/DPABI). The first five 
time points were removed to ensure signal stability, and 
slice timing correction was performed. After the realign-
ment, the T1 images were co-registered to the functional 
image. Afterwards, linear and quadratic trends, the first 
five principal components of the individually segmented 

white matter and cerebrospinal fluid, and Friston’s 24 
motion parameters were regressed out as covariates. The 
images were then normalized to the Montreal Neuro-
logical Institute template, and each voxel was resampled 
to 2×2×2 mm3. Spatial smoothing was conducted using 
a Gaussian kernel with a full width half-maximum of 4 
mm, and band-pass temporal filtering was performed at 
a range of 0.01–0.1 Hz. To quantify microhead motions, 
the ‘bad’ time points were removed from the time series 
by employing a ‘scrubbing’ method with a frame-wise 
displacement (FD)20 threshold of 0.5 mm. The subjects 
whose head motion was >2.5 mm maximum translation in 
any direction of x, y or z or 2.5° of maximum rotation or 
if their mean FD exceeded 3 SD of the mean value were 
excluded.21

Definition of ROIs
A total of 24 regions of interest (ROI) were extracted 
from the 17-network parcellation by Yeo et al.22 They were 
divided into three DMN subsystems: nine ROIs belong 
to the core subsystem, nine ROIs belong to the dMPFC 
subsystem and six ROIs belong to the MTL subsystem 
(figure 2).

Functional connectivity analyses
First, seed-based functional connectivity analyses were 
conducted to calculate the functional connectivities 
among ROIs in the three DMN subsystems. We extracted 
mean time series from each ROI, calculated Pearson’s 
correlations between each pair of ROIs and applied 
Fisher’s R-to-Z transformation, forming a 24×24 func-
tional connectivity matrix for each subject. Second, the 
intranetwork functional connectivity in the three DMN 
subsystems was individually calculated with the averaged 
functional connectivity of ROIs within each of the DMN 

Figure 2  Regions of interest in default mode network (DMN). (A) Distributions of the three subsystems of the DMN. The red 
nodes represent the regions in the DMN core subsystem; the yellow nodes represent the regions in the DMN dorsal medial 
prefrontal cortex (dMPFC) subsystem, and the green nodes represent the regions in the DMN medial temporal lobe (MTL) 
subsystem. (B) The coordinates of the regions of interest (ROI) of the DMN subsystems. L, left; MNI, Montreal Neurological 
Institute; R, right.

http://rfmri.org/DPABI
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subsystems. The internetwork functional connectivity was 
calculated with the mean of pairwise connections between 
the DMN subsystems. The edge functional connectivity 
within each of the DMN subsystems was the connectivity 
between pairs of ROIs within this subsystems.

Statistical analysis
Data were analysed using SPSS software, V.24.0 and R, 
V.4.2.1. The comparisons of sociodemographic and clin-
ical characteristics between MDDnoMF, MMF and HC were 
performed using χ2 tests, one-way analysis of variance 
(ANOVA) or Kruskal-Wallis H test, as appropriate. The 
significance level was set as 0.05 (two-tailed).

Analysis of covariance (ANCOVA) was conducted to 
compare the differences of the intranetwork and inter-
network functional connectivity in the DMN subsystems 
among the MDDnoMF, MMF and HC groups, controlling 
for age, gender and mean FD. In addition, the edge 
connectivity within the abnormal DMN subsystems was 
further compared using the ANCOVA method. The false 
discovery rate (FDR) was used for multiple comparisons, 
and the FDR-adjusted p values <0.05 were considered 
statistically significant. The post hoc least significant 
difference analyses were applied for multiple group 
comparisons. The correlations between the abnormal 
intranetwork functional connectivity of the DMN subsys-
tems and the total score of clinical scales were calculated 
for the patients using Pearson’s correlation, or Spear-
man’s correlation method, as appropriate.

RESULTS
Demographic and clinical characteristics comparisons
After excluding some subjects (for details, please 
see figure  1), a total of 34 patients with MDDnoMF, 25 
patients with MMF and 42 HCs were included in the 

study. The demographic and clinical characteristics 
are summarised in table 1. The age, sex and mean FD 
were not significantly different among the groups (all 
p-values>0.05). There were significant differences in 
the education level and the total scores of the HAMD-17 
and YMRS scales among the three groups. Compared 
with HC group, the patients with MDDnoMF and MMF 
had higher education levels. The patients with MDDnoMF 
and MMF had significantly higher HAMD-17 scores 
than the HCs, while no significant difference existed 
between the patients with MDDnoMF and MMF. The 
patients with MMF had higher YMRS scores than those 
with MDDnoMF and the HCs.

Differences in functional connectivity of the DMN subsystems
The intranetwork functional connectivity of the DMN 
core subsystem (F=6.32, pFDR=0.008) and the MTL 
subsystem (F=4.45, pFDR=0.021) showed significant differ-
ences among the MDDnoMF, MMF and HC groups. No 
significant differences were found in the intranetwork 
functional connectivity of the DMN dMPFC subsystem 
and in the internetwork functional connectivities between 
the DMN subsystems.

As shown in figure 3, compared with HCs, the patients 
with MDDnoMF and MMF showed increased functional 
connectivity within the DMN MTL subsystem (mean 
difference (HC–MDDnoMF)=−0.11, SE=0.04, p=0.008, 95% 
CI: −0.19 to –0.03; mean difference (HC–MMF)=−0.10, 
SE=0.04, p=0.029, 95% CI: −0.18 to –0.01). Meanwhile, 
the MMF had increased functional connectivity within 
the DMN core subsystem (mean difference (HC–
MMF)=−0.14, SE=0.04, p=0.001, 95% CI: −0.22 to –0.06). 
In addition, the patients with MMF also had increased 
functional connectivity within the DMN core subsystem 
compared with patients with MDDnoMF (mean difference 

Table 1  Demographic and clinical characteristics

HC
N=42

MDDnoMF
N=34

MMF
N=25 H/χ2 P value

Age (mean (SD)) 26.55 (7.61) 28.26 (5.25) 28.32 (7.47) 5.07 0.079*

Male (n (%)) 15 (35.71) 9 (26.47) 8 (32.00) 0.74 0.690†

Education (n, %) 25.07 <0.001†

 � Elementary 7 (16.67) 0 (0) 2 (8.00)

 � Secondary 16 (38.10) 3 (8.82) 1 (4.00)

 � Tertiary 19 (45.24) 31 (91.18) 22 (88.00)

Smoking (n (%)) 8 (19.05) 4 (11.76) 6 (24.00) 1.55 0.462†

Drinking (n (%)) 2 (4.76) 4 (11.76) 1 (4.00) 1.87 0.392†

Days medicated (mean (SD)) 0 (0) 67 (125) 60 (99) 60.67 <0.001*

Mean FD (mean (SD)) 0.13 (0.06) 0.12 (0.05) 0.14 (0.07) 2.60 0.273*

HAMD-17 (mean (SD)) 0.71 (1.20) 14.29 (5.45) 15.75 (7.12) 69.90 <0.001*

YMRS (mean (SD)) 0.00 (0.00) 1.03 (2.44) 4.42 (2.84) 24.86 <0.001*

*Kruskal-Wallis H test.
†χ2 tests.
FD, frame-wise displacement; HAMD-17, 17-item Hamilton Depression Rating Scale; HC, healthy control; MDDnoMF, major depressive disorder without mixed 
features; MMF, major depressive episode with mixed features; SD, standard deviation; YMRS, Young Mania Rating Scale.
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(MDDnoMF–MMF)=−0.08, SE=0.04, p=0.048, 95% CI: −0.17 
to –0.001).

Furthermore, we compared the edge functional connec-
tivity within the abnormal DMN subsystems among the 
MDDnoMF, MMF and HC groups. We found there was a 
range of abnormal edge connections in the DMN core 
subsystem, whereas no significant abnormal edge connec-
tions existed in the DMN MTL subsystem. In the DMN 
core subsystem, the edge connectivity of the LH_IPL–LH_
PFCm (F=6.85, pFDR=0.016), LH_IPL–RH_PFCm (F=7.59, 
pFDR=0.016), LH_PFCd–RH_PFCd (F=5.41, pFDR=0.036), 
LH_PFCd–RH_PFCm (F=6.75, pFDR=0.016), LH_pCun-
PCC–RH_PFCm (F=5.21, pFDR=0.037), LH_PFCm–RH_
pCunPCC (F=4.77, pFDR=0.048), RH_PFCd–RH_PFCm 
(F=6.49, pFDR=0.016), RH_pCunPCC–RH_PFCm (F=7.57, 
pFDR=0.016) showed significant differences among the 
MDDnoMF, MMF and HC groups. Except for the functional 
connectivity of LH_pCunPCC–RH_PFCm, all these edge 

connections were significantly increased in the patients 
with MMF compared with the HC group and the patients 
with MDDnoMF (figure 4).

Correlation analysis
The intranetwork functional connectivity in the DMN 
core or MTL subsystems was not significantly correlated 
with HAMD-17 or YMRS total scores among the patients 
with MDDnoMF and MMF.

DISCUSSION
Main findings
This study investigated the functional connectivity of the 
DMN subsystems in patients with MDDnoMF and MMF. 
Results revealed the patients with MMF showed signifi-
cantly increased connectivity within the DMN core 
subsystem when compared with patients with MDDnoMF, 
and they have a wide spread of abnormal edge functional 
connectivity within the DMN core subsystem. These find-
ings indicate the brain regions within the DMN core 
subsystems (eg, IPL, PFCm, PFCd and pCunPCC) might 
play a critical role in the pathological mechanisms under-
lying MMF. Meanwhile, the MMF also showed increased 
connectivity within the DMN MTL subsystem compared 
with the MDDnoMF and HC groups.

This study found significantly increased connectivity 
within the DMN core subsystem in patients with MMF 
and MDDnoMF, with higher connectivity in patients with 
MMF as compared to patients with MDDnoMF. The DMN 
core subsystem is associated with personally significant 
affective information, acting as a network hub, linking 
social and mnemonic processes of the dMPFC and MTL 
subsystems.9 13 23 Lines of evidence reported increased 

Figure 3  The significant difference of the intrasubsystem 
connectivity among the MDDnoMF, MMF and HC groups. 
(A) The connectivity within the DMN core subsystem; (B) 
the connectivity within the DMN MTL subsystem. DMN, 
default mode network; HC, healthy control; MDDnoMF, major 
depressive disorder without mixed features; MMF, major 
depressive disorder with mixed features; MTL, medial 
temporal lobe. *p<0.05; **p<0.01.

Figure 4  The significant differences in the functional connectivities between ROIs within the DMN core subsystems in the 
MDDnoMF, MMF and HC groups. HC, healthy control; MDDnoMF, major depressive disorder without mixed features; MMF,major 
depressive disorder with mixed features. *P<0.05; **p<0.01; ***p<0.001.
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DMN connectivity in patients with MDD, which may be 
associated with a predominance of internalised, self-
focused mental activity over efficient externally focused, 
and non-self-related attention.5 10 Abnormal connectivity 
of the DMN might lead to excessive focusing on external 
content and psychomotor overexcitement that can mani-
fest in manic symptoms.24 25 The results of this study indi-
cated that the increased connectivity of the DMN core in 
MMF could be a possible mechanism for the emotional 
disturbances that are experienced during major depres-
sive episodes accompanying a manic episode.

In addition, our seed-based functional connectivity 
showed widespread increased edge connectivity within the 
DMN core subsystem in the patients with MMF compared 
with HC and patients with MDDnoMF. The mPFC, PCC and 
pCunPCC are considered as core hubs of the DMN.24 26 27 
These regions are central to emotional regulation and self-
reference and executive functions--all areas where deficits 
have been reported in MDD.28 Consistent with previous 
studies, the patients with MDDnoMF showed increased 
functional connectivity in these regions compared with 
HCs.29 30 Moreover, patients with MMF displayed higher 
functional connectivity than the MDDnoMF group, indi-
cating MMF might be associated with worse emotional 
regulation skills. Considering the manic/hypomanic 
symptoms in the MMF, we inferred that increased func-
tional connectivity in these regions could undermine 
emotional regulation, and may lead to the manic/hypo-
manic symptoms. As such,our findings raise an intriguing 
question: Could the connectivity between the regions 
within the core DMN subsystem be of importance for 
understanding the increased self-focus in depression and 
its relationship to difficulties with engaging in emotional 
regulation among patients with MMF.

Finally, increased connectivity within the MTL subsystem 
was found in the patients with MMF compared with the 
HC group; however, there was no significant difference 
when compared with the patients with MDDnoMF. The MTL 
is associated with autobiographical memory, episodic 
future thinking, information retrieval and imagery and 
navigation.23 31 The functional connectivity of the MTL 
subsystem is related to the frequency of thinking about 
the future.32 Previous studies indicated that the patients 
with depressive symptoms have a lesser cognitive impair-
ment than the patients with manic symptoms.33 As noted, 
bipolar disorder patients have functional changes in brain 
regions related to autobiographical memory retrieval.34 
Hence, our findings suggest that abnormal connectivity 
within the MTL subsystem may imply a dysfunctional 
encoding of episodic memory in patients with MMF, but 
this may not be specific because the patients with MDDnoMF 
also showed abnormality in this subsystem.

Limitations
Several limitations of this study should be taken into 
account. First, the sample size is relatively small. In future 
studies, we will expand the sample size to improve the 
reliability of findings. Second, some of the patients were 

taking antidepressant drugs, which might influence brain 
function. Future studies with first episodic, drug-naïve 
patients are encouraged. Third, this study applied a priori 
ROIs based on the brain altas. However, defining DMN 
by utilizing individual level approaches also needs to be 
explored in the future, such as the cortical parcellation 
approach,35 and the machine learning algorithms. 36

Implications
There are meaningful clinical implications from our 
findings. Our findings support the association between 
abnormal connectivity of the DMN subsystems with 
depression, and provide deeper insight into the patho-
physiology associated with mixed features and depres-
sion symptoms. A related key finding of the study showed 
the patients with MMF presented abnormal functional 
connectivity within the DMN core subsystem, which might 
help deepen the understanding of the emotion regu-
lation of the MMF. Furthermore, this insight may have 
key implications for the development and refinement of 
therapeutic interventions and diagnosis for patients with 
MMF.

CONCLUSION
In conclusion, this study investigated the functional 
connectivity in the DMN subsystems in patients with 
MDDnoMF and MMF. Relative to patients with MDDnoMF, 
the MMF group displayed abnormal connectivity within 
the DMN core subsystem. Moreover, the patients with 
MMF also showed increased functional connectivity 
within the DMN MTL subsystem. These results indicate 
that the disrupted DMN subsystems might be associated 
with the pathophysiology of MMF. Functional connec-
tivity in the DMN core subsystem might have the potential 
as a biomarker to diagnose the mixed features of patients 
with MDD.
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