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Abstract

Regulation of the PI-3 kinase (PI3K)/Akt signalling pathway is essential for maintaining the integrity of fundamental
cellular processes, cell growth, survival, death and metabolism, and dysregulation of this pathway is implicated in
the development and progression of cancers. Receptor tyrosine kinases (RTKs) are major upstream regulators of
PI3K/Akt signalling. The phosphatase and tensin homologue (PTEN), a well characterised tumour suppressor, is a
prime antagonist of PI3K and therefore a negative regulator of this pathway. Loss or inactivation of PTEN, which
occurs in many tumour types, leads to overactivation of RTK/PI3K/Akt signalling driving tumourigenesis. Cellular
PTEN levels are tightly regulated by a number of transcriptional, post-transcriptional and post-translational
regulatory mechanisms. Of particular interest, transcription of the PTEN pseudogene, PTENP1, produces sense
and antisense transcripts that exhibit post-transcriptional and transcriptional modulation of PTEN expression
respectively. These additional levels of regulatory complexity governing PTEN expression add to the overall
intricacies of the regulation of RTK/PI-3 K/Akt signalling. This review will discuss the regulation of oncogenic
PI3K signalling by PTEN (the regulator) with a focus on the modulatory effects of the sense and antisense
transcripts of PTENP1 on PTEN expression, and will further explore the potential for new therapeutic opportunities in
cancer treatment.
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Background
The phosphatase and tensin homologue (PTEN) is
essential for normal cell maintenance and is well charac-
terised as a key tumour suppressor [1]. PTEN is pivotal
in the regulation of the receptor tyrosine kinase (RTK)
PI-3 kinase (PI3K)/Akt signalling pathway and, as such,
even small changes in PTEN expression have been
shown to have major consequences for normal cellular
function [2–5]. The PTEN protein translocates between
the nucleus and the cytoplasm enabling PTEN-specific
compartmentalised functions [6, 7]. At the molecular
level, PTEN expression and cellular abundance is tightly
regulated at the transcriptional, post-translational and

post-transcriptional levels. In recent years, there has
been much interest in the PTEN pseudogene (PTENP1)
as a novel negative and positive modulator of PTEN
expression.
The PI3K/Akt pathway is activated subsequent to

RTK activation. Hyperactivation of PI3K/Akt signalling
has been reported in many types of human cancers,
thus targeting the regulators in this pathway has
attractive therapeutic potential. As such, a large num-
ber RTKs and PI3K candidates are under development
and a few are now being used successfully in cancer
patient treatments. Nevertheless, adverse side effects
and therapeutic resistance to RTK/PI3K inhibition re-
mains problematic.
This review provides an overview of PTEN as a major

regulator of RTK//PI3K/Akt activation and, in turn,
discusses the regulation of PTEN by well characterised
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mechanisms, and more recently, by a novel mechanism
involving regulation of PTEN by its pseudogene (PTENP1).
The clinical importance of PTEN inactivation in can-

cer and other diseases and the therapeutic potential of
PTEN and PTENP1 modulation of the RKT/PI3K/Akt is
discussed.

PTEN sequence and structure
The PTEN gene is encoded in 9 exons and has a 1212
nucleotide (nt) open reading frame. The gene encodes a
polypeptide of 403 amino acids with a relative molecular
mass of 47 kDa [8–12]. The PTEN protein consists of
two major domains, the N-terminal phosphatase cata-
lytic domain (residues 7–185) and a C-terminal domain
(residues 186–351) [13–15] (Fig. 1). These two domains
together form a minimal catalytic unit and comprise
almost the entire protein, excluding only a very short N-
terminal tail. The N-terminal phosphatase domain of
PTEN contains a consensus PI (4,5) P2-binding motif.
The C-terminal domain of PTEN contains the lipid
binding C2 domain which confers affinity for phospho-
lipid membranes in vitro. The C2 domain is believed to
be required for the correct positioning of PTEN at the
plasma membrane, the site of the lipid substrates of
PTEN [13, 16–18]. The C-terminal tail of PTEN, con-
sisting of the last 50 amino acids, also contains several
phosphorylation sites that are critical for protein stabil-
ity. Protein stability is dependent on the phosphorylation
of S380, T382, and T383. Mutations within these sites
reduce both the protein half-life and PTEN phosphatase
activity [19]. Phosphorylation-defective mutants of
PTEN have decreased protein stability and dephosphory-
lated PTEN is degraded by proteasome-mediated mech-
anisms [20, 21].

PTEN cellular function and regulation of PTEN nuclear-
cytoplasmic transport
Subcellular localisation of PTEN is crucial for its normal
cellular function and its role as a tumour suppressor.
PTEN translocates between the cytoplasm and nucleus
of the cell and is known to have specific functions in
both cellular compartments [6]. In the cytoplasm, PTEN
interacts with its cytoplasmic targets to regulate cell pro-
liferation, cell cycle progression, apoptosis, cell adhesion,
migration and invasion. In the nucleus, PTEN plays a
role in maintaining chromosomal stability and in DNA
double strand break repair [6, 22], hence maintaining
genome integrity. The mechanism(s) by which PTEN
can translocate between the nucleus and cytoplasm of
cells has not been completely characterised as PTEN
does not appear to contain a traditional or consensus
nuclear localisation signal (NLS), although putative
NLS-like sequences have been identified [7].
The tumour suppressive role of cytoplasmic PTEN is

through antagonism of PI3K/Akt signalling and the role
of nuclear PTEN is to maintain chromosomal integrity
and centromere stability. Mislocalisation of PTEN
between the nucleus and the cytoplasm may lead to
malignant growth, thus, the subcellular localisation of
PTEN is closely regulated and several regulatory mecha-
nisms have been identified. PTEN lacks a typical NLS,
and monoubiquitination, active transport and passive
diffusion has been identified as transport mechanisms
for PTEN [23]. Monoubiquitination, catalysed by the
ubiquitin-protein ligase, developmental downregulated-
4-1 (NEDD4–1), enhances PTEN transport to the
nucleus [24]. Nuclear pores are large enough to allow
proteins of less than 60 kDa to pass through [25], thus
making PTEN a perfect candidate for passage through
the nuclear pore by diffusion. Ran (Ras-related nuclear

Fig. 1 PTEN protein structure and sites of post-translational modification. PTEN is composed of 403 amino acids and is characterised by five
functional domains: a phosphatidylinositol-4,5-bisphosphate (PIP2)-binding domain (PBD), a phosphatase domain containing the catalytic core, a
C2 domain with putative ubiquitination sites, two PEST (proline, glutamic acid, serine, threonine) domains for degradation, and a PDZ interaction
motif for protein-protein interactions. Post-translational regulation of PTEN occurs by ubiquitination (Ub) of Lys residues within the PBD and C2
domain, by oxidation, SUMOylation within the C2 domain, and acetylation on protein tyrosine phosphatase (PTPase) and PDZ-binding sites.
Furthermore, PTEN is regulated by phosphorylation of specific serine and threonine residues within the C2 domain and C-tail terminal of PTEN
(Modified from [14, 15])
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protein) GTPase is able to actively transport PTEN into
the nucleus [26]. A cytoplasmic localisation signal has
been identified in the N-terminal domain of PTEN,
spanning residues 19–25. Mutations in these residues
(except residue 22) appear to increase nuclear localisa-
tion of PTEN, however the mechanism is not known
[27]. Furthermore, mutations occurring at PTEN
phosphorylation sites also appear to alter its nuclear-
cytoplasmic localisation [26]. The stage of the cell cycle
can also modulate the subcellular localisation of PTEN
and the nuclear-cytoplasmic partitioning of PTEN can
differentially regulate cell cycle progression and
apoptosis [28]. The cell cycle dependent PTEN
localisation can be regulated by Ca2+ mediated inter-
action with the major vault protein (MVP) [29]. Bipartite
nuclear localisation sequences in PTEN are required for
MVP mediated nuclear import and four such bipartite
NLS have been identified and are responsible for MVP
interaction [28].

Regulation of PTEN abundance and activity
Since PTEN is involved in, and plays a central role in
many cellular processes, the level of PTEN is tightly reg-
ulated by a number of cellular mechanisms which act at
the transcriptional, post-transcriptional and post-
translational levels and, as mentioned, small decreases in
PTEN abundance or activity, may lead to tumourigenesis
[2–5]. These regulatory mechanisms maintain the activ-
ity and abundance of PTEN at the required level under
normal physiological conditions [30]. There are a num-
ber of well-established and documented regulatory
mechanisms acting to modulate PTEN gene expression
and protein abundance, stability and activity. However,
more recently, PTEN regulation by the processed
pseudogene of PTEN (PTENP1) is gaining much interest
as an added level of complexity to the stringent regula-
tion of PTEN expression.
In this section, we provide an overview of the well

documented mechanisms of PTEN regulation, discuss
the more recently defined mechanisms of PTEN regula-
tion by small non-coding RNAs, microRNAs (miRNAs)
and the exciting emerging field of pseudogene long non-
coding RNAs (lncRNA). Importantly, we describe how
the web of interactions between PTEN, PTEN-targeting
miRNAs and the sense and antisense transcripts of the
PTEN pseudogene, PTENP1, regulate RTK-dependent
PI3K/Akt signalling [31–33].

Transcriptional regulation of PTEN
A number of transcription factors bind directly to the
PTEN promoter to either activate or repress PTEN tran-
scription. Such factors include the early growth response
transcriptional factor 1 (EGR1), peroxisome proliferator-
activated receptor gamma (PPARγ), [34, 35], activating

transcription factor 2 (ATF2) [36] and the tumour sup-
pressor, p53 [37]. p53 and PTEN share regulatory inter-
actors and regulate each other in a feedback loop
mechanism [38]. p53 upregulates PTEN transcription by
binding to the functional p53 binding element upstream
of the PTEN promoter [39]. PTEN is transcriptionally
repressed by the zinc finger-like proteins SNAIL and
SLUG, which are transcription factors competing with
p53 for the PTEN promoter binding region [40]. Other
transcription factors such as the polycomb group pro-
tein, CBF-1 and c-Jun, nuclear factor kappa-B and the
antisense transcript of the PTEN pseudogene (PTEN-
P1(AS)), also bind to the PTEN promoter and negatively
regulate PTEN transcription [2, 15, 41, 42].

Post-transcriptional regulation of PTEN by miRNA
Recent advances in genomic technology have revolutio-
nised the way we view cellular regulation, providing a
greater appreciation and understanding of the complex-
ity of non-coding genes and non-coding gene func-
tion(s). Once regarded as junk DNA, these non-coding
genes have been shown to be critical in gene regulation
and to play important roles in disease development and
control. PTEN is regulated at the post-transcriptional
level by miRNAs which are comprised of small ncRNAs
approximately 14–24 nt in length [31]. These ncRNAs
bind to their target messenger RNA (mRNA) at seed re-
gions, known as miRNA recognition elements [43, 44],
which are located within the 3’untranslated region
(UTR) of the specific target mRNAs [45, 46]. Recent
studies have revealed miRNA binding sites are also
present in the coding regions, the 5’UTR region and
even the promoter region of target mRNAs [46–48].
miRNA function is dependent on binding affinity with
the target mRNA, therefore, binding of miRNAs can
either lead to degradation of target through perfect
complementary binding or inhibition of translation
through imperfect binding [49, 50]. PTEN is known to
be post-transcriptionally regulated by miRNAs binding
within its 3’UTR, which results in blockage of transla-
tion, and a consequent decrease in PTEN abundance
[51]. miRNAs commonly known to bind to, and repress
PTEN include miR-17, miR-19, miR-21, miR-26, and
miR-214 [32, 52, 53]. MiRNAs have been shown to pos-
sess functional roles in cancer development and progres-
sion [54], and a variety of oncogenic miRNAs
(oncomirs) have recently been shown to bind specifically
to PTEN transcripts, blocking PTEN translation, and to
be cancer-type dependent. Overexpressing PTEN-
specific miRNAs has the potential to enhance cancer
progression, and specific PTEN-targeting oncomirs have
been linked to hepatocellular carcinomas, prostate
cancer, clear-cell renal carcinoma, breast cancer and
endometrial cancer (Table 1). In 2010, a processed
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pseudogene of PTEN (PTENP1) was found to be tran-
scribed to produce a transcript with high sequence simi-
larity with the PTEN transcript. Further, this pseudogene
transcript was ascribed a novel function by acting as a
‘decoy’ for miRNA binding of PTEN-targeting miRNAs,
as discussed in more detail below [32].

Pseudogenes and post-transcriptional regulation of PTEN
by its pseudogene, PTENP1
The post-transcriptional regulation of PTEN by PTENP1
is a novel mechanism and sets a paradigm for regulation
of cognate genes by their pseudogenes. This regulatory
mechanism may provide new targets for cancer therapy
or novel designs for cancer therapeutics.

Pseudogenes Knowledge of pseudogenes has existed for
many years but their importance as post-transcriptional
regulators of gene expression has only been recognised
in recent years [55]. Since their initial identification,
pseudogenes have been described in a wide range of
species from bacteria [56], insects [57], plants [58] and
animals [53]. Approximately 50% of transcribed pseudo-
genes in multicellular organisms exhibit evolutionarily
conserved sequences across species, strongly suggesting
a functional role for pseudogenes in humans and other
organisms [59]. Pseudogenes are generally labelled as
non-functional relatives of active genes that, over time,
have lost their protein-coding ability, but share high
sequence similarity with their cognate protein-coding
genes. Despite the high sequence similarity, pseudogenes
often contain nucleotide changes which prevent their
translation to functional proteins. In the genome, pseu-
dogenes are classified as either unitary pseudogenes,
non-processed pseudogenes or processed pseudogenes.
Unitary pseudogenes are those originating from native
functional genes but which have lost their function due
to mutations. Non-processed pseudogenes are a conse-
quence of gene duplication while processed pseudogenes
exist as an outcome of retrotransposition of mRNA tran-
scripts [60, 61] (Fig. 2). Pseudogenes have generally been
labelled as “junk” DNA as they are non-protein-coding
sequences and their function, until recently, has been a
mystery. Almost exact copies of their cognate genes,

pseudogenes often harbour premature stop codons,
deletions/insertions and frameshift mutations that cause
their translation to non-functional proteins [62]. Because
pseudogenes have lost the ability to produce full-length
proteins, for many years, the assumption has been that
they are non-functional, redundant, and evolutionary
gene failures [63]. Whilst it has also been hypothesised
for some time that antisense pseudogenes may bind to
the sense parent gene transcript to regulate gene
expression [64]. Although many pseudogenes are not
transcribed due to inactive promoters, or their
integration into silent regions of the genome, important
roles have recently been highlighted through the
discovery that some pseudogenes have the potential to
regulate their protein-coding counterparts [32, 33, 61,
65]. Importantly, pseudogenes have recently been
identified as modulators of disease processes, especially
cancer [54, 66].
Pseudogenes are categorised as members of the

LncRNA family, however some pseudogene transcripts
have been shown to be processed into short interfering
RNAs thereby regulating the coding genes through RNAi
signalling [67]. As non-coding RNAs, pseudogenes offer
an attractive control mechanism for gene regulation.
The PTENP1 pseudogene is evolutionarily conserved

over many species, although the phylogenetic evolution-
ary history is complex (reviewed in [53]). During evolu-
tion, formation of the PTEN/PTENP1 gene families
occurred through multiple gene duplication events. The
human PTENP1 or ψPTEN is a processed pseudogene
of PTEN located on chromosome 9p13.3. This pseudo-
gene possesses extensive sequence identity to PTEN with
only 18 nucleotide mismatches within the coding region
[60, 68]. Sequence similarity between the 3′ untranslated
regions (UTR) of PTEN and PTENP1 can be considered
as occurring in two regions, the 5′ region with 95%
sequence identity and the 3′ region with < 50% sequence
identity [32]. Expression of PTENP1 leads to the produc-
tion of three transcripts, two of which are antisense to
PTEN (PTENP1 sense and antisense transcripts). One
antisense transcript acts through binding chromatin
remodelling complexes which alter H3K27me3 preva-
lence at the PTEN parental gene promoter [69]. The
other antisense transcript is needed to stabilise the
PTENP1 sense transcript, which lacks a poly-A tail.

The PTENP1 sense transcript acts as a ‘sponge’ to
mop up PTEN-targeting microRNAs Many pseudo-
genes, while not being able to produce a functional
protein are transcribed and act at the RNA level to
regulate their coding counterparts, in part, by acting
as decoys for microRNA binding [67]. Some pseudo-
genes display a tissue-specific pattern of action, and
in their role as microRNA decoys, have the potential

Table 1 PTEN-targeting miRNAs identified in various cancer types

Cancer microRNAs (miRNA, mIR) References

Prostate miR-17, miR-19, miR-21, miR-26
and miR-214

[32]

Hepatocellular miR-17, miR-19b and miR-20a [148]

Clear-cell renal miR-21 [145]

Glioma miR152 [152]

Breast miR-106b and miR-93 [153]

Endometrial miR-200a, miR-200b and miR-200C [70, 127]
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capacity to regulate oncogenes and tumour suppressor
genes with tissue specificity (reviewed in [70]). Expression
of the PTENP1 sense transcript is positively correlated
with PTEN cellular abundance, consistent with a mechan-
ism whereby the sense pseudogene transcript acts as a
‘sponge’ or ‘decoy’ for microRNAs that would otherwise
bind the PTEN transcript and deactivate it (Fig. 3) [32].
Most interestingly, the 3’UTR sequences of PTEN and

PTENP1 share common microRNA binding sites.
PTENP1 was one of the first pseudogenes reported to be
transcribed as a lncRNA and reported to function as
‘sponge’, or ‘decoy’, for miRNA binding to liberate PTEN
from miRNA repression, hence restoring PTEN function
[32]. Through binding of PTEN-targeting miRNAs,
PTENP1 sense ultimately reduces the cellular concentra-
tion of these specific miRNAs. The PTEN/PTENP1

Fig. 2 Pseudogene types shown to occur in the human genome. a Unitary pseudogenes are once functional gene sequences that have lost
gene function due to the accumulation of mutations over time. b Non-processed pseudogenes are the result of direct duplication of existing
genes, after which the duplicated version becomes inactivated due to the accumulation of mutations in sequences essential for gene expression.
c Processed pseudogenes are the result of retrotransposition events. In this case, the mature mRNA transcript of a gene is reverse transcribed into
a cDNA copy, which is then integrated into the genome of the organism. The site of integration of pseudogenes is random (Adapted from [61])

Fig. 3 Regulation of PTEN by the sense and antisense transcripts of its processed pseudogene PTENP1: regulating the regulator of PI3K signalling.
PTENP1 is transcribed into a sense and 2 antisense transcripts (a and b). In the cytoplasm, the sense transcript (PTENP1(S)) acts as competing endogenous
RNA, competing with PTEN for the binding of PTEN-targeting miRNAs and thus freeing PTEN from miRNA-mediated repression and increasing
PTEN cellular abundance. Of the 2 antisense PTENP1 transcripts, PTENP1(AS)α and PTENP1(AS)β produced, PTENP1(AS)α acts in the nucleus to
negatively regulate PTEN transcription by recruiting chromatin-repressor proteins, the Enhancer of Zeste Homolog 2 and DNA methyltransferase 3a
(EZH2) and DNA methyltransferase 3a (DNMT3a) to the PTEN promoter. Conversely, also in the cytoplasm, PTENP1(AS)β acts to stabilise the PTENP1(S)
transcript through RNA-RNA interactions, as this the sense transcript lacks a poly(A) tail, and hence reinforces the miRNA ‘sponging’ activity of PTENP1(S)
(modified from [42])
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regulatory cycle is supported by experiments in which
knockdown of PTENP1 results in decreased PTEN mRNA
and protein levels [33].
Given that PTEN is a tumour suppressor gene, the

PTENP1 pseudogene has been described as a tumour
suppressor lncRNA pseudogene. Through its binding of
PTEN-targeting miRNAs (Table 1), PTENP1 protects
PTEN from miRNA binding and inhibition of PTEN
translation [32]. Thus, PTENP1 acts as a repressor
(molecular sponge) of the repressors (miRNAs) of
PTEN function, and, in turn, regulates the regulator
(PTEN) downstream of the RTK-dependent PI3K/Akt
signalling pathway. These counteracting mechanisms
illustrate the importance and complexity of the
PTENP1 pseudogene as a lncRNA-mediator or regula-
tor of PTEN expression and function.

Post-translational regulation of PTEN
A number of post-translational mechanisms regulate
PTEN activity and stability (half-life) and these include
phosphorylation, oxidation, acetylation, ubiquitination
and SUMOylation (Fig. 4).

Phosphorylation PTEN catalytic activity may be modu-
lated by phosphorylation of specific sites in the C2 and
C-tail domains. Phosphorylation of particular serine and
threonine residues (Ser380, Thr382, Thr383 and Ser385)
in the C-terminal tail of PTEN, catalysed by the action

of casein kinase 2 and glycogen synthase kinase 3ß [71],
results in decreased phosphatase activity. The decreased
phosphatase activity is associated with greater protein
stability, or protein half-life, as a consequence of the
generation of a closed-conformation through interaction
of the C-terminal tail with the C2 domain [20]. Dephos-
phorylation results in a catalytically active open-
conformation, but with decreased PTEN stability and
cellular half-life [1, 2, 72].

Oxidation PTEN oxidation by H2O2 facilitates disulphide
bond formation between the catalytic Cys124 and Cys71
residues, resulting in a conformational change which alters
the PTEN substrate binding site and leads to loss of PTEN
phosphatase activity. PTEN oxidation is reversible through
the action of thiol compounds, such as thioredoxin [73],
and through PTEN interacting with peroxiredoxin-1 to pre-
vent disulphide bond formation [74].

Acetylation In response to growth factor stimulation,
lysine acetyltransferase 2B (KAT2B), also known as PCAF,
acetylates PTEN on lysine residues 125 and 128, which
are located within the catalytic site of PTEN, and this
results in the inactivation of PTEN phosphatase activity
and the stimulation of PI3K signalling [75]. Another
PTEN acetylation site is located in the PTEN PDZ-
binding domain at Lys 402, which is driven by the CREB-
binding protein. Acetylation of Lys 402 results in the

Fig. 4 Regulation of PTEN, a major regulator of the PI3K/AKT signalling pathway. Growth factors bind receptor tyrosine kinases (RTKs) on the
extracellular cell membrane, which leads to the recruitment and binding of PI3K (directly or through adaptor proteins) to its cytoplasmic domain
through its regulatory subunit (P85). Activated PI3K phosphorylates of PI(4,5)P2 to PI(3,4,5)P3, which occurs through its catalytic subunit (P110).
The serine/threonine kinases Akt and PDK1 are recruited to the membrane after binding to the pleckstrin homology (PH) domain of PI(3,4,5)P3.
PDK1 and mTORC2 phosphorylate and activate Akt, which phosphorylates a number of downstream protein targets with the overall effect of
enhancing cell proliferation, metabolism and survival whilst inhibiting apoptosis. PTEN is a major negative regulator of PI3K/Akt signalling through
its phosphoinositide phosphatase activity which acts to directly antagonise Pi3K activity by dephosphorylating PI(3,4,5)P3 to PI(4,5)P2. PTEN
abundance and activity is highly regulated through various complementary mechanisms working at the transcriptional, post-transcriptional and
post-translational levels (modified from [14])
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negative regulation of PTEN activity [76]. Acetylation of
PTEN may be reversed by the action of sirtuin 1, which
restores the phosphatase activity of PTEN [77, 78].

Ubiquitination Ubiquitination is a post-translational
regulatory mechanism influencing the degradation [24]
and compartmentalisation of PTEN [79]. The C-
terminal tail and C2 domains of PTEN interact with
each other to form a loop, which contains a major ubi-
quitination site (Lys 289). PTEN can be ubiquitinated by
neural precursor cell expressing NEDD4–1 [79]. Polyu-
biquitination of PTEN results in decreased protein sta-
bility leading to PTEN degradation by proteasome
mediated decay mechanisms [24], whereas monoubiqui-
tination of PTEN on Lys13 and Lys289 promotes the
nuclear transport of PTEN [24, 80].

SUMOylation The attachment of small ubiquitin-
related modifiers (SUMO) to proteins is also a post-
translational regulatory mechanism of PTEN [81].
SUMOylation of PTEN on Lys266 facilitates the recruit-
ment of PTEN to the plasma membrane [82], whereas,
SUMOylation of PTEN on Lys254 partakes in control-
ling the nuclear localisation of PTEN [83]. SUMO pro-
teins are related to ubiquitin [81]. SUMOylation of the
Lys289 residue, a major monoubiquitination site for
PTEN, results in PTEN nuclear localisation [24, 80].
Conversely, SUMOylation at Lys289 results in the
recruitment of PTEN to the plasma membrane, implicat-
ing a possible competitive action for the modification of
Lys293 [15, 81].

The RTK/PI3K/Akt Signalling pathway and
regulation by PTEN
RTKs are a family of transmembrane proteins with
inherent phosphotyrosine kinase activity which remain
inactive in the plasma membrane until activated by
ligand. The RTK family consists of a number of sub-
families, including the epidermal growth factor receptors
(EGFRs), platelet derived growth factor receptors
(PDGFRs), fibroblast growth factor receptors (FGFRs),
vascular endothelial growth factor receptors (VEGFRs),
insulin growth factor receptors (IGFRs), and hepatocyte
growth factor receptors (HGFRs) [84–86]. Activation of
the RTKs by their cognate growth factors, cytokines,
hormones or other extracellular signalling molecules,
triggers the activation of the PI3K signalling pathway.
Tight regulation of cell proliferation by RTKs and their
ligands is critical in cancer prevention [87].
The Class IA PI3Ks are heterodimeric enzymes con-

sisting of a p110α /β /δ catalytic subunit and a p85 regu-
latory subunit and are directly activated by RTKs such
as the insulin receptor (IR) and insulin-like growth fac-
tor receptor 1 (IGF-IR) [88, 89]. Class IB PI3K

heterodimers consist of a p110γ catalytic subunit and a
p101 regulatory subunit and are activated downstream
of G-protein-coupled receptors (GPCRs). Class IA and
IB PI3Ks are activated upon extracellular stimulation of
RTKs or GPCRs, and, once activated, phosphorylate the
D3-position of the inositol ring of phosphatidylinositol
4,5-bisphosphate (PtdIns(4,5)P2) to generate phos-
phatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3) at
the plasma membrane. Both PtdIns(3,4,5)P3 and
PtdIns(3,4)P2 facilitate the recruitment of pleckstrin
homology-domain containing proteins, such as the
serine/threonine kinase Akt [3–5], to the plasma
membrane. Upon phosphoinositide binding, Akt is
phosphorylated at Threonine-308 (Thr308) by
phosphoinositide-dependent kinase 1 (PDK1) and at
Serine-473 (Ser473) by the mammalian target of rapamy-
cin complex 2 (mTORC2), leading to activation of its
kinase activity and the subsequent phosphorylation of a
number of target protein [90, 91].
PTEN is a well characterised negative regulator of

PI3K-dependent Akt signalling. As a phosphoinositide
phosphatase, PTEN acts as a direct antagonist of PI3K
action through dephosphorylation of PtdIns(3,4,5)P3 at
the D3-position of the inositol ring to form PtdIns(4,5)P2
[92–94]. Loss of PTEN, which occurs in many tumours,
drives PI3K/Akt hyperactivation. The phosphoprotein
phosphatase activity of PTEN has been linked to cancer
signalling through dephosphorylation of protein targets
such as focal adhesion kinase (FAK), insulin receptor
substrate 1, c-SRC or PTEN itself [12, 95–97]. However,
it is well established that, of the two activities of PTEN,
it is the phosphoinositide phosphatase activity that plays
the major tumour suppressor role [11, 98]. Of most im-
portance, Akt hyperactivation resulting from the loss of
PTEN lipid phosphatase function is the foremost onco-
genic driving force in PTEN-deficient cancers. The pro-
tein phosphatase activity of PTEN is thought to be most
important in the regulation of cell adhesion, cell migra-
tion, tumour metastasis and angiogenesis [99, 100]. Due
to its importance in maintaining normal physiological
functions in the cell, tight regulation of PTEN abundance
and activity is essential for balancing cellular homeostasis
(i.e. balancing cell proliferation and cell death).

Clinical importance of PTEN mutations and PTEN
deletions in cancer and other diseases
Germline mutations of PTEN have been linked to three
autosomal dominant inherited cancer syndromes with
overlapping features: Cowden Syndrome (CS), Bannayan
Riley Ruvalcaba syndrome (BRRS), and Proteus
syndrome (PS), all characterised by increased susceptibil-
ity to cancer [101]. These syndromes are notable for the
presence of hamartomas, benign tumours in which
differentiation is normal, but cells are highly
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disorganised. In these seemingly unrelated syndromes,
PTEN germline mutations account for 80% of CS, 60%
of BRRS, 20% of PS patients. A detailed comparative list
of these PTEN mutations (CS, BRRS and PS), including
their gene position, any associated amino acid changes
and disease associations is provided in Table 3 in refer-
ence [102]. The features of CS include hamartomatous
overgrowth of tissues and a predisposition to developing
tumours of the breast, thyroid, endometrium and, in
some instances, colon cancer [102]. An additional fea-
ture of CS is an increase in insulin sensitivity, which has
been linked with PTEN haploinsufficiency-associated
enhancement of PI3K/Akt signalling [103]. The majority
of CS patients have macrocephaly and some patients
also have autism spectrum disorders related to germline
mutations of PTEN [104–108]. Over 80 different germ-
line PTEN mutations have been identified, with specific
mutations, including the R130X, Y178X nonsense and
H93R, D252G, F241S missense mutations shown to be
associated with the autism and macrocephaly character-
istics and leading to the proposal that PTEN sequencing
may allow genetic phenotyping and subsequent diagno-
sis of a subset of autistic patients [99].
BRRS is a rare hereditary autosomal dominant syn-

drome identified by developmental delays, megence-
phaly, speckled penis and lipomatosis [109]. There is
some overlap in the germline mutations between CS and
BRRS, however each syndrome has distinct PTEN germ-
line mutations and, overall, distinct CS-associated muta-
tions are located mainly in the 5′ exon-encoded region
whereas BRRS distinct mutations occur mainly in the
3′-encoded C2 domain region [102].
The aetiology of PS is mostly considered as a germline

mosaic mutation with features such as lipomas, over-
growth and benign neoplasms (hamartomas) [109]. At
least three unique PS-associated PTEN mutations have
been identified, W111R, C211X, M35 T and PS-like has a
common mutation linked with both CS and BRRS [102].
Germline PTEN mutations associated with the hamar-

toma syndromes, as described above, are associated with
patient predisposition to cancer. However, most cancers
are associated with somatic alterations of PTEN being
described in over 50% of all tumours of various types. In
fact, PTEN is one of the most common targets for muta-
tions in human sporadic cancers, with a mutational fre-
quency rivalling that of p53 [1, 8, 9, 110, 111]. PTEN has
been shown to be lost or inactivated by multiple mecha-
nisms in a wide spectrum of human cancer types
(Table 2). The spectrum of cancer-associated somatic
mutations encompasses insertions, deletions, point mu-
tations and epigenetic changes. Interestingly, in glio-
blastomas, loss of heterozygosity at the PTEN locus
occurs in 60–80% of tumours and somatic mutations in
20–40% of such tumours [112]. Interestingly,

haploinsufficiency or inactivation of a single PTEN allele
has been shown to be sufficient for cancer development
[3]. For example, key hereditary PTEN cancer-associated
germline mutations and common somatic mutations
with increased cancer risk have been identified in colo-
rectal cancers [111, 113], breast cancers [114, 115], pros-
tate cancers [116] and gliomas [117]. In tumours, PTEN
is inactivated by various mechanisms, including not only
mutations, but also deletions, transcriptional silencing
through promoter hypermethylation, subcellular
mislocalisation, and alterations of cellular stability and
protein half-life as well as multiple mutations (reviewed
in: [1, 110]. Loss of PTEN is commonly observed in glio-
blastoma, thyroid, breast, endometrial, ovarian, prostate,
colorectal cancers, and melanoma [8, 9, 110, 111].
As cellular PTEN concentration strongly influences

cancer development, and subsequent cancer severity [5],
maintenance and control of cellular PTEN levels is crit-
ical for preventing oncogenesis. For example, loss of
PTEN is associated with progression of prostate cancers
from the androgen-dependent to the more aggressive
androgen-independent phenotypes, resistance to chemo-
and radiation therapies, tumour metastasis, recurrence
post-surgery, and significant overall poor prognosis for
patients [118].
PTEN abnormalities extend far beyond cancer related

diseases. Changes in PTEN cellular levels, and related
cellular compartmentation, have also been implicated in

Table 2 PTEN status of various cancer types as adapted from
reference [133]

Cancer type PTEN status References

Head and
neck cancer

- Decreased PTEN expression
in 30% of patients

[154]

Glioblastoma - Loss of heterozygosity of
PTEN in 60%–80% of patients

[155]

- PTEN mutations in up to
40% of patients

Breast cancer - PTEN mutations in 3% of
patients

[156, 157]

- Loss of PTEN protein in 30%
of patients

Ovarian cancer - Loss of heterozygosity of PTEN
in 45% of endometrioid
carcinoma of the ovary

[158]

Non-small cell lung
cancers

- Loss of PTEN protein expression
in 75% of patients

[159]

Endometrial cancer - Mutation or reduction of
heterozygosity in 55% of patients

[160]

Colorectal cancer - Loss of PTEN protein expression
in 20%-40% of patients

[161]

Prostate cancer - PTEN mutations in 15% of primary
tumours, 20% of localised tumours
and 50% of hormone-refractory
cancer patients

[162]
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prominent diseases such as diabetes and neurological
disorders including Parkinson’s disease and Alzheimer’s
disease [63, 105, 107, 119–121]. Inappropriate activation
of the PI3K/Akt pathway, consequent to PTEN loss
through gene deletions or mutations, especially those
affecting the active site residues, has been suggested as a
mechanism involved in adverse neuropsychiatric cell
signalling [58]. Also suggested by Kitagishi and Matsuda
[58] is the potential of targeting the PI3K signalling
pathway in the treatment of neurological impairment
such as that seen in Parkinson’s disease. PTEN haploin-
sufficiency also underlies profound insulin sensitivity
resulting in predisposition to obesity and diabetes type
II, as well as cancer [122]. A common PTEN variant,
rs1102614, has been linked to peripheral insulin resist-
ance and development of Type II diabetes [123].
Here, we have highlighted some of the more promin-

ent diseases associated with PTEN mutations, however
as more PTEN genetic data emerges, the importance of
PTEN as a major checkpoint and regulator of disease
will undoubtedly increase.

PTENP1 regulators in disease
Given their potential regulatory role in normal cellular
function, it is not unconceivable that specific changes in
pseudogene expression occur and contribute to disease
progression. Examples of changing dynamics in pseudogene
expression have been shown in some cancers [124, 125]
and in diabetes [126], two major diseases of the developed
world. The PTENP1 pseudogene, as a key player in PTEN
regulation, has the potential to strongly influence tumour
development and progression. Fluctuating levels of PTEN/
PTENP1 are often correlated in prostate cancer samples
and deletion of PTENP1 occurs frequently in some
sporadic cancers such as endometrial, colon and prostate
cancers, attributing a tumour suppressor function to
PTENP1, that is independent of its regulation of PTEN [32,
127, 128]. A further example of the action of the PTENP1
antisense transcript is PTENP1(as) has been shown to alter
doxorubicin sensitivity in cancer cells, a clinically actionable
phenotype [69].

Cancer therapeutic potential of PTEN: Modulating RTK-
dependent PI3K/Akt overactivation
Aberrations in the PI3K pathway are common to many
cancer types and targeting the RTK/PI3K/Akt pathway
continues to provide key opportunities for therapeutic
intervention. Overactivation of the RTK pathway is
endemic in cancer progression and tight downstream
regulation of this pathway is enforced in the cell at many
levels. The employment of RTK inhibitors as therapeutic
agents has been a major breakthrough in the treatment
of cancers such as melanoma (BCR-ABL, KIT, PDGFR),
breast cancer (Herceptin 2: HER2), colorectal cancer

(EGFR, VEGF) and non-small cell lung cancer (EGFR)
[129], and, to-date, the Food and Drug Administration
(FDA) have approved 26 kinase inhibitors for cancer
treatment, of which 8 are TK inhibitors [130]. However,
intrinsic (primary) and acquired (secondary) resistance
to conventional drug regimes is the major challenge to
overcome in cancer therapeutics. Each step in the RTK
cascade is a potential cancer target. Understanding the
signalling pathways associated with RTK signalling net-
works and targeting intermediates in the PI3K/PTEN
pathway may be a step forward in diagnostics/prognos-
tics and allow translatable approaches in new thera-
peutic designs to potentially overcome drug resistance.
Specific PI3K inhibitors are proving to be promising

cancer targets though few have made it into successful
clinical outcomes. One such inhibitor identified is the
PI3Kδ inhibitor Idelalisib, currently approved for use in
patients with chronic lymphocytic leukaemia, small
lymphocytic lymphoma and follicular lymphoma [129].
There are a number of PI3K targeting drugs currently
under development, and in various stages of clinical tri-
als (phase II-III) from pan-class 1 PI3K inhibitors such
as buparlisib (BMK120), Copanlisib (BAY80–6946) and
pictilisib (GDC-094), which target all four PI3K
isoforms, to PI3K isoform-specific inhibitors such as IPI-
145 and Alpelisib [116]. PI3K inhibitors, BAY80–6946
(Copanlisib), GDC0032 and IPI145, which target PI3Kα,
PI3Kβ, PI3Kδ and PI3Kγ, are undergoing phase II–III tri-
als for treatment of lymphoma, breast/uterine cancer and
lymphocytic leukemia/lymphoma respectively [131, 132].
Furthermore, a number of the PI3K isoform-specific
inhibitors are in stage I or II of clinical trial, including, but
not limited to, NVP-BYL719 or Alpelisib (targeting PI3Kα,
PI3Kβ and PI3Kγ), INK1117 or MLN1117, SAR260301,
KIN-193 or AZD6482, GS-9820 (all targeting PI3Kα,
PI3Kβ, PI3Kδ and PI3Kγ), GSK2636771 (targeting PI3Kβ)
and AMG319 (targeting PI3Kδ) [132–135]. Other
inhibitors currently in preclinical trial are described in
detail in [132–135].
Clinical trials with AKT inhibitors have shown limited

clinical success, and miltefosine is currently the only
approved therapy as a typical treatment for cutaneous
breast cancer [136].
Targeting PTEN per se, as a cancer therapeutic strat-

egy, is very problematic given its key role in cell regula-
tion and proliferation and changes in PTEN expression
can trigger profound biological effects. Therapeutic
approaches to increase PTEN levels have anti-cancer
benefits however increasing PTEN has a positive influ-
ence in tissue regeneration [137].
On the one hand, increasing functional dose/ levels of

PTEN has been shown to promote its tumour suppres-
sor activity, thus making PTEN a good candidate for
cancer treatment. Insertion of PTEN protein in PTEN
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null prostate cancer cells (PC-3) [138] induced apop-
tosis and regression of PTEN-null xenograft tumors
in mice [139]. Interestingly, introduction of additional
exogenous PTEN expression by generating PTEN-
transgenic mice, or “Super-PTEN” mice, reduced can-
cer susceptibility by altering cellular cells’ metabolic
pathway, negatively impacting the ‘Warburg effect’, a
metabolic feature of tumour cells [140]. Notably,
these “Super-PTEN” mice, showed reduced body size
and a decrease in cell number with a positive healthy
metabolism [141]. Based on these findings, pharma-
ceutical delivery of functional dosage of PTEN
through PTEN protein delivery, inhibition of PTEN-
targeting miRNAs, and PTEN gene editing would
benefit cancer patients.
On the other hand, as mentioned, decrease of func-

tional PTEN dose increases cell growth and
proliferation, which is shown to be useful in regenera-
tive medicine for Alzheimer’s disease and ischemia
however decreasing functional PTEN dose has the po-
tential for tumourigenicity [5]. Conditional PTEN de-
letion leads to mTOR activation and stimulates and
promotes axon regeneration as demonstrated in crush
injuries in corticospinal neurons [142]. Cardiac spe-
cific deletion of the PTEN gene in a mouse model
protected cardiac myocytes after cardiac ischemia/re-
perfusion injury by inhibiting anti-apoptotic signals
[143]. In a recent study on cellular and animal
models of Alzheimer's disease, it was illustrated that
inhibition of PTEN saved the normal synaptic func-
tion and cognition [144]. Modulation strategies used
for functional PTEN reduction include, direct protein
inhibition through inhibition of PTEN phosphatase
activity or inhibition of PTEN by protein-protein
interaction, targeting of PTEN mRNA to reduce
PTEN protein translation and gene editing through
new technologies such as C2c2, CRISPR/Cas 9, or
Cpf1.
Understanding the roles of pseudogenes, such as

PTENP1, which has come to the forefront as a modulator
of PTEN, and regulatory functions thereof, may improve
our current knowledge of tumour biology, providing a
new perspective for the discovery of candidate drugs as
opportunistic therapies as well as future biomarkers.
There is accumulating evidence that lncRNA PTENP1
possesses a tumour suppressive role in several cancers
and has been downregulated or deleted in numerous
cancers such as prostate, gastric carcinoma, clear-cell
renal carcinomas, lung cancer, melanoma and colon
cancer [32, 128, 145–147]. The overexpression of
PTENP1 in cell lines and in in vivo studies has been
shown to regulate cell proliferation, reduce tumour
growth, invasion, metastasis and apoptosis [147–151],
further solidifying the importance of PTENP1 in

regulating the biology of a cell by acting as a tumour
suppressor, independent of PTEN.
Reduction in PTENP1 expression has been presented

in numerous cancer studies and has been predicted to
be a promising candidate as a future prognostic bio-
marker [32, 128, 145–147, 151]. A personalised medicine
approach is possible in the distant future, however,
before this can become a reality, a complete understanding
of the multiple layers and complexity of the regulation of
the regulator of the RKT-dependent PI3K/AKT pathway,
PTEN, and its pseudogene (PTENP1), the regulator of
PTEN, and its antisense transcripts, needs to be further
investigated and understood. One of the major consider-
ations in modulating PTEN/PTENP1 in cancer therapy is
the majority of cancers are age related. Many diseases,
which would not benefit from increased PTEN, such as
reduction in cognitive functions, including Alzheimer's,
are more prevalent with aging.

Summary and conclusion
PTEN is dysregulated in many human cancers, and
recent studies highlight the complexity of regulation of
PTEN expression. Ablation of PTEN can drive onco-
genic PI3K signalling, leading to diverse phenotypic out-
comes. The relative expression levels of PTEN, and its
sense and antisense pseudogene transcripts may mediate
this distinction whereby different levels of these tran-
scripts are expressed in different tumour types or
tumours of variable stages and histological grades. PTEN
and its pseudogene transcripts have specific subcellular
localisations and thus it is conceivable that compartmen-
talisation of PTEN, PTENP1(s) and PTENP1(as) may
contribute to their observed downstream function.
Further investigation of PTEN and PTENP1 transcript
dysregulation within different cancer types may help de-
fine the highly dynamic and complex regulatory role the
PTEN pseudogene lncRNAs play in tumourigenesis and
determine whether miRNA-based treatments, or other
alternative approaches will be effective cancer thera-
peutic strategies. Here, we have highlighted a framework
for identification of intermediaries and downstream
modulators in the RTK-dependent PI3K/Akt pathway
which can be targeted for diagnosis, prognosis and treat-
ment of cancer. The challenge is now to determine the
pathways to intrinsic and acquired resistance and to
identify potential candidate cancer-related intermediar-
ies, such as the PTEN pseudogene, as potential bio-
markers and therapeutic targets.
In conclusion, an in-depth understanding of novel mech-

anisms of RTK/PI3K/Akt regulation may present new
cancer therapeutic targets and opportunities through the
targeting of key regulators of cell signalling downstream
of RTKs, such as the PTEN/PTENP1 rheostat.
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