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ABSTRACT: Transition pathways on the energy landscape of
atactic polystyrene (aPS) glassy specimens are probed below its
glass-transition temperature. Each of these transitions is considered
an elementary structural relaxation event, whose corresponding
rate constant is calculated by applying multidimensional transition-
state theory. Initially, a wide spectrum of first-order saddle points
surrounding local minima on the energy landscape is discovered by
a stabilized hybrid eigenmode-following method. Then, (minimal-
energy) “reaction paths” to the adjacent minima are constructed by
a quadratic descent method. The heights of the free energy, the
potential energy, and the entropy barriers are estimated for every
connected triplet of transition state and minima. The resulting
distribution of free energy barriers is asymmetric and extremely broad, extending to very high barrier heights (over 50 kBT); the
corresponding distribution of rate constants extends over 30 orders of magnitude, with well-defined peaks at the time scales
corresponding to the subglass relaxations of polystyrene. Analysis of the curvature along the reaction paths reveals a multitude of
different rearrangement mechanisms; some of them bearing multiple distinct phases. Finally, connections to theoretical models of
the glass phenomenology allows for the prediction, based on first-principles, of the “ideal” glass-transition temperature entering the
Vogel−Fulcher−Tammann (VFT) equation describing the super-Arrhenius temperature dependence of glassy dynamics. Our
predictions of the time scales of the subglass relaxations and the VFT temperature are in favorable agreement with available
experimental literature data for systems of similar molecular weight under the same conditions.

1. INTRODUCTION

The dynamics of glasses, i.e., amorphous solids formed by
quenching a wide class of materials, is of great interest from
both a fundamental and industrial point of view. Following
Goldstein,1 theories have been developed that focus on the
topography of the potential energy hypersurface and its
connection to glassy dynamics and physical aging, which is
the relaxation of the glass toward equilibrium. Their main goal
is to connect the glass transition and the subglass relaxation
with the concept of the “thermodynamic arrest” of the system
in the basins surrounding local minima on its energy landscape
(also called “inherent structures” following Stillinger and
Weber2,3). Within that framework, the dynamics is governed
by the rates associated with the hops from one minimum to
another. These infrequent jumps occur through transition
states (first-order saddle points) on the potential energy
surface. Finally, the physical aging is envisioned as the time-
dependent process of vising various minima.
There is a hierarchy of features present in the energy

landscape. Neighboring basins (around inherent structures) in
configuration space are often separated by an energy barrier
that is relatively low. Pairs of fast connected minima
communicating mainly via tunneling phenomena, referred to

as double-well potentials, give rise to the low-temperature
anomalies of the glassy state.4 Higher energy barriers between
adjacent minima are connected to the faster subglass relaxation
processes (β, γ, and δ); i.e., the relaxation of the system occurs
as it performs elementary transitions between minima. On the
contrary, the slowest α-relaxation has been linked with
transitions between nonadjacent minima (or chains of
transitions over connected minima), that are distant in
configuration space.5,6

The ability to systematically move on the potential energy
hypersurface from one stable geometry (e.g., a local minimum)
through a transition state (first-order saddle point) and,
subsequently, on to a new stable geometry (another local
minimum) is essential for obtaining dynamical trajectories on
the energy landscape. A transition state is defined as a structure
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with a single negative Hessian eigenvalue, following the
definition of Murrell and Laidler.7 Stationary points (minima,
maxima, and saddle points) on energy surfaces bear specific
importance because they correspond to equilibrium geo-
metries, where structure or mechanical properties of the
system can be studied,8,9 and the transitions over energy
barriers govern the dynamic trajectories; their rate constants
can be estimated by means of multidimensional transition state
theory (TST).10

To the best of our knowledge, there is no theoretical
framework for discovering the complete set of saddle points
around a local minimum. It is typical to study small clusters of
atoms for which it has been possible to locate almost all the
minima and transition states on the potential energy
landscape.11,12 Doye13 has studied the potential energy
landscape of a 14-atom Lennard-Jones cluster for which that
author found 4196 minima and 87219 transition states. For
systems involving more than (10) atoms, however, knowl-
edge of the complete potential surface as a function of all 3N −
3 atomic coordinates (N being the number of atoms) is out of
the question. For many practical applications, generating the
full set of saddle points around a minimum (whose count
scales exponentially with the number of degrees of free-
dom14,15) is of minor importance. One would like to be able to
randomly sample saddle points around a minimum, their
distribution being representative of the complete set of saddle
points surrounding a local minimum.
Even trying to find a finite-sized set of first-order saddle

points surrounding a minimum (with the knowledge of only
this minimum) is a tough problem. Most methods can be
classified into two classes of techniques, the distinguished
coordinate16,17 and the eigenvector-following18,19 algorithms.
Within the second group, a delicate and efficient method for
locating stationary points is the eigenmode method with either
exact,12,18−29 or approximate Hessians.27 A review is provided
in ref 30. In the eigenmode method, a step toward a stationary
point (extremum) of the energy landscape is a combination of
orthogonal eigenmodes: the ones corresponding to positive
eigenvalues tend to minimize, while those corresponding to
negative eigenvalues tend to maximize the potential energy.18

Unlike the Newton−Raphson method, where the inverse of
the Hessian is employed to guide the stepping procedure, a
modified Hessian (where eigenvalues along specific modes are
shifted) is employed to guide the stepping of the eigenmode
method. Several formulations have been suggested for
determining the shift parameters. Banerjee et al.21 and
Baker22 proposed tuning two shift parameters; one for the
eigenmodes chosen to be maximized and a different one for
those to be minimized. The value of the shift parameters are
obtained by either a matrix diagonalization or by employing an
iterative procedure (similar to applying Lagrange multipliers to
an optimization problem).
Once a first-order saddle point has been found, a minimal-

energy path should be unfolded that connects two neighboring
minima through this saddle point. In essence, this is done by
starting at the saddle point and taking successive small steps in
the direction of the negative gradient. If the coordinate system
is mass-weighted, the steepest descent path coincides with the
intrinsic reaction coordinate (IRC).31,32 The differential
equations for steepest descent paths are stiff; following the
reaction path may be challenging even by employing extremely
small steps.33,34 Methods for following the reaction path from
the transition state down to connected local minima (reactants

and products states) can be classified in three broad categories.
Explicit methods comprise the first category; they use
information at the current point to move to the next one.
One of the first practical techniques was the Ishida−
Morokuma−Komornicki method,35 which was based on a
suitably stabilized first-order (Euler) method for integrating
differential equations. Other numerical methods for integrating
ordinary differential equations, like Runge−Kutta, can also be
used to follow the path.34,36−38 The next category consists of
the implicit methods that, on top of local information, require
derivative information at the end point as well. Müller and
Brown developed an implicit Euler procedure.39 The second-
order Gonzalez−Schlegel method is similar to an implicit
trapezoid method,40,41 and it has been extended similarly to
higher order implicit methods.42,43 Integrating differential
equations by implicit methods allows for larger step sizes along
the reaction path but at the cost of solving an optimization
problem at every step. Finally, a subcategory of explicit
methods, which constitutes a special class on their own,
includes the methods based on a local quadratic approximation
(LQA) to the potential energy surface. Page and McIver44,45

developed a series of methods for integrating the IRC equation
based on LQA, and corrections based on higher order Taylor
expansions. Sun and Rudenberg46 extended the LQA method
to systems where their Hessian should be approximated,47 or it
cannot be estimated at all.48

Transitions between basins in the configuration space of the
system occur when the system goes through first-order saddle
points. A simplified one-dimensional potential energy profile is
presented in Figure 1. The stationary points are marked by

dots (gray for local minima, red for saddle points). In the
figure, the corresponding basins of attraction (a steepest
descent trajectory initiated anywhere within a basin leads to
the local minimum at the bottom of it) and dividing surfaces
(points in a single dimension) are also indicated. It has been
shown that first-order saddle points correspond to the
elementary relaxations of a system.10,49 Previous works were
focused on toy models, like Lennard-Jones glasses,10,50 or
bead−spring polymer systems.49 Kopsias and Theodorou10

Figure 1. Illustration of the terms “convex region” (green), “basin”
(blue), and “dividing surface” (red) used in the text. A simple one-
dimensional potential energy landscape is employed, where the
stationary points are marked with dots (gray for local minima and red
for first-order saddle points that are also referred to as transition
states).
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studied the elementary structural transitions of an amorphous
Lennard-Jones solid by employing the quasi-harmonic
approximation for the calculation of the free energies of
minima and transition states. Their results indicated an
extremely broad and highly asymmetric distribution of free
energy and a narrow distribution of entropy barriers. Apart
from the energetic characteristics of the barriers encountered
by the system on its energy landscape, the underlying
mechanisms that allow their crossing are also important.
Wales and his collaborators have extensively studied the
rearrangements taking place during barrier crossing,51−56 and
found that they fall into two distinct groups, i.e., “non-
diffusive” processes (connected to shallow barriers) and
“diffusive” processes; the latter involving changes in the
nearest neighbor coordination of at least one atom (“cage-
breaking” events).
The purpose of this work is two-fold: first an efficient

computational framework is presented for exploring a rugged
potential energy landscape; then, the elementary structural
transitions of atactic polystyrene are probed, and the
corresponding rates are estimated and compared to the
experimentally measured time scales of the subglass relaxation
processes. The exploration of the energy landscape involves
finding as many first-order saddle points around a local
minimum as possible. This is accomplished by a hybrid
eigenvector-following algorithm. The system is forced to move
uphill along randomly chosen eigendirections of the Hessian at
the minimum until it exits the convex region of the basin (cf.
Figure 1); then, the lowest-curvature path is followed until the
discovery of a first-order saddle point. Once a first order saddle
point is found, the minimal-energy path to the adjacent
minima is followed in both directions by means of a method
based on the local quadratic approximation (LQA) to the
energy landscape. All steps of the procedure are greatly
facilitated by a unified analytical treatment of the local slopes
(gradients) and curvatures (Hessians) of the energy landscapes
of classical molecular force fields, presented in our earlier
work.8 For the discovered transition states, the distribution of
(free) energy barriers separating the connected minima are
studied and the corresponding rate constants are calculated by
applying multidimensional transition-state theory (TST).
Finally, insightful connections to theoretical models of the
glass phenomenology are drawn, allowing us to predict from
first-principles important parameters entering macroscopic
models.

2. COMPUTATIONAL METHOD
The method for obtaining the elementary structural transitions
on the energy landscape consists of five steps, namely the
generation of the initial configurations (presented in previous
studies), the two parts of the saddle point search (inside and
beyond the convex region of the basin), the reaction path
following and the calculation of the rate constants by
multidimensional TST. The individual steps are followed in
a sequential way and are presented in individual enumerated
subsections.
2.1. Step 1: Generation of Glassy Configurations.

Following our earlier works on glassy atactic PS,8,57 we employ
model systems consisting of monodisperse atactic PS chains of
300 repeat units. Their tacticity obeys Bernoullian statistics
with the percentage of meso diads being 50% . They have been
generated by employing a hierarchical equilibration strat-
egy.58,59 First, a coarse-grained representation (every poly-

styrene repeat unit is mapped onto a single “super-atom”60) is
used for connectivity-altering Monte Carlo simulations.61

Then, atomistic configurations are generated by a quasi-
Metropolis reverse mapping scheme in the melt state (T = 500
K).58,62

The protocol of generating the glassy configurations, and the
united-atom model governing the atomistic interactions have
been described in detail in ref 8. Following the generation of
equilibrated reverse-mapped configurations in the melt state, it
entails quenching by Molecular Dynamics (MD)63 at a rate of
0.1 K/ns down to 300 K. The applied quenching rates in the
simulations are orders of magnitude faster compared to those
employed experimentally. This may lead to spurious effects on
the properties of the studied systems. However, for the
molecular model and preparation methods employed in this
work, we operate within the range of quenching rates that were
found safe in our previous simulations.58,64 We consider that
well-equilibrated melt configurations are key to obtaining
faithful glassy configurations, since the system is trapped close
to the melt configuration by quenching. The quality of the melt
configurations has been thoroughly tested against nuclear
magnetic resonance (NMR) spectra.58 We understand that
there might be an indirect effect of the cooling rate on the
energy landscape (since the volume of the specimens may
vary) but we try to alleviate it by a free energy minimization in
the glassy state (to be discussed below).
The quenching simulations go through the glass transition,

which is considered to occur at 373 K for the system under
consideration.58 As far as the calculation of the glass-transition
temperature is concerned, it is fully elaborated in our previous
works on the same model of atactic PS.58,64 It has been
estimated by either the point where the density−temperature
relation changes slope or by studying the time decay of the
orientational correlation functions of several vectors along the
backbone (or between the backbone and the side groups) of
the chains. Since fitting long tails of time-correlation functions
is inherently inaccurate, we choose to study the system at a
considerably lower temperature (300 K) to avoid glass
transition related artifacts.
In the glassy state, we tune the dimensions of the specimen

in order to ensure that the instantaneous density of the
configurations corresponds to the one dictated by its free
(Gibbs) energy under given temperature (300 K) and pressure
(1 bar).8,64 The final configurations (after the cooling MD run
and the Gibbs energy minimization in the glassy state) are used
as the initial configurations for the energy landscape
exploration. The results presented in this work are obtained
by 40 independent glassy configurations whose neighboring
saddle points are discovered, and pathways through them are
constructed.

2.2. Quasi-harmonic Approximation. Following our
earlier works,8 we use the fact that the Helmholtz energy of a
basin I, AI, within the quantum-mechanical quasi-harmonic
approximation, can be calculated at the corresponding
minimum (IS) at the bottom of the basin and is written as

A T A Tr( , ; ) ( , ; ) ( , ; )I
inh

inh vibε ε ε= + (1)

The potential energy at positions r = rinh, i.e., of the inherent
structure, is denoted by r( , ; )inhε , while the Helmholtz
energy of the NDOFs = 3N − 3 vibrational modes9,65,66 is
denoted by Avib. The quasi-harmonic approximation has
limitations, but it has been very successful in describing the
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free energy of polymer glasses.9 As far as glassy polystyrene is
concerned, we have shown64 that it is a valid approximation,
even at elevated temperatures, by comparing our observations
against experimental measurements and Molecular Dynamics
simulations. The inclusion of higher-order (anharmonic) terms
to the free energy is certainly possible; they can be rigorously
derived by following our work on obtaining second- and third-
order analytical derivatives of the potential energy.8

We can now assume that the system is found at a local
minimum xinh of its potential energy , written as a function
of all mass-weighted atomic coordinates, xa = ma

1/2ra. Its
potential energy, if we consider a slight displacement out of the
minimum, can be approximated by a Taylor expansion around
xinh truncated after the second-order term:9

x x x x H x x( ) ( )
1
2

( ) ( )( )x xinh inh
T

inhinh
= + − | −

(2)

By definition, Hx is the 3N × 3N Hessian matrix (i.e., second
derivatives) of the potential energy with respect to all mass-
weighted coordinates

H
x xx x

x

2

inh

inh

| = ∂
∂ ∂ (3)

which has been evaluated at the minimum. Since a polymer
system under periodic boundary conditions is translationally
invariant, the Hessian matrix is not positive definite but only
positive semidefinite. Excluding the elements of the Hessian
matrix corresponding to the first atom, the matrix is left with
an effective range of NDOFs × NDOFs elements, with NDOFS = 3N
− 3.
The quasi-harmonic approximation to the free energy67

assumes that the motion of the microscopic system trapped
within its basin can be described by NDOFs uncoupled,
uncorrelated harmonic oscillators, whose vibrational frequen-
cies, ωj, j = 1, ..., NDOFs, do not depend on the temperature, T.
The normal modes and the corresponding frequencies are
determined as eigenvectors, vj, and eigenvalues, ωj

2, of H.68 In
our case, since the system exhibits translational symmetry,
NDOFs = 3N − 3 with N being the number of atoms present;
i.e., three of the eigenvalues of H are zero, and the other ones
are equal to the squared angular frequencies of the vibrational
modes.
Knowledge of the mode frequencies, ωj, allows the

estimation of the vibrational contribution to the quasi-
harmonic Helmholtz energy, Avib, within a quantum mechan-
ical formulation, as10,69

A T

k T
k T

( , )
2

( )

ln 1 exp
( )

j

N

j

j

N
j

vib
1

B
1 B
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∑

∑

ε ε

ε

ω

ω

= ℏ

+ − −
ℏ
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=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjj

y

{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (4)

with kB the Boltzmann constant and ℏ = h/(2π), h being
Planck’s constant. A quantum mechanical treatment of the
vibrational partition function is preferred for the hard degrees
of freedom.64 At temperatures higher than the Debye
temperature of glassy atactic polystyrene, θD ≃ 100 K,70 the
classical vibrational partition function is also a reasonable
approximation. Furthermore, we can split the Helmholtz
energy as A = U − TS, where S is the entropy of the
microscopic system,71,72

S
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k T/( )

e 1
ln 1 e
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and U is the internal energy,8

U A T
A
T

2 e 1j

N
j

j

N
j

k Tinh
1 1

( )/( )j

DOFs DOFs

B
∑ ∑ω ω

= − ∂
∂

= +
ℏ

+
ℏ

−

ε

ω
= =

ℏ
(6)

The latter is independent of temperature and can be calculated
from the potential energy of the IS and the vibrational
frequencies.

2.3. Step 2: Saddle Point SearchEscaping the
Convex Region of a Minimum. A trajectory from a
minimum to a saddle point should first exit the convex region
around the local minimum. While in convex region, the uphill
stepping requires delicate handling. Even if it is relatively
straightforward to move along the lowest eigenmode of the
Hessian, by means of eigenvalue shifting techniques,22,23

moving along higher modes becomes prohibitively difficult at
rugged landscapes. By construction, the eigenvalue shifting
methods will follow the lowest streambed in order to climb out
of the convex region; higher modes tend to collapse to the
lowest mode, thus reducing the possible ways out of the
convex region. When trying to discover as many saddle points
as possible around a minimum, the tendency to collapse to the
lower mode becomes a weakness. In general, there are less
transition structures associated with a system than there are
available modes for climbing (degrees of freedom). Even if
following every mode were successful, the system would
discover the same transition states twice or even more often,
i.e., locating states that have already been reached by following
a lower mode.
In order to enhance the sampling of exit trajectories from a

given minimum, we use a method similar in spirit to the hybrid
eigenvector following technique introduced by Munro and
Wales29 and the activation−relaxation technique (ART) of
Barkema and Mousseau.73,74 At the minimum, where a
diagonalization of the Hessian has been undertaken (essential
for the calculation of the quasi-harmonic vibrational con-
tribution to the free energy), all eigenvectors (and the
corresponding eigenvalues that are all positive) of the Hessian
are obtained and stored. If the goal is to reach a transition
state, one should move uphill along one direction that defines a
streambed across a valley away from the local minimum. To
this end, we randomly choose an eigenvector to follow
(direction of the valley floor), and the system is translated in
steps from the minimum along the chosen normalized
eigenvector em̂,0,

h m Nr r h r e , 1, 3 3n n n n n m1 1 ,0= + = + · ̂ ∈ [ − ]− − (7)

where hn is the magnitude of the step vector at step n (the
choice of hn is discussed in the following subsection).
At that point, we should note that for every uphill step, the

eigenvector calcualated at the minimum, em̂,0, is used. While it
is in principle possible to perform a systematic scan of all
eigenvectors, the dimensionality of the problem (thousands of
atoms) is prohibiting. Since any systematic scan of a finite
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subset of eigenvectors may introduce a bias in the method, we
prefer to randomly sample the eigenvector space. In that way,
lower and higher eigenmodes are equally represented in the
final distribution of saddle points. In that respect, a random
linear combination of eigenvectors may also be efficient.
Following the extended literature on saddle point searching
algorithms, we choose to employ Cartesian coordinates for the
process of stepping uphill. However, mass-weighted Cartesian
coordinates can also be used. Overall, Cartesian coordinates
provide several advantages over internal or local coordinates
(e.g., bond lengths or bond angles).75

At every step, we try to crawl on the canyon floor, which
proceeds along the walking direction. This is accomplished by
maximizing the potential energy along the walking (parallel to
the canyon floor) direction while requiring minimum of the
potential energy with respect to all other lateral directions,
hence walking along the “stream bed”, which runs in the
direction of uphill movement. The minimization in the lateral
directions is accomplished by projecting the gradient29

g g g e e( )m m,0 ,0= − · ̂ ̂⊥ (8)

and employing it in the framework of a minimization algorithm
(either conjugate gradient29 or a limited-memory Broyden−
Fletcher−Goldfarb−Shanno algorithm as implemented in our
previous work8).
In most (if not all) circumstances, this algorithm will move

toward a first-order saddle point. Since we force the potential
energy of the system to be minimal in all but one directions at
every step, the uphill trajectory leads to maximization along a
single eigendirection; it is expected that the algorithm will not
lead to second-order or higher-order saddle points. Cerjan and
Miller discussed similar ideas for the location of transition
states in low-dimensional energy surfaces,18 and Wales has
later used them for an extensive study of LJ clusters.28 If
computational efficiency, rather than uniform sampling of the
configuration space, is important, the choice of eigenvectors to
be followed can be weighted toward those corresponding to
lower eigenvalues. It is expected that moving along an
eigenvector corresponding to a lower eigenvalue generally
converges to a transition state more rapidly.
The progress of the climbing procedure is monitored by

projecting the gradient in directions parallel and perpendicular
to the undertaken step. For every step, the norm of the
perpendicular component (eq 8), g⊥ = ∥g⊥∥, is close to 0, as
the lateral minimization dictates. However, the projection of
the gradient on the step vector, g∥ = g·em̂,0, provides a coarse
description of the local topography of the energy landscape.
Initially, being close to but stepping away from the minimum,
g∥ increases, since any displacement of the system along the
vector hn tends to increase the gradient along that specific
direction. While going uphill, the system goes through a
stationary point of g∥ at step k, where g∥ stops growing and
g∥,k+1 < g∥,k. At that point, the system has just left the convex
region and the boundaries of the basin are imminent. The
process is terminated at step k. The termination point of the
method for escaping the convex region will be denoted by resc.
At the point that the system gets out of the basin, g∥ changes
sign, i.e., g∥,n−1·g∥,n < 0; this can also serve as a late termination
point for the escape algorithm, if it has overstepped the
boundary of the convex region.
2.4. Step 3: Saddle Point SearchApproaching a

Transition State. Once the system has escaped the convex
region, it can be allowed to continue moving “uphill” along the

lowest Hessian eigen-direction while remaining at minima with
respect to all other eigen-directions. We can consider a Taylor
expansion of the potential energy, , about the point resc of
configuration r = resc + h, then

g h h Hh
1
2

...esc
T T= + + +

(9)

where g is the gradient vector, and H is the second derivative
matrix, or Hessian, at resc. If we apply the condition

h 0d /d = to the above equation, this results in the standard
Newton−Raphson step

h H gNR
1= − −

(10)

Based on a Taylor expansion of the energy landscape around
a current position and imposing a constraint on the step
length, Cerjan and Miller showed (by introducing a suitable
Langrangian multiplier technique18) that a modified Newton−
Raphson process can be converted into an efficient potential
energy walker. The step is determined by

g

b
h

v

i

N
i i

i i0

3 3

∑
λ

= − ̅
−=

−

(11)

where g v gi i
T

̅ = is the component of gradient, g, along the
local eigenvector vi of the Hessian. The corresponding
eigenvalue, bi, is shifted by a parameter λi. In making a choice
for λi, some empiricism enters the picture. Cerjan and Miller,18

Simons et al.,19 Banerjee et al.,21 Baker,22 and Wales28 have
proposed algorithms for locating transition states based on the
stepping procedure described above; the difference between
the several approaches being the recipe for determining the
shifting parameters λi.
In this work, we adopt the approach of Baker for stepping

along the lowest eigenmode of the Hessian.22 The step vector
is obtained by introducing two shift parameters, λ1 = λp and λn
for the lowest and all other eigenvalues, respectively. The step
vector can then be formed as22

h h
i

N

i
1

3 3

∑=
=

−

(12)

with

g

b
h

v

p
1

1 1

1 λ
= − ̅

− (13)

g

b
k Nh

v
2, ..., 3 3k

k k

k nλ
= − ̅

−
= −

(14)

The shifting parameter for the lowest eigenvalue is obtained
analytically as the largest solution to a simple quadratic
equation:

b b g
1
2

1
2

4p 1 1
2

1
2λ = + + ̅ (15)

and λn is obtained by solving numerically the optimization
problem:

g

bi

N
i

n i
n

2

3 3

∑
λ

λ̅
−

=
=

−

(16)

The interested reader is referred to the work of Baker22 for the
details of the derivation. The optimization problem of eq 16,
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i.e., obtaining the best possible estimate of the parameter λn
that balances the two parts of eq 16, is solved by employing a
Newton−Raphson method, since the derivative of the above
expression with respect to λn can be obtained easily.
The algorithm illustrated above for discovering transition

states has several beneficial features: it is rigorous, stable and
efficient. However, its practical application to realistic systems
of interest requires efficient computer codes for the fast
analytic evaluation of the Hessian matrix of the potential
energy hypersurface. In the case of classical molecular force
fields, Vogiatzis et al.8 have provided expressions of that kind.
2.5. Step-Length Control by Backtracking. The

strength of both algorithms described above lies in the use
of the gradient (and the Hessian) to generate a sequence of
steps that are followed until the system discovers a neighboring
stationary point. The magnitude of the individual steps should
be large enough for the system to escape from the local
minimum. However, longer steps suffer from “stitching”,23 i.e.,
the phenomenon of the system moving back and forth in the
traverse, with respect to the streambed of the walk, directions.
The essence of our approach to step length control is that any
step undergoes step-size reduction, if it is found to be
completely inconsistent with its prediction based on a local
quadratic approximation of the energy. Our backtracking
strategy consists of checking for inconsistencies in energy, the
norm and the orientation of the gradient vector. We employ
the backtracking process in both parts of the saddle point
search, i.e., both for escaping the convex region (Section 2.3)
and for approaching the transition state once the system has
escaped (Section 2.4).
Since we do not have full knowledge of the whole energy

hypersurface except at the point around which a local quadratic
approximation is applied (where the potential energy is r( )0
), we must restrict the step generated by the algorithms
detailed in the previous subsections, h, not to drive the system
out of the domain in which the local quadratic approximation
holds. The step should be taken (on a trial-and-error basis) if
the evaluated (“true”), r h( )T 0= + , energy at r = r0 + h
can be accurately predicted by the quadratic approximation. If
the quadratic prediction

g h h Hh
1
2

P T TΔ = +
(17)

accurately reproduces the true energy difference,
r h r( ) ( )T

0 0Δ = + − , then the step lies within the
trusted region for and can be undertaken safely. Otherwise,
the step size should be reduced further.23

As a first criterion for the step-length to be accepted, we
demand that the predicted energy difference, PΔ , and the
true energy difference, TΔ , be of the same sign (i.e., exclude
moves that seem to walk uphill, while the actual step displaces
the system downhill) and be approximately equal, in the sense
that

1
min( , )
max( , )

T P

T Pε− ≤ |Δ | |Δ |
|Δ | |Δ | (18)

with ε being a specified tolerance (in our case,

(10 )).3ε ∼ − If agreement between TΔ and PΔ is not
achieved, the components of h are scaled by the same factor
(in our implementation: cut in half). The step to be finally
undertaken, which is parallel to the original trial step (because

all its elements were scaled by the same factor) is then
subjected to the same test, until the condition of eq 18 is
satisfied.
Apart from the value of the potential energy, monitoring the

gradient vector while moving to the transition state is also
important.76−78 We check that the true (if the trial step is
undertaken) and the predicted gradient vectors agree to each
other, both in magnitude and direction. For the magnitude of
the gradient, we apply a criterion similar to eq 18,

g g
g g

1
min( , )
max( , )g

T P

T Pε− ≤
|Δ | |Δ |
|Δ | |Δ | (19)

where the true and predicted differences in gradient are given
by

g g r h g r( ) ( ) ( )T
0 0Δ = + − (20)

g Hh( )PΔ = (21)

The tolerance for the norm of the gradient is allowed to be
larger than that in energy, i.e., (10 )g

2ε ∼ − .
As far as the direction of the gradient is concerned, we

demand that (Δg)T and (Δg)P are parallel to each other. In a
h i g h - d i m e n s i o n a l s p a c e o f d i m e n s i o n a l i t y
d N( ) (10 )3∼ ∼ , two randomly selected vectors are
almost always orthogonal. For the cosine of angles between
random vectors in d-dimensional space, the mean is 0 and the
standard deviation is 1/√d. Thus, a suitable criterion for the
gradient differences to be parallel to each other is

d
g g

g g
( ) ( )

( ) ( )
3T P

T P
Δ · Δ

|| Δ |||| Δ ||
≥

(22)

considering that for a Gaussian distribution, positive values
more than three standard deviations from the mean account
for only 0.13% of the distribution.

2.6. Step 4: Reaction Path Following. At the saddle
point, all eigenvalues of the Hessian with respect to NDOFs
degrees of freedom (having excluded those affected by the
translational invariance of the system; cf. the discussion in
Section 2.2) but one are positive. In the neighborhood of the
saddle point, the energy landscape bears resemblance to a
valley going down along the eigendirection corresponding to
the single negative eigenvalue. The reaction path lies along the
floor of this valley, being a line in the mass-weighted
configuration space, x. According to Fukui,32 the intrinsic
reaction coordinate (IRC) is an imaginary trajectory of
minimal energy that moves infinitely slowly through the
transition state. As that, the trajectory should satisfy the
classical equations of motion. Thus, if the coordinate system is
chosen such that the kinetic energy can be written as a sum of
quadratic terms of the momenta, it can be shown that the
steepest descent on the energy landscape coincides with the
IRC trajectory. The choice of mass-weighted Cartesian
coordinates satisfies this condition.35

The path can be given parametrically in terms of the mass-
scaled reaction coordinate, s, which is the actual arc length.
This path can be represented by x(s) where x is a column
vector whose components are the 3N − 3 mass-weighted
Cartesian coordinates of the atoms, i.e., mx ri i i= . According
to Fukui,32 x(s) is the solution to the set of autonomous first
order differential equations
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s
s

s
x

v
d ( )

d
( )(0)=

(23)

where v(0) is a unit vector defined as the negative of the
normalized gradient of the potential in mass-weighted
coordinates,

c
v

gx

x

x(0) = −
∇
|∇ |

= −
(24)

with gx x= ∇ and c x= |∇ |. The normalized path tangent
with respect to s is denoted by v(0) with the superscript (0)
indicating its zeroth derivative (adopting the notation of Page
and McIver44). At the saddle point, v(0) lies along the
eigenvector of the mass-weighted Hessian matrix, Hx,
corresponding to the single negative eigenvalue. This is not
assumed; it is a result of its definition.79 In practice, one uses
the initial condition that x(s = 0) is the saddle point. Then, eq
23 is integrated from s = 0 to s = sr where sr is negative (i.e., on
the reactant side in the standard notation), and from s = 0 to s
= sp where sp is positive (i.e., on the products side). The range
(sr, sp) should be wide enough for both paths to converge to
the neighboring local minima.
In this work, we employ the local quadratic approximation

(LQA) method of Page and McIver44,45 in order to solve eq 23
with eq 24 numerically. The LQA integration of the reaction
path is based on a local second-order Taylor expansion of the
potential energy with the point around which the potential
energy is expanded being shifted stepwise along the reaction
path. Derivatives (up to third order) of the potential energy
can be efficiently calculated for any classical molecular force
field based on tractable analytic expressions.8 Truncated at the
quadratic term, the Taylor series around a point x0 in the mass-
weighted configuration space is

( )x x g x x H x( ) ( )
1
2

( ) ( )x x x
x

0
T T

0
0

δ δ δ= + +
(25)

where δx = x − x0 is the displacement vector from x0, and gx|x0,
Hx|x0 the gradient and the Hessian at x0, respectively. At an
arbitrary point on the path x0 = x(s0), we represent the path,
x(s), as a Taylor series in s expanded up to second-order terms,
about x0:

s s

s s s s

x x x

v v

( ) ( )

( )
1
2

( )
s s

0

(0)
0

(1)
0

2

0 0

Δ = −

= − + − + ···
(26)

Here the coefficients v(0), v(1) depend only on energy
derivatives evaluated at x0:

s
s c

v
x g xd ( )
d

( )

s s

x(0) 0

0
0

= = −
(27)

c
v

H v v H v v( )

s s

x x(1)
(0) (0)T (0) (0)

0
0

=
−

(28)

Since the path itself is represented as a Taylor series in s, v(n−1)

is the nth derivative of the path, x(s), with respect to s. The
notation n − 1 is such that the superscript (0) indicates the
zeroth derivative of the normalized path tangent vector, v0 (eq

24), with respect to s. The first derivative of the path with
respect to x, eq 27, stems from the definition of the reaction
path as steepest descent trajectory, while the second derivative,
eq 28 can be obtained by differentiating eq 27 with respect to s
(before setting s = s0).
Within the LQA, v(0) and v(1) are computed exactly, since

they include up to second-order terms in energy. Stepping
along the path, according to eq 26, with consecutive quadratic
approximations of the energy offers an improvement over the
Euler method (which is based on a local linear expansion of the
energy) since a step along the path defined by eq 26 includes
the correct path curvature at the point of expansion. That is
particularly helpful when stepping away from the saddle point,
where simple Euler constructions deviate significantly from the
minimum energy paths.
Under the assumptions of the LQA to the energy, eq 23 can

be solved analytically.44 This is equivalent to summing the
aforementioned Taylor series expansion, eq 26, to infinity.
Otherwise, a trial and error procedure should be employed for
calculating the optimal step size at every point along the path.
For the rest of this subsection, we presume that x0 lies on the
reaction path but not at the saddle point. Thus, every term in
eq 26 has a nonzero value in the LQA. (Following the reaction
path close to the saddle point will be discussed in Section 2.7).
The energy gradient within the LQA becomes

g x g H x x( ) ( )x x x x x 0
0 0

= + −
(29)

Substituting eq 29 in eq 23 gives

( )
s

s
x

g H x x

g H x x

d ( )
d

( )

( )

x x x x

x x x x

0

0

0 0

0 0

= −
+ −

+ −
(30)

which can be integrated by means of a new independent
parameter, t, such that44,45

s
t

g H x x
d
d

( )x x x x 0
0 0

= + −
(31)

The steepest descent path is finally obtained by integrating

t
t

x
g H x x

d ( )
d

( )x x x x 00 0
= − | − | −

(32)

Pechukas79 pointed out that eq 32 results in a path identical
with that obtained by eq 30 and that it can be solved exactly
when the energy is a quadratic function of the coordinates. The
integration procedure for eq 32 is briefly described in
Appendix A. When approaching the (local) minimum, it may
not be possible to take a step along the path with fixed δs
because the path may terminate in a shorter arc length. In that
case, where during the numerical integration t → ∞, we
initiate a Newton minimization. The minimization converges
instantly, since the system is already found in the quadratic
region around the minimum.
We can now establish the two energy minima connected

through the discovered transition state. By following the
steepest descent trajectory out of the saddle point twice (one
for the positive and one for the negative direction of the
eigenvector corresponding to the single negative eigenvalue of
the Hessian at the saddle point), we finally arrive at the two
neighboring energy minima. After deploying the two paths, we
check whether one of the terminal minima of the descent paths
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coincides with the starting minimum (i.e., where the saddle
point search was initiated). The final end product of each such
construction is a pair of potential energy minima, A and B, and
the transition state in between, denoted by ‡. We have found
that step sizes, hn on the order of 0.1 Å can be safely used.
2.7. Path Initiation at the Saddle Point. At the saddle

point, eq 23 is indeterminate and eqs 27 and 28 cannot be used
in order to step along the path. Instead, the path tangent v(0)

can be obtained by applying L’Hospital’s rule to the limit
v(0)|s=0 = lims→0 (gx/c), since both numerator, gx, and
denominator, c, approach zero. The result after replacing the
gradient and its norm with their derivatives with respect to s is
the characteristic polynomial of the Hessian matrix, Hx. Thus,
v(0)|s=0 is proven to coincide with the normalized eigenvector of
the Hessian corresponding to the single negative eigenvalue,

b v H vx1
(0)T (0)= , i.e., the lowest solution to

H v H v I v( ) 0x x
(0)T (0) (0)− = (33)

The curvature vector at the saddle point can be obtained by
differentiating eq 33

v v H v I H

H v v H v v

s
x x

x x

(1)

0

(0)T (0)

(1) (0) (0)T (1) (0) (0)

= −

−
=

+Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ (34)

where Hx
(1) is the projection of the third derivatives of the

potential energy onto the reaction path. The + symbol
indicates the Moore−Penrose inversion,80 since the matrix in
the first set of brackets is obviously singular (its largest
eigenvalue being 0). The above equation parallels the
procedure for obtaining derivatives of matrix eigenvalues and
eigenvectors proposed by Magnus.81 It should be noted that
the resulting expression for v(1)|s=0, eq 34, is different from the
one proposed by Page and McIver.44

If third derivatives are not available, it can be easily
approximated:

s
s s s s

s
H

H H Hd
d

( ) ( )
2x

x x x(1) 0 0δ δ
= ≃

+ − −
(35)

By designating a fixed δs and using 34, the first step out of the
saddle point is

( )s s sx x u v( ) ( )
1
2

( )s s
s

0 1 0
(1)

0

2δ δ δ± = ± += =
= (36)

where u1 denotes to the eigenvector corresponding to the
lowest (single negative) eigenvalue of the Hessian at the saddle
point. The plus and minus signs in the above equation are used
to indicate stepping along both directions of the eigenvector.
The curvature vector, v(1), is a dynamically important

property of the reaction path; it is orthogonal to the tangent
vector v(0) but it is not normalized. For quantifying the
curvature of the valley around the path, the scalar curvature is
defined as

s v v( ) (1)T (1)κ = (37)

2.8. Step 5: Calculation of the Rate Constants.
According to the multidimensional transition state theory
(TST),10 a transition from a state A to an adjacent state B
occurs every time the system finds itself on the dividing surface
between the two states and moves toward the state B. Within
this approximation, the fundamental expression of transition
rate within the TST framework can be derived,

k
k T

h
Q
QA B

A

TST B=→

‡

(38)

where QA is the partition function of the system at the
“reactant” state A (s = sr), and Q‡ the partition function of the
system confined to the dividing surface (passing through the
saddle point, s = 0) between states A and B. In the case of the
NVT ensemble, A = −kBT lnQ, and the rate becomes

k
k T

h
A

k T
expA B

TST B

B
= − Δ

→
i
k
jjjjj

y
{
zzzzz (39)

with ΔA being either ΔA = A‡ − AA, or ΔA = A‡ − AB if the
rate kB→A is to be calculated. In the quasi-harmonic
approximation, a way of calculating the Helmholtz energy
has been already proposed in Section 2.2. We should note,
however, that in the case of the transition state, ‡, the
vibrational contribution is calculated by using only the positive
eigenvalues of the Hessian.

2.9. Connection to Theoretical Models of the Glass
Phenomenology. The calculation of the barrier height, ΔA,
directly from atomistic simulations allows connections to
theoretical models addressing the phenomenology of the glass
transition and the glassy state. A theoretical framework for
understanding glassy dynamics is provided by the “trap”
models.82,83 Within the framework of a trap model, the
dynamics of the system is represented by the motion of a single
phase point traveling in a landscape of “valleys” or “traps”. The
valleys are separated by barriers that can be overcome only via
activation. A master equation describes the progression of the
phase point in the landscape; the corresponding rate constants
for hopping over the barriers of the landscape provide the full
knowledge of the landscape, i.e., the barrier heights and the
geometry of phase space. As a first approximation, the most
elementary trap models hypothesize that the top of the
landscape is a plateau, and thus the rate of escape from a trap is
related only to its depth, Etr ∈ [0, ∞). Thus, in this class of
trap models, the escape rates are dictated by the distribution of
trap depths, ρ(Etr).
The most widely used trap model adopts an exponential

distribution of trap energies, i.e.,

E
k T

E
k T

( )
1

exptr
B 0

tr

B 0
ρ = −

i
k
jjjjj

y
{
zzzzz (40)

This exponential form is indicated by phenomenological
arguments in the context of glasses,84 the random-energy
model,85 and the mean-field replica theory of spin-glasses.86

Another interesting case of a trap model that retains features
that are similar to those observed in real glasses is the Gaussian
model

E
E

E E
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This also displays glassy phenomenology, such as a stretched
exponential decay of time correlations and a super-Arrhenius
growth of the relaxation time (aging).82,83

Trap models were created in order to provide a simplified
interpretation for activated aging dynamics.87,88 Their
continuous time dynamics can be extracted by assuming that
at each time-step a configuration i is randomly chosen, with a
uniform probability 1/ among all configurations at
disposal. The system remains trapped in this configuration i for
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a trapping time τ. By further assuming that escaping a trap of
depth Etr is governed by simple activated dynamics, i.e., the
trap lifetime is

E k Texp( /( ))0 tr Bτ τ= (42)

with τ0 setting the time unit. Within the TST framework the
corresponding time scale is set by τ0 = ν0

−1 with ν0 = (kBT/h).
It has been shown that the exponential model results in a
power-law distribution of the mean trapping times82−84,89,90

( ) T T1 ( / )0ψ τ τ∝
τ→∞

−[ + ]
(43)

with T0 being the temperature at which a “strict” glass
transition takes place. In contrast, the Gaussian model yields a
log-normal distribution of trapping times83
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The Gaussian trap model results in a dynamics consisting of
infinitely many time scales. On every of these scales, the
dynamics is in essence identical with that of an exponential
trap model with a time scale dependent T0.

91 An Arrhenius-like
probability estimate for the system to escape from its current
trapping configuration, i, is provided by the inverse of the
average trapping time.
Obtaining the distribution of free energy barrier heights of

the energy landscape allows connection to the phenomeno-
logical trap models of the glassy state, i.e., predicting the
parameters of these models (e.g., T0) from atomistic
simulations. Furthermore, the distribution of rate constants
for hopping from one basin to another should share the same
characteristics with the distribution of trapping times, e.g.,
power-law tail at low rates if the exponential model is followed
(power-law tail of the distribution of trapping times for long
time scales).

3. RESULTS AND DISCUSSION
3.1. Sampling of Potential-Energy Minima. We start by

examining the distribution of the potential and microscopic
Helmholtz energies of the glassy minima visited by the system
(Figure 2). The ensemble of minima contains approximately
4000 minima, connected to the 40 independent initial
configurations through elementary structural transitions. It
can be seen that the sampled minima cover a rather narrow
range of Helmholtz energy values; their free energies follow an
approximately Gaussian distribution with a mean value of
10.36 (in kBT per atom) and a variance of 3.44 × 10−5 (in
(NkBT)

−2). While the distribution of free energies is rather
symmetric, the distribution of their potential energy con-
tributions is substantially asymmetric with the large majority of
the minima explored being located at the lowest part of the
energy spectrum (as can be seen in the inset to Figure 2 where
the ordinate is logarithmic). This is a remarkable feature:
almost all minima lie at the same potential energy level on the
energy landscape (85% of the minima have a potential energy
between 5.68 and 5.70 NkBT); thus, any difference in
potential-energy barrier heights (contributing to different
transition rates) will be mostly shaped by the position
(“altitude”) of the transition states. Moreover, we should
note the nontrivial role of the vibrational contribution to the
Helmholtz energy which is dictated by the shape (multi-
dimensional curvature) of the energy landscape around every

minimum. The incorporation of the vibrational contribution
transforms the highly asymmetric distribution of potential
energies into a symmetric (albeit narrow) distribution of
Helmholtz energies.

3.2. Barriers of Elementary Transitions on the
Potential-Energy Hypersurface. Having located stable
transition states between minima, we can study the distribution
of the activation Helmholtz energies of the various elementary
structural transitions, ρ(ΔA) with ΔA = A‡ − Amin, which is
depicted in Figure 3. Every triplet of a transitions state with its
two adjacent minima contributes with two values of the
Helmholtz energy barrier to the figure, corresponding to the
two possible directions of crossing the barrier. Even before
proceeding to an in-depth analysis of the distribution, it is
obvious that the free energy barriers are high compared to the
thermal energy scale, kBT. This observation is in par with the
microscopic picture of the system residing in individual basins
for long times, before attempting an infrequent jump to a
neighboring basin. The distribution exhibits a long tail, up to
roughly 70 kBT, which justifies the use of the transition state
theory (TST) for the estimation of the corresponding rate
constants. We should also note that slightly negative values of
the barrier height, in terms of free energy, are also
encountered. Negative barrier heights give rise to transitions
faster than the fastest time scale set by the TST rate expression,
kBT/h. Within the quasi-harmonic approximation, the free
energy is obtained by a sum of potential energy and vibrational
contributions which can make a free energy barrier be slightly
negative. The vast majority of the barriers sampled are
concentrated around 15 kBT. Interestingly, the distribution
exhibits several pronounced spikes at specific barrier heights,
indicating groups of transitions that are characterized by
similar energetics. We are going to elaborate on this
observation later when discussing the corresponding rate
constants.
The distribution of the free energy barriers provides fertile

ground for connecting the findings of the atomistic calculations
to the theoretical “trap” models of the glassy state. The free

Figure 2. Distribution of Helmholtz energy (per atom) of the
sampled potential-energy minima. In the inset to the figure, the
distribution of the potential energies is also depicted. Please note the
logarithmic ordinate in the inset to the figure.
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energy barrier, ΔA, provides an excellent estimate of the trap
depth, Etr ≡ A‡ − Amin. In the inset to Figure 3, the logarithm
of the density of trap depth, ρ(Etr), is presented as a function
of the trap depth, Etr. A single model cannot fit the entire
distribution of barrier heights, since it exhibits a pronounced
peak at low Etr and an extended tail for high Etr. The
distribution can be well fitted by a Gaussian model of trap
depths at low values of Etr < 25 kBT, eq 41, with E̅tr ≃ 15.05
kBT and E0 ≃ 8.65 kBT. For higher values of Etr, the
distribution seems to follow an exponential decay according to
eq 40. Both models, as discussed in the methodology section,
exhibit glassy dynamics. Moreover, the exponential model
predicts a finite “ideal” glass-transition temperature T0 in the
interesting case that ρ (Etr) decays exponentially as exp(−Etr/
(kBT0)) for large Etr. Fitting the tail, Etr > 25 kBT, of ρ(Etr) to
an exponential model results in T0 = 331 K. Interestingly, the
glass-transition temperature predicted by the exponential trap
model is very close to the temperature corresponding to the
point at which the dynamics (viscosity or relaxation times)
diverge, i.e., the temperature T∞ of the Vogel−Fulcher−
Tammann (VFT) equation.92−94 Above the classical glass-
transition temperature, Tg, which is arbitrarily defined as the
temperature where the relaxation times are longer than 102 s,
the viscosity and the relaxation times of the α- process probed
by all kinds of spectroscopy, e.g., dielectric, mechanical or
Raman, verify the VFT equation, τ = τ0 exp(B/(T − T∞)).
Dielectric measurements in polystyrene of similar molecular
weight as our systems, comply with a VFT equation with T∞ ≃
320 K.95

The free energy barriers in the glassy state are mainly shaped
by the underlying potential energy contribution to the height
of the barrier. This is depicted in the inset to Figure 4. The
potential energy contribution to the barrier height is always
positive; transition states between minima are always higher in

terms of potential energy than the minima themselves. In terms
of classical thermodynamics, the free energy barrier heights of
Figure 3 are split into internal energy, U, and entropy, S
according to eqs 6 and 5. The internal energy contribution is
presented in the main part of Figure 4. The addition of the
vibrational contributions to U causes some of the barriers to
exhibit (slightly) negative energy barriers; this is reasonable.
Other than that, the internal energy is mainly shaped by the
potential energy contribution and exhibits the same shape and
breadth.
The distribution of the entropic contribution to the free

energy barrier heights is presented in Figure 5. The

Figure 3. Distribution of Helmholtz energy barriers separating the
transition states from the minima. For every transition, two values, i.e.,
the free energy differences between the transition state and the two
adjacent minima, are included. In the inset to the figure, the logarithm
of the probability distribution of trap energies (Etr ≡ A‡ − Amin) is
depicted. The solid line corresponds to the fit of a Gaussian trap
model, while the dashed line to a fit of an exponential model at large
trap depths.

Figure 4. Distribution of internal energy barriers separating the
transition states from the minima. For every transition, two values, i.e.,
the internal energy differences between the transition state and the
two adjacent minima, are included. In the inset to the figure, the
distribution of the potential energy differences is depicted.

Figure 5. Distribution of entropy barriers between the transition
states and minima.
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distribution is quite symmetric and centered around −5kB.
Mostly negative values of the entropic barriers are expected,
since the system should be confined within a narrow (curved)
passage in configuration space leading from the one minimum
to another. This implies loss of entropy which is clear in Figure
5. However, there are a few cases where the transition state has
higher entropy than the minimum. It is generally assumed that
entropy differences do not play a major role in transitions in
the glassy state.10 However, it is observed that for a polymer
glass, like the aPS studied in this work, elementary transitions
through first-order saddle points entail a substantial entropy
contribution, lower than, albeit on the same order of
magnitude as the internal energy contribution. Despite the
fact that entropy is somewhat neglected in the study of organic
glasses, it seems to contribute significantly to their properties;
the same observation was drawn for the entropic contribution
to the elastic constants of aPS.8

The contribution of the vibrational motion to the height of
the free energy barriers can be further analyzed by studying the
distribution of the vibrational frequencies. The average density
of vibrational states, G(ω), is shown in Figure 6, averaged over

inherent structures and transition states. The abscissa of the
figure, expressed in terms of the phonon energy transfer, allows
for connections with experimental studies of the density of
vibrational states of polystyrene. In the inset to the figure, the
imaginary frequencies of the transition states, related to the
negative eigenvalues of the Hessian, are shown along the
negative part of the frequency axis. By focusing on the density
of states along the positive semiaxis (real frequencies, i.e., the
main part of Figure 6) of the two distributions of frequencies,
we cannot see any significant difference between minima and
transition states over the whole frequency spectrum. The
density of vibrational states in the low-energy region below 5
meV, as measured by inelastic and quasi-elastic neutron

scattering exhibits several features,96,97 that are also present in
the calculated curves. The position of the peak of G(ω), i.e.,
around 5 meV, is in good agreement with experimental studies
on PS specimens of comparable molecular weight.96 As
expected, the width of the peak is significantly different from
the experimental measurements; this can be mainly attributed
to the lack of electronic degrees of freedom in our model.
Interestingly, the range of the imaginary frequencies is
relatively narrow and dominated by a pronounced peak. The
narrowness of the density of the imaginary frequencies at the
transition states indicates that most of the barriers the system
must overcome have similar curvature in the multidimensional
configuration space (detailed analysis of the evolution of the
curvature follows).

3.3. Structural Transition Pathways. Despite the finite
number of atoms employed in our simulations, the elementary
structural transitions sampled by our procedure vary from
simple to very complicated ones. Figure 7 depicts the reaction

profile of three elementary transitions starting from the same
minimum. The reaction path has been probed by following the
quadratic stepping algorithm presented in the methodology
section. The first one (blue line) has a low activation energy;
the connected minima are energetically similar and, judging by
the length of the path lie close to each other in configuration
space. On the contrary, the reaction profile of the third pair
(red line Figure 7) links two totally different in energy, but
neighboring (connected), minima. Apart from the height of the
barrier, the profile includes several “shoulders”, indicating
intermediate stages during the rearrangement events.
An interesting property of the minimal-energy (reaction)

path is its scalar curvature, κ(s), defined by eq 37 in mass-
weighted coordinates. In many solid-state problems, transitions

Figure 6. Average density of vibrational states, G(ω), of the minima
and the transition states versus the phonon energy transfer, ℏω. In the
inset to the figure, the imaginary frequencies (of the system found at
the saddle points) are plotted along the negative energy semiaxis. The
density of vibrational states is normalized so that the area under the
curve is unity. Experimental data (neutron scattering) available up to
5 meV are also included (scaled for comparison).96

Figure 7. Potential energy profile of three elementary transitions,
obtained through reaction path following, using the transition state as
the starting configuration, as explained in the text. The profile is
presented in terms of the configurational distance, i.e., the distance
between the current configuration and that of the saddle point, ∥Rcur
− R‡∥, in the multidimensional Cartesian space. Negative values of
the abscissa indicate the path leading to the initial minimum (s < 0),
where all searches were initiated.
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between states A and B are made possible only through a
narrow passage in the dividing surface between them
surrounding the transition state (first-order saddle point). An
estimate of the width of a passage of this kind is the scalar
curvature, depicted in Figures 8 and 9. The pair of minima

considered in Figure 8 are separated by a shallow, relatively
symmetric potential energy barrier, whose height is around
3kBT and the relevant transition rates are on the order of 1012

s−1 in both paths. On the contrary, the pair of minima whose
reaction path curvature is depicted in Figure 9 are separated by
a barrier whose height is slightly more than 40kBT when
approaching from s < 0, and 10kBT when approaching from s >

0. The transition from the left-hand minimum to the right-
hand one is the slowest sampled, with a rate constant of 10−17

s−1.
The shape of the curvature encountered along the minimal-

energy path is important. In the proximity of stationary points
on the energy hypersurface, both the tangent and the curvature
expressions become ill-defined, since the magnitude of the
gradient of the potential energy approaches zero. The
curvature of the reaction pathway, κ(s), becomes infinite
there. Apart from the neighborhoods around stationary points
of the energy landscape, stationary points of the path curvature
play an important role. Analysis of the profile of the scalar path
curvature along s can help in locating the points along the path
where significant changes of the system take place. The profile
exhibits both maxima and minima. The former correspond to
rearrangement events, while the latter indicate location where
the system changes minimally. Therefore, Cremer and
Kraka98,99 introduced the term “reaction phases” in chemical
reactions, as the path regions from one curvature minimum to
the next, interrupted by a curvature maximum in between.
Each reaction (or structural rearrangement in our case) can be
composed of different number of reaction phases, each of them
with its own characteristic curvature pattern.
Figure 8 presents the curvature and the relative energy (with

respect to the saddle point) along the pathway between two
fast-communicating minima. It can be seen that the smooth
part of the energy profile, connecting the saddle point to the
minimum at the reactant side (s < 0), corresponds to an almost
featureless evolution of the curvature perpendicular to the
path. Apart from a small local maximum at around s ∼ −2,
there are no other stationary points. The connection to the
right-hand side minimum is also quite smooth. Both directions
exhibit mechanisms with at most two or three stages that
transform the system from the minimum to the transition state.
However, we should note that even a smooth energy profile
like that in Figure 8 may be a result of a multistage
rearrangement mechanism. On the contrary, the two minima
of Figure 9, exhibit a wealth of transformation phases for the
system to go from the one to the other minimum and vice
versa. There are many local maxima in both directions, of
different magnitude and spacing. Thus, even if the connection
between these two minima is considered an elementary
structural rearrangement, the underlying motion of the system
within its phase-space is very complicated.

3.4. Rate Constants. The application of saddle point
searching and constructing the minimum-energy paths has
resulted in sampling 4346 transitions on the energy landscape
of aPS. The combination of methods allowed us to access a
wide spectrum of passages between basins, including those
going through high-lying terrain (cf. Figure 9) in the rugged
energy landscape of the system. The corresponding distribu-
tion of transition-rate constants is depicted in Figure 10. The
distribution is extremely broad, spanning 31 orders of
magnitude (the smallest rate constant being (10 s )17 1− −

while the largest being (10 s )14 1− ). This huge range of values
necessitated the use of bins equidistant in a logarithmic scale,
with the proper mapping for the density distribution.
The distribution is characterized by a high concentration of

rate constants in the range 100 - 1012 s−1 and more
interestingly, a “wing” extending to very low rate constants,
indicating that the system was indeed capable of undergoing
elementary transitions through high-energy regions of its

Figure 8. Scalar curvature as a function of the reaction coordinate
(path length) for one of the shallowest barriers encountered in saddle
point search (saddle point corresponding to the blue profile of Figure
7) . The numerical integration step is 0.005 u1/2 nm with u being the
atomic mass unit.

Figure 9. Scalar curvature as a function of the reaction coordinate
(path length) for the steepest barrier encountered in saddle point
search (saddle point corresponding to the red profile of Figure 7).
The numerical integration step is 0.005 u1/2 nm with u being the
atomic mass unit.
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energy landscape. The distribution exhibits several local
maxima, indicating the existence of several modes of
rearrangement. The time scales of those maxima appear close
to the dashed lines that mark macroscopic relaxation time
scales, probed by Dielectric Spectroscopy (DS). Grigoriadi et
al.100 have succeeded in measuring the dielectric response of
freshly quenched aPS. Their experiments identified three
distinct relaxation processes, namely the α-relaxation of the
glass transition, a β*-relaxation that was present only in the
case of freshly quenched glasses and disappeared after aging of
the samples, and a γ-relaxation that was always measured
irrespectively of the thermal history of the sample. The
corresponding inverse time scales of the DS relaxation process,
complemented by the inverse time scale of the δ-relaxation
obtained by neutron scattering experiments,101 are marked by
dashed lines in Figure 10. Their proximity to the maxima of the
distribution is remarkable, except for the α-relaxation, which is
a cooperative phenomenon consisting of sequences of
elementary structural transitions.
The wing of the distribution of rate constants extending to

low rate constants is probably too low to be physically relevant
at room temperature. However, it bears a wealth of
information concerning the topography of the landscape and
is presented in the inset to Figure 10, which indicates that a
power-law distribution of the rate constants can fit this wing.
By transforming the distribution of waiting times of the
exponential model, eq 43, to the equivalent distribution of rate
constants, a power-law dependence of the rate constants
emerges; its form is ρ(kA→B) ∼ kA→B

(T/T0)−1. In a completely
equivalent way, the same distribution can be obtained by
transforming the density of the trap energies, ρ(Etr), assuming
that they follow an exponential decay (cf. Figure 3 and
discussion therein) and by employing the TST expression for
the rate constants, eq 39. In the inset to Figure 10, as well as in

the main figure, an equally spaced binning on the ln(k)-axis is
used for estimating the distribution. By employing equally
spaced bins on ln(k), the exponent of a power-law tail of the
form kA→B

(T/T0)−1 is increased by 1, leading to an exponent a = T/
T0. This is indeed confirmed in the inset to Figure 10; a power-
law approximation holds for low rate constants. The actual
value of the power-law exponent (a ∼ 0.65) is lower than the
one anticipated (T/T0 = 0.9 based on the fitting of the free
energy barrriers, cf. Figure 3). This is due to the sensitivity of
ln(k) to poor sampling of slow transitions and the added
complexity of getting the exponential of the free energy barrier.
At low rate constants, the occupancy of density-calculation
bins is binary (0 if no or 1 if a single transition is found),
whereby the actual characteristics of the distribution are not
represented accordingly. The appearance of a power-law tail
resembles the distribution of trapping times at long time scales,
eq 43, that was proposed by Bouchard87 on the basis of
theoretical considerations and the phenomenological models
of aging in disordered systems. As discussed above, the
existence of the power-law tail indicated a system that exhibits
glassy dynamics and has a well-defined finite glass-transition
temperature. A similar power-law tail of the distribution of
transition rates has been also observed by Tsalikis et al.50 in the
case of a glass-forming mixture of spherical Lennard-Jones
particles.
Finally, we would like to test whether there is any correlation

between the transition rate constants and the distance in the
multidimensional configuration space between the minimum
and the relevant saddle point. These two characteristic
quantities are plotted in Figure 11 for each elementary

transition. We should note that the distance in configuration
space may seem quite large, i.e., 100 nm, but it entails
displacements of all atoms on the saddle point with respect to
the minimum. By scaling it with the number of atoms
( (1000)), we clearly see that the per-atom displacement is
minute (on the order of 1 Å). As we can see, there does not
seem to be any significant correlation between the transition
rate and the distance between the minimum and the saddle

Figure 10. Probability density of the rate constants of the identified
distinct transitions between minima on the energy landscape of aPS.
In the inset to the figure, a power-law fit (with the exponent a defined
in the text) to the lower half (10−15 ≤ kA→B ≤ 105) of the distribution
is presented in double-log representation. Dashed lines in the main
figure correspond to macroscopic relaxation rates of the four
relaxation processes, namely α, β*, γ, and δ (from left to right,
respectively) obtained by dielectric relaxation experiments.100,101

Figure 11. Variation of the distance between a minimum and a saddle
point with respect to the transition rate constant.
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point in the configurational space. There is a horizontal bar of
fast transitions extending along the full spectrum of distances,
indicating that even distant saddle points (with respect to the
minimum) can be reached by crossing a shallow free energy
barrier. In other words, for a given distance around a
minimum, saddle points of different heights can be found
and passages with extremely different rate constants can be
followed by the system.

4. CONCLUSIONS
In this paper, we present a set of methods for locating
stationary points on the energy landscape of a realistic glassy
polymer system described by classical molecular force fields at
atomistic resolution. Several aspects of our methods and their
application exhibit salient novelties. While most studies of large
systems are limited to the energy and gradient calculations for
performing saddle point searches and path sampling,102−104 we
have been able to use methods based on the local quadratic
approximation that entail analytical calculation of the exact
Hessian of multiterm atomistic force fields. These methods
were introduced in the framework of ab initio calculations,
their use in the community of classical molecular simulations
will be beneficial. As far as the saddle point search is
concerned, we apply a combination of techniques that allow us
to step predictably on a rugged energy landscape. Every step to
be undertaken is subjected to a combination of criteria that
ensure careful stepping (i.e., reducing the step size to ensure
displacement of the system within the region of trust of a local
quadratic approximation) and conserve the initial direction of
the saddle point search. Next, the minimum energy path is
obtained by a quadratic method, which converges faster than
brute-force linear Euler methods to the adjacent minima and
remains close to the true reaction path by invoking a quadratic
(and cubic close to the saddle point) approximation of the true
energy landscape. The combination of all methods presented
reveals a very broad distribution of elementary transitions
sampled on the energy landscape of glassy atactic polystyrene.
On top of the energetic characteristics of the barriers, the
specific rearrangement mechanisms that allow the system to
move in its configuration space are also of major importance.
In the case of binary atomic glasses, it has been observed that
the main mechanism involves “cage-breaking” events.51−56

However, a specific rearrangement mechanism may be difficult
to isolate in glassy polystyrene, since the studied system bears
bonds between atoms and hard torsional potentials. The
connection of transitions to specific changes in structure will
be the focus of a future work.
Apart from the several methodological advances presented in

this work, there are several salient findings concerning the
topography of the potential energy landscape of glassy atactic
polystyrene. Differences in barrier heights (and hence rates)
are shaped by the height of the transition states on the energy
landscape, since all minima visited are characterized by similar
potential energy values. Obtaining a rich distribution of barrier
heights allows connections to theoretical models of the glass
transition and the glassy states, like the “trap” models. The
distribution of the free energy barrier heights cannot be fully
described by a single trap model; at low values, a Gaussian
distribution provides a good representation, while at larger
barrier heights the distribution exhibits a clear exponentially
decaying tail. The later gives rise to an extended power-law tail
of the distribution of rate constants. Connection to theoretical
models of the glass phenomenology allows prediction of the

“ideal” glass-transition temperature, T0, entering the VFT
equation describing the super-Arrhenius temperature-depend-
ence of dynamics. The free energy barriers include a small but
substantial entropic contribution; its distribution being
Gaussian and narrow since the barriers are characterized by
similar curvatures (also probed by the study of the density of
vibrational states). The profile of the curvature along the
transition pathway can discern different rearrangement phases
in the course of transitions. Even the elementary transitions
studied in the present work are characterized by a multitude of
rearrangement phases along the minimal-energy path connect-
ing a minimum to the neighboring transition states. Finally, the
ultimate goal of this effort was the prediction of the
distribution of rate constants. The rate constant distribution
in glassy atactic polystyrene is extremely broad with peaks
close to the experimentally measured time scales of the
subglass relaxation transitions of polystyrene (δ, γ, and β).
Those transitions are results of elementary structural
transitions of the system, i.e., the system hopping from one
basin of the energy landscape to another. As far as the α-
relaxation is concerned, despite the fact that traces of its
corresponding time scale can be found in single elementary
transitions in our simulations, it is a superposition of
elementary events. Experimental verification of our predictions
is accomplished at three points in the course of the study: (i)
the density of vibrational states is in agreement with that
obtained by spectroscopic methods, (ii) the estimation of the
VFT glass-transition temperature (by the distribution of free
energy barriers) is within 3% of the one obtained by fitting
macroscopic measurements, and (iii) the peaks of the rate
constant distribution correspond to the time scales of the
subglass relaxations of polystyrene at the same temperature.

■ APPENDIX A. PATH INTEGRATION WITHIN LQA
As discussed in the main text, the steepest descent path can be
obtained by integrating eq 32:
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g H x x
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x
x

0
0 0

= − − −
(32)

We can better conceptualize the solution to the above equation
by transforming it to generalized normal coordinates.44 By
considering the eigenvalues, λi, and the orthogonal matrix U of
column eigenvectors of the Hessian, Hx|x0, the solution to eq 32
can be obtained as
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t tA Ua U( ) ( ) T= (A2)

and

a t
e

( )
1

ii

t

i

i

λ
= −λ−

(A3)

where λi are the eigenvalues of the Hessian.
In order to integrate eq 30 for a given step in s, δs = (s − s0),

we should determine the corresponding value of t that provides
this step. A straightforward Euler integration of eq 31
employing a tiny step size δt suffices. An initial estimate of
the Euler step size, δt, is obtained by
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where NEuler is the number of Euler steps to be taken (in our
case, NEuler = 104).
The relationship between the parameter t and the arc length

can be obtained from the derivative
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By substituting eq A1 into the right-hand side of eq 32 and
multiply the result by UT,44
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with gx′ being the gradient in normal coordinates
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By further employing the fact x x x xT T T′ = , eq A5 becomes
upon substitution of eq A6:
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which is conveniently rewritten in the Hessian eigenvector
space. Given a desired step size in the arc length, eq A8 is
readily integrated by employing small steps in t until the
predefined arc length, δs is reached.
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