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Protein–protein interactions (PPIs) are extremely important for gaining mechanistic

insights into the functional organization of the proteome. The resolution of PPI

functions can help in the identification of novel diagnostic and therapeutic targets

withmedical utility, thus facilitating the development of newmedications. However,

the traditional methods for resolving PPI functions are mainly experimental

methods, such as co-immunoprecipitation, pull-down assays, cross-linking, label

transfer, and far-Western blot analysis, that are not only expensive but also time-

consuming. In this study, we constructed an integrated feature selection scheme for

the large-scale selection of the relevant functions of PPIs by using the Gene

Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

annotations of PPI participants. First, we encoded the proteins in each PPI with

their geneontologies andKEGGpathways. Then, the encodedprotein featureswere

refined as features of both positive and negative PPIs. Subsequently, Boruta was

used for the initial filtering of features to obtain 5684 features. Three feature ranking

algorithms, namely, least absolute shrinkage and selection operator, light gradient

boosting machine, and max-relevance and min-redundancy, were applied to

evaluate feature importance. Finally, the top-ranked features derived from

multiple datasets were comprehensively evaluated, and the intersection of

results mined by three feature ranking algorithms was taken to identify the

features with high correlation with PPIs. Some functional terms were identified

in our study, including cytokine–cytokine receptor interaction (hsa04060), intrinsic

component of membrane (GO:0031224), and protein-binding biological process

(GO:0005515). Our newly proposed integrated computational approach offers a

novel perspective of the large-scale mining of biological functions linked to PPI.
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1 Introduction

In living creatures, protein–protein interactions (PPIs) are

one of the basic formats of molecular interactions that regulate

various important biological functions, including cell

proliferation, differentiation, and apoptosis. Traditionally, PPIs

can be identified by using experimental methods, such as co-

immunoprecipitation, pull-down assays, cross-linking, label

transfer, and far-Western blot analysis (Hall, 2015; Evans and

Paliashvili, 2022; Lyu et al., 2022). Various significant PPIs have

been identified by using complex but accurate experiment-based

methods. The identified PPIs can be divided into two groups: 1)

PPIs that transport cell signals for downstream biological

functions. For example, 14-3-3 protein complexes have been

reported to interact as cell-signaling transporters with multiple

protein molecules via PPIs to regulate inflammatory effects

(Munier et al., 2021). 2) PPIs that establish stable complexes.

The stable complex of ferrtin is formed by two subunits: the

ferrtin heavy chain and the ferrtin light chain (Blankenhaus et al.,

2019). Interactions between these two subunits form the stable

ferrtin complex and further play a specific role in iron

metabolism (Neves et al., 2019).

Although experiment-based approaches have been widely

used to recognize various functional PPIs, they are not only

expensive but also time-consuming. With the establishment of

the PPI databases, advanced computational algorithms,

especially machine learning methods, have been introduced to

explore new PPIs and identify connections between biological

functions and PPIs (Balogh et al., 2022; Gao et al., 2022; Ieremie

et al., 2022). Three major aspects of PPIs have been widely

reported with the application of machine learning methods: 1)

Microbe–host protein interactions. Early in 2019, researchers

summarized the optimized methods for selecting features to

describe viral protein–host protein interactions; this effort

indicated that microbe–host interactions can be predicted by

using computational methods (Zheng et al., 2019). 2) Protein

interactions in human malignant diseases, such as cancer. In

2020, predicted PPIs were applied to recognize glioma stages; this

approach indicated that predicted PPIs can also predict disease

progression and thus extended the application of PPIs based on

machine learning models (Niu et al., 2020). 3) Predicted protein

interactions in drug development. Through the integration of

PPIs predicted by a machine learning method and drug physical

scoring (Guedes et al., 2021), newly identified PPIs were shown to

be robust for drug discovery and pharmalogical mechanism

exploration.

Therefore, machine learning methods become more and

more popular for new PPI recognition and PPI function

exploration. They have been deemed to be one of the major

novel tools for PPI studies. As introduced above, PPIs are one of

the basic approaches for molecular interactions regulating

essential biological functions in all living creatures. Machine

learning methods can help recognize key functional potentials

that can be attributed to PPIs. In this study, multiple machine

learning methods were employed to conduct the investigation.

First, each PPI was represented by lots of features derived from

gene ontology (GO) terms or Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways of two proteins in the PPI. Then,

several machine learning methods, including Boruta (Kursa and

Rudnicki, 2010), least absolute shrinkage and selection operator

(LASSO) regression (Tibshirani, 1996), light gradient boosting

machine (LightGBM) (Ke et al., 2017), and max-relevance and

min-redundancy (mRMR) (Peng et al., 2005), were adopted to

deeply analyze these features. Key features yielded by different

methods were integrated by a comprehensive evaluation method

to obtain most essential features. Their corresponding GO terms

and KEGG pathways, such as cytokine–cytokine receptor

interaction (hsa04060), intrinsic component of membrane

(GO:0031224), and protein-binding biological process (GO:

0005515), were analyzed to uncover their relationships to

PPIs. This study reflected the important and irreplaceable

roles of GO terms and KEGG pathways for PPIs.

2 Materials and methods

2.1 Data acquisition

All human PPIs used in this research were retrieved from

STRING (https://string-db.org/, version 9.1) (Franceschini

et al., 2013). These interactions were obtained through the

following sources: high-throughput experiments, genomic

context, (conserved) co-expression, and previous knowledge.

PPIs with “Experimental” scores greater than zero were

selected, which indicated that these PPIs had been

experimentally confirmed. 309,287 human PPIs involving

16,571 proteins were accessed. However, if all of this PPI

information was adopted, the subsequent calculations would

introduce significant noise due to redundant protein sequences

and unmanifested protein functions. The following screening

processes were performed to create a well-defined PPI dataset:

1) By applying CD-HIT (Fu et al., 2012), similar proteins were

excluded. The similarity of any two remaining proteins was less

than 0.25. 2) Proteins without GO terms or KEGG pathways

were also discarded. After the above filtering process,

6623 proteins and 70,392 pairs of PPIs were retained. These

PPI comprised the positive sample set.

Pairs of proteins without PPIs are also necessary to study

the specific function of PPIs. We randomly selected two

proteins from the 6623 proteins obtained through the above

screening to constitute pairs of PPIs. If the pair did not exist in

the positive sample set, it was treated as a negative sample.

Through random combination, 21,928,753 pairs can be

obtained, including 21,858,361 negative samples and

70,392 positive samples. However, the considerably higher

number of negative samples than that of positive samples
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indicated that the constructed dataset was extremely

imbalanced. Direct analysis of such imbalanced dataset

would produce bias. As the negative samples were 310 times

as many as positive samples, the negative samples were divided

into 310 subsets randomly and equally. Each subset was

combined with the positive sample set to form a balanced

learning dataset. As a result, 310 datasets for subsequent

analysis were created.

2.2 Representation of protein–protein
function associations

GO terms and KEGG pathways are well-known functional

information for deciphering and describing the molecular

functions, cellular components, and biological processes of

proteins or genes (Kanehisa et al., 2012; Gene Ontology

Consortium, 2015). As in our prior study, we used such

functional terms (GO terms and KEGG pathways) of proteins

to generate the representations of PPIs (Yuan et al., 2019; Zhang

et al., 2021). Based on the GO information of a protein p, it can be

encoded as

vGO(p) � [gp
1 , g

p
2 , . . . , g

p
n ]T, (1)

where n is the total number of GO terms (n = 17916 in this

study). gp
i equals 1 if the protein p is annotated by the i -th GO

term. Otherwise, gp
i equals 0. Likewise, p can be encoded as the

following vector using its KEGG pathway information

vkegg(p) � [kp1 , kp2 , . . . , kpm]T, (2)

where gp
i and kpi are also similar in value, and m stands for the

number of pathways (m = 279 in this study). For a PPI, we cannot

simply combine the features of two proteins when generating the

features of PPI because the order information of the PPI should

be excluded. We utilized the following scheme, which has been

employed in some studies (Chen et al., 2013; Ran et al., 2022), to

construct the feature vectors of PPIs. The feature vectors for GO

terms and KEGG pathways of a PPI consisting of p1 and p2 were

constructed by using the following scheme:

VGO(PPI) � vGO(p1) ⊗ vGO(p2)
� [gp1

1 + gp2
1 ,

∣∣∣∣gp1
1 − gp2

1

∣∣∣∣, . . . , gp1
n + gp2

n ,
∣∣∣∣gp1

n − gp2
n

∣∣∣∣]T,
(3)

VKEGG(PPI) � vKEGG(p1) ⊗ vKEGG(p2)
� [kp11 + kp21 ,

∣∣∣∣kp11 − kp21
∣∣∣∣, . . . , kp1m + kp2m ,

∣∣∣∣kp1m − kp2m
∣∣∣∣]T
(4)

By integrating above two feature vectors, we can finally

represent the feature vector of the PPI as follows:

V(PPI) � VGO(PPI) ⊗ VKEGG(PPI) � [ VGO(PPI)
VKEGG(PPI)] (5)

2.3 Feature filtering with boruta

A large number of features were used to describe PPIs by

using GO terms and KEGG pathways. Evidently, lots of features

were unrelated to distinguish positive and negative samples,

which must be filtered to reduce the noise in subsequent

calculations. Here, Boruta was adopted to exclude irrelated

features and retain relevant ones.

Boruta, a wrapper-based feature selection method, uses

random forest as the classifier to filter out a set of features

that are relevant to the target variable (Kursa and Rudnicki,

2010; Zhang et al., 2020; Chen et al., 2021; Ding et al., 2021; Zhou

et al., 2022). It is implemented through the following steps: 1)

The features are randomly shuffled and then stitch together with

the actual feature matrix to form a new feature matrix. 2) The

importance of the shuffled and actual features is obtained by

inputting the new feature matrix into the random forest. 3) The

actual features with importance greater than the maximum

importance of the shuffled features are retained. By iterating

the above steps several times, the important features are

identified by Boruta.

For this study, the Boruta program retrieved from https://

github.com/scikit-learn-contrib/boruta_py was used, which was

executed with its default parameters on each of 310 datasets.

2.4 Feature ranking algorithms

Through Boruta, some relevant features can be screened out.

However, their contributions for distinguishing positive and

negative samples were not same. They should be further

analyzed. Here, we ranked these features in accordance with

their importance by using three efficient feature ranking

algorithms: LASSO (Tibshirani, 1996), LightGBM (Ke et al.,

2017), and mRMR (Peng et al., 2005). These feature ranking

algorithms are briefly described as below.

In 1996, Tibshirani et al. proposed the LASSO algorithm,

which is primarily used to select variables (Tibshirani, 1996). The

LASSO method constructs a regression model by employing a

penalty function with coefficients, each of which corresponds to

one feature. The coefficients of features can be an indicator to

measure the importance of features. Accordingly, features can be

ranked based on their corresponding coefficients. In this study,

the LASSO package collected in Scikit-learn (Pedregosa et al.,

2011) was adopted and applied to all 310 datasets for generating

feature lists. Such obtained lists were called LASSO feature lists in

this study.

LightGBM is a gradient boosting decision tree algorithm that

was proposed by Ke et al., in 2017 (Ke et al., 2017; Ding et al.,

2022). This method consists of multiple decision trees, and the

weights of each tree are considered in the classification. The

importance of a feature is determined by the number of times it is

used in the constructed decision trees. Accordingly, features can

Frontiers in Genetics frontiersin.org03

Yang et al. 10.3389/fgene.2022.1011659

https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1011659


be sorted in a list with the decreasing order of such times. The

present study used the LightGBM program downloaded from

https://lightgbm.readthedocs.io/en/latest/, which was performed

on 310 datasets. For convenience, the lists yielded by LightGBM

were called LightGBM feature lists.

The mRMR algorithm is a heuristic feature selection

method in which the original features are ranked in

accordance with a well-defined scheme (Peng et al., 2005;

Wang et al., 2018; Zhao et al., 2018; Chen et al., 2022). This

scheme considers that the importance of features is determined

by two aspects: relevance to target variable and redundancies to

other features. The feature with high relevance to target variable

and low redundancies to other features should be assigned a

high rank in the final feature list. A loop procedure determines

the rank of all features. In each round, the feature with greatest

difference between its relevance to target variable and

redundancies to already-selected features is selected and

appended to the list. This study adopted the mRMR

program obtained from http://home.penglab.com/proj/

mRMR/. It was executed on each of 310 datasets. The

generated lists were termed as mRMR feature lists.

2.5 Comprehensive evaluation of feature
lists

Given that the negative samples were randomly chosen and

divided into 310 datasets, the features that were selected by

Boruta from 310 datasets were distinctive. Given a certain

feature ranking algorithm described in Section 2.4, 310 feature

lists can be generated, denoted by F1, F2,/F310. Features

occurring in these lists were collected. For one feature f, its

rank in Fi was denoted by Ri(f). In particular, if the list did not

contain this feature. Its rank was denoted by 0. Furthermore,

count the number of lists containing feature f, denoted byN(f).
The importance of feature f was measured by the following

importance score

Importance score (f) � M(f)
W(f), (6)

where M(f) was the mean ranks of f, calculated by

M(f) � ∑310
i�1Ri(f)/N(f), and W(f) represented the

weight of f, defined as N(f) /310. The numerator in Eq. 6

considered the evaluation results yielded by the feature

ranking algorithm on different datasets, whereas the

denominator further considered the evaluation results of

Boruta on different datasets. Generally, a high weight,

i.e., the feature was selected by Boruta on many datasets,

suggested the feature was important. In this case, the penalty,

the reciprocal of weight, on the mean rank was small. Thus,

the smaller the importance score, the more important the

feature. All features were ranked in terms of the increasing

order of their importance scores. Under such operation,

310 feature lists were integrated into one feature list.

As three feature ranking algorithms were used, three

integrated feature lists can be obtained. Top 100 features in

each integrated list were picked up. The features that ranked high

in all three feature lists were most relevant to PPIs, which were

valuable for giving detailed analysis.

3 Results

This study utilized advanced machine learning methods to

investigate relevant functional terms of PPIs. The whole analysis

process is illustrated Figure 1. The results generated in each step

are then described in detail.

3.1 Results of boruta

Our data included 21,928,753 pairs of 6,623 proteins, where

70,392 were positive samples and rest 21,858,361 were negative

samples. Negative samples were divided into 310 parts, thereby

constructing 310 datasets. PPIs in each dataset were represented

by 17,916 features for GO terms and 279 features for KEGG

pathways. For each dataset, all features were analyzed by Boruta.

Relevant features were selected. Figure 2 shows the number of

selected features from each dataset. The number of selected

features ranged from 3200 to 3600 with the median of 3423.

The majority of datasets selected 3350–3500 features, suggesting

that these numbers did not differ considerably. The detailed

features selected from each dataset can be found in

Supplementary Table S1. Furthermore, we obtained

5684 different features by combining the selected features

derived from 310 datasets, which are provided in

Supplementary Table S2. Among these 5684 features,

226 features were about KEGG pathways, whereas

5458 features were about GO terms. These features were used

in the subsequent comprehensive assessment.

3.2 Results of feature ranking and
comprehensive evaluation

Several features were selected by Boruta on each dataset.

These features were further analyzed by each feature ranking

algorithm, resulting in one feature list. Accordingly, each

feature ranking algorithm generated 310 feature lists, which

were further integrated into one feature list by comprehensive

evaluation method described in Section 2.5. Each of 5684

features was assigned an importance score, which is listed in

Supplementary Table S3. The integrated feature list was

generated according to above score, which is also provided

in Supplementary Table S3.
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From each integrated feature list, top 100 features were

picked up for further analysis. The distribution of

100 features selected from each integrated list on GO

terms and KEGG pathways is provided in Figure 3. It can

be observed that features for GO terms were more than those

for KEGG pathways regardless of the feature ranking

algorithms. However, the quantities were not same. LASSO

identified much less features for GO terms than other two

methods. By using multiple algorithms, some common

functional terms can be discovered and exclusive terms

can be mined by a special algorithm. Comprehensive

analysis of functional terms identified by three algorithms

FIGURE 1
Flow chart of thewhole analytical process. A total of 21,928,753 pairs of PPIs acquired from the STRING database are divided into 70,392 positive
samples and 21,858,361 negative samples. The negative samples are randomly and equally divided into 310 subsets, yielding 310 datasets. Each
dataset is characterized by using GO terms and KEGG pathways. Subsequently, the features in each dataset are filtered and ranked by using Boruta,
LASSO, LightGBM, and mRMR. Finally, the features in 310 datasets are comprehensively evaluated. The intersection of the last three ranked
feature lists are taken to obtain essential functional terms that may be highly relevant to the PPI.

Frontiers in Genetics frontiersin.org05

Yang et al. 10.3389/fgene.2022.1011659

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1011659


can make the result more complete. In view of this, the

intersection operation was performed on the above three

feature subsets selected from the integrated feature lists. A

Venn diagram was plotted to show the intersections, as

illustrated in Figure 4. The detailed features contained in

three, two or one subsets are provided in Supplementary

Table S4. Eight features occurred in three subsets, which are

listed in Table 1. These features were identified and ranked

high by all three feature ranking algorithms, indicating they

may provide essential contributions for distinguishing

positive and negative samples. At the same time, their

corresponding GO terms and KEGG pathways can be used

to depict PPIs. Furthermore, 50 features were highly ranked

by two algorithms, i.e., they contained in two feature subsets.

They may also important for uncovering the essential

differences between PPIs and general protein pairs. As for

the features contained in one subset, i.e., they were identified

by one feature ranking algorithm, they can supplement some

exclusive differences between PPIs and general protein pairs,

which cannot be uncovered by other algorithms. In Section 4,

GO terms and KEGG pathways corresponding to some above

features would be discussed.

4 Discussion

By using the three feature ranking algorithms of LASSO,

LightGBM, and mRMR, we identified some essential biological

functional terms that were deemed to be associated with PPIs.

We discussed some PPI-associated functional terms identified

by using three, two or one algorithms, which are listed in

Table 2.

4.1 Key features found by all three feature
ranking algorithms

Eight biological functional terms were shown to be

associated with the PPIs, which were identified by all three

algorithms. The first GO term was intrinsic component of

FIGURE 2
Violin plot of the number of features selected by Boruta on
310 datasets. The numbers of selected features vary from 3200 to
3600, and 3350–3500 features are selected in majority datasets
(~88.06%). This result indicates that the numbers of selected
features are not considerably difference despite the different
negative samples in different datasets.

FIGURE 3
Distribution of top 100 features identified by each feature ranking algorithm on gene ontology (GO) terms and KEGG pathways. The identified
features for GO terms are more than those for KEGG pathways.
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membrane (GO:0031224). This term contained multiple

functional protein complexes, including anchored

component of membrane with PPIs between gp130 and IL-

6/IL-6R complex (Narazaki et al., 1993). The linkage of

multiple functional PPIs, such as predicted cellular

component, to the intrinsic component of membrane

validated the efficacy and accuracy of our analysis.

Another identified PPI-associated functional term was

cytokine–cytokine receptor interaction (hsa04060) (Dey

et al., 2009), which describes the interaction between

membrane-based receptors and soluble cytokines.

Considering that cytokines, such as the IL-2, IL-1 and IL-

17 family, are small effective soluble proteins, the interactions

between cytokines and their respective matched receptors are

functional PPIs.

4.2 Key features found by any two feature
ranking algorithms

Fifty features were identified by exact two algorithms,

which involved 48 biological functional terms. The first

predicted GO term was a general description of the

protein-binding biological process (GO:0005515). The

next predicted biological function was the cell cycle

(hsa04110). Recent publications have shown that cell cycle

biological processes involve multiple PPIs. The establishment

of PPI networks for the cell cycle in Saccharomyces cerevisiae

early in 2012 confirmed that the cell cycle involves multiple

PPIs (Alberghina et al., 2012; Lu et al., 2020). Further studies

on human beings and other eukaryotic creatures also

validated the role of such identified PPIs in human beings.

These PPIs included interactions between TP53 and MDM2

(Lu et al., 2020) and interactions among PDK1, AKT, and the

mTOR complex (Pennington et al., 2018). Therefore, the cell

cycle is an effective biological process that involves multiple

functional PPIs across different eukaryotic species.

4.3 Key features found by one of the
feature ranking algorithms

Although the remaining 176 features were identified by

only one algorithm, some of them may also be important.

These features were about 149 functional terms. GO:0043232

describes intracellular nonmembrane-bound organelle. Few

PPIs have been observed to be associated with intracellular

nonmembrane-bound organelles. Fewer PPIs may be related

to nonmembrane bound organelles than to intracellular

membrane-based subcellular structures because biological

FIGURE 4
Venn diagram of top 100 features in three integrated feature
lists obtained by mRMR, LightGBM, and LASSO methods. The
overlapping circles indicate the features that are identified by
different ranking algorithms. Eight features are identified and
ranked highly by all three feature ranking algorithms.

TABLE 1 Eight features with high ranks yielded by all three feature ranking algorithms.

Feature Description Group

abs (GO:0031224_1-GO:0031224_2) Intrinsic component of membrane Cellular Component

abs (GO:0044425_1-GO:0044425_2) Obsolete membrane part Cellular Component

abs (GO:0005615_1-GO:0005615_2) Extracellular space Cellular Component

abs (hsa04060_1-hsa04060_2) Cytokine-cytokine receptor interaction KEGG pathway

abs (GO:0071944_1-GO:0071944_2) Cell periphery Cellular Component

abs (GO:0007186_1-GO:0007186_2) G protein-coupled receptor Signaling pathway Biological Process

abs (hsa04514_1-hsa04514_2) Cell adhesion molecules KEGG pathway

hsa04060_1 + hsa04060_2 Cytokine-cytokine receptor interaction KEGG pathway
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processes generally involve PPIs, such as cell signaling,

immune recognition, and exosome intake, that all depend

on biomembrane systems. Therefore, although some pieces of

experimental evidence imply that intracellular

nonmembrane-bound organelles also involve some PPIs,

such as interactions between peptide synthetase and

related synthesized proteins (Jaremko et al., 2020).

All in all, as we have discussed above, the biological

functional terms predicted by multiple machine learning

algorithms have all been confirmed by recent publications

with solid experimental support. Therefore, our analyses

validated that machine learning algorithms are effective

tools for exploring the potential biological functions of

PPIs. The application of multiple machine learning

algorithms simultaneously may help recognize additional

potential PPI-associated functions, thus providing a novel

workflow for identifying the biological significance of PPIs.

5 Conclusion

In this research, an integrated feature selection method on GO

terms and KEGG pathways was established to distinguish significant

PPIs. First, Boruta was applied to obtain a set of features that were

highly correlated with PPI functions. Three efficient feature ranking

algorithms, namely, LASSO, LightGBM, and mRMR, were adopted

to rank the filtered features. The intersection of the top-ranked

features in three different feature ranking lists was performed to

extractmost essential GO terms andKEGGpathways. Some essential

PPI-associated functional terms, including cytokine–cytokine

receptor interaction, intrinsic component of membrane, and

protein-binding biological process, were identified. Furthermore,

the functional terms mined in our study were analyzed by

reviewing the literature.
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