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Hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths in Asia and Africa.
Developing effective and non-invasive biomarkers of HCC for individual patients remains an urgent task for early diagnosis and
convenient monitoring. Analyzing the transcriptomic profiles of peripheral blood mononuclear cells from both healthy donors and
patients with chronic HBV infection in different states (i.e. HBV carrier, chronic hepatitis B, cirrhosis, and HCC), we identified a set of
19 candidate genes according to our algorithm of dynamic network biomarkers. These genes can both characterize different stages
during HCC progression and identify cirrhosis as the critical transition stage before carcinogenesis. The interaction effects (i.e. co-
expressions) of candidate genes were used to build an accurate prediction model: the so-called edge-based biomarker. Considering
the convenience and robustness of biomarkers in clinical applications, we performed functional analysis, validated candidate genes
in other independent samples of our collected cohort, and finally selected COL5A1, HLA-DQB1, MMP2, and CDK4 to build edge panel
as prediction models. We demonstrated that the edge panel had great performance in both diagnosis and prognosis in terms of
precision and specificity for HCC, especially for patients with alpha-fetoprotein-negative HCC. Our study not only provides a novel
edge-based biomarker for non-invasive and effective diagnosis of HBV-associated HCC to each individual patient but also introduces
a new way to integrate the interaction terms of individual molecules for clinical diagnosis and prognosis from the network and
dynamics perspectives.

Keywords: hepatitis B virus, hepatocellular carcinoma, diagnosis and prognosis, edge-based biomarker, dynamic network
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Introduction
Hepatocellular carcinoma (HCC) is predicted to be the sixth

most commonly diagnosed cancer and the fourth leading cause
of cancer death worldwide in 2018 (Bray et al., 2018); most HCC
cases result from liver cirrhosis caused by chronic hepatitis B
(CHB) or C virus infection (Yang et al., 2018). Notably, nearly half
of new HCC cases come from China, which is also a major area
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of hepatitis B virus (HBV) infection. An early diagnosis of HCC
remains urgent for effective treatment of patients to prevent the
progression of HBV-induced HCC and to reduce risk of mortality,
especially in the early stage of carcinogenesis.

Currently, the conventional methods for HCC diagnosis include
ultrasound, serum alpha-fetoprotein (AFP), computed tomogra-
phy scanning, and magnetic resonance imaging. Ultrasound is
mainly recommended for screening and surveillance; however, it
exhibits only a moderate sensitivity of 60% (Singal et al., 2009)
and an extreme reliance on operator experience. Although an
AFP level of >400–500 ng/ml is considered a gold standard
diagnostic criterion for HCC at present, 30% of the patients with
a low AFP level are already in an advanced stage (Waidely et al.,
2015). These methods have their own limitations in terms of
accuracy, sensitivity, and timeliness.

To address these issues, numerous studies have developed
and provided novel strategies from different viewpoints,
especially for molecular biomarkers (He et al., 2012; Sa et al.,
2016; Llovet et al., 2018). Within the bloodstream, peripheral
blood mononuclear cells (PBMCs) represent a reservoir of
inflammatory cells that contribute to disease progression by
different means. It has been repeatedly demonstrated in recent
years that genetic expression in PBMCs is altered in the context
of malignancy (Baine et al., 2011; Jiang et al., 2016). Some
studies have identified characteristic changes (e.g. expression
or mutation) of disease-associated genes in PBMCs that could
be used for HCC diagnosis, due to the fact that both chronic HBV
infection and HCC progression can lead to dysfunctions of the
immune system, and PBMCs, as the most common immune cell
population throughout the whole body, may play an important
role in reflecting these dysfunctions (Shi et al., 2014; Ding
et al., 2015; Peng et al., 2016). Recent publications suggest
that genes in tumor-educated circulating PBMCs are valuable
surrogate markers with diagnostic potential and prognostic
applications in different cancer localizations such as lung
(Zhou et al., 2016), colorectal (Ganapathi et al., 2014), breast
(Suzuki et al., 2019), and digestive cancers (Honda et al.,
2010; Marshall et al., 2010). These findings have provided
remarkable evidence for developing blood-based tests for
HCC diagnosis. However, most of these studies focused on
individual and static biomarkers (i.e. node-based or vertex-
based biomarkers), which mainly contribute to HCC diagnosis or
prognosis based on static and low-dimensional characteristics
(e.g. by using single markers with corresponding thresholds
according to their different concentrations). Considering the
complicated and personalized pathogenesis of HBV-induced
HCC, it is necessary to introduce a new way to integrate
the interaction effects of individual molecules into clinical
diagnosis and prognosis from the perspectives of network and
dynamics—the so-called edge-based biomarker (Zeng et al.,
2016). Different from the traditional node-based biomarker,
the edge-based biomarker requires significant differences of
correlations between two biomolecules (e.g. genes and proteins)
rather than their individual concentrations to predict the specific
stage during disease progression for individual patients (Zhang

et al., 2014; Liu et al., 2016a; Yu et al., 2017). The high-
dimensional information included in an edge-based biomarker
can achieve accurate diagnosis and prognosis, even with
individual heterogeneity. In addition, another advantage of an
edge-based biomarker is that it can provide clues on patho-
logical mechanisms during disease progression or functional
activity (i.e. gain or loss) responses to therapeutic regimens
(Zeng et al., 2016).

In this study, to identify novel edge-based biomarkers for
specific and non-invasive diagnosis of HCC with HBV infection
for individual patients, we collected blood samples from both
healthy donors and patients with chronic HBV infection in differ-
ent states (i.e. HBV carrier (HBVC), CHB, cirrhosis, and HCC). By
analyzing the transcriptomic profiles of PBMCs with our devel-
oped algorithm at a network level (Figure 1), we identified 19
candidate genes whose properties satisfied dynamic network
biomarkers (DNBs) (Chen et al., 2012). After functional analysis
and further selection, COL5A1, HLA-DQB1, MMP2, and CDK4
were considered as key genes due to their robustness in an
independent cohort. Then, we integrated the interaction terms
of the individual genes to build prediction models. Actually,
our edge-based biomarkers could be considered to specifically
distinguish HCC stage and to further effectively predict outcomes
for individual patients.

Results
Dynamic transcriptomic profiles of PBMCs from patients in
different stages were measured during HBV-associated HCC and
healthy donors

We recruited 306 clinical participants, including healthy
donors and patients in different disease states according to the
progression of HBV-associated HCC (i.e. HBVC, CHB, cirrhosis,
and HCC), according to the corresponding criteria of inclusion
and exclusion (Supplementary Table S1), while their clinical
information (Supplementary Table S2) and blood samples were
collected in a methodical and systemic way (details shown
in Methods). Then, we randomly chose blood samples from
3 healthy donors as well as 3 HBVC, 10 CHB, 10 cirrhosis,
and 10 HCC patients from the previous cohort to measure the
transcriptomic profiles of their PBMCs.

A total of 1906 differentially expressed genes (DEGs)
(Supplementary Table S4) were identified by a random variant
model (RVM) F -test with a corresponding P-value of <0.05 after
FDR correction. Then, we performed unsupervised hierarchical
clustering (Figure 2A) based on these DEGs to characterize
different stages during the progression of HBV-associated HCC
from the normal. Unfortunately, samples at different stages could
not be clearly and independently distinguished by hierarchical
clustering, except for some of samples at cirrhosis. This result
might imply that using molecular signatures at the individual
expression level might make it difficult to represent complicated
changes in a systematic and organized manner during the
initiation and evolution of a complex disease.

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
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Figure 1 Study flowchart of identifying edge-based biomarkers. Candidate genes were roughly filtered by ANOVA and gene profile clustering
with gene ontology analysis (GCGO). Next, we created static correlation networks across all disease stages to identify hub genes for further
selecting candidate molecular signatures with network information and then tested these genes with dynamic characteristics based on the
three criteria of DNBs, which can predict and signal the critical transition before hepatocellular carcinogenesis. To build the predictive edge-
based model with the selected genes, we transformed their gene expression levels (vertex space in math) into gene-pair correlations (edge
space in math) based on each single sample data point (Zeng et al., 2016). Finally, a multiple logistic regression model with forward selection
techniques was used to build a baseline risk model. Three edges (gene pairs) were retained to form the edge panel, which was significantly
associated with an HCC diagnosis in the model.

Stage-characterized candidate biomarkers were identified by
static network analysis

To address the above challenge on the poor performance of
distinguishing stages by molecular signatures at the individual
expression level, we introduced biomarkers with network
information. Generally, a complex disease results from dys-
functions, not in individual molecules but via a systematic
interplay of multiple molecules and even biological functions
(Barabási and Oltvai, 2004; Elkington, 2006). To obtain non-
invasive biomarkers to precisely and specifically distinguish
HCC stages from other disease stages during the progression
of HBV-associated carcinogenesis, we developed an algorithm
to identify stage-characterized biomarkers based on network
information (Figure 1).

First, based on the changing trends in expression between two
consecutive stages, we clustered the DEGs into corresponding
profile patterns by cluster analysis of gene expression dynamics

(Ramoni et al., 2002; Hörmann, 2003) (Supplementary Table S5).
A total of 7 out of 80 total clusters were selected with statistical
significance (P < 0.05) (Figure 2B; members of each cluster are
listed in Supplementary Table S6).

Then, we constructed a static network weighted by pair-wise
correlations among members of the seven significant profile
clusters to estimate their functional activity at a comprehensive
interactome level during the progression of HBV-associated HCC
(details shown in Methods). To investigate the mechanisms of
HCC carcinogenesis, we performed functional analyses on active
genes with the acquisition or loss of co-expression edges in
a stimulus-dependent manner across stages of HCC develop-
ment. As shown in Figure 2C, typical HCC-associated pathways
(e.g. PI3K-Akt, p53, and Wnt signaling pathways) were identified
(Tian et al., 2016; Debebe et al., 2017), and their dynamic
activities implied the complicated regulations during disease
progression. In particular, KEGG pathways associated with cell

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
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Figure 2 Gene profile cluster analysis and cross-stage network construction from HBV infection to HCC. (A) Unsupervised hierarchical
clustering was performed to distinguish different stages based on 1906 DEGs. (B) Seven unique gene profile clusters (#17, #18, #27, #36,
#44, #63, and #64) were identified using cluster analysis of gene expression dynamics according to the time-series gene expression data.
The horizontal axis represents different disease stages from healthy to HCC, and the vertical axis represents the gene expression value after
log-normalized transformation. The P-value indicates significance. (C) Functional phenotyping of active genes with the acquisition or loss of
co-expression edges in the static network across stages of HCC development. (D) The static subnet shows 19 signature genes (red nodes)
with the highest degrees, consisting of 159 nodes (genes) and 421 edges (gene pairs). The size of each node represents the degree value.
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Figure 3 A total of 19 signature genes with dynamic characteristics
satisfying the 3 criteria of DNB. (A) Brief description of the three
criteria of DNB theory. Specifically, near the tipping point, DNB
members have a high coefficient of variation (CV), the PCC among
members of DNB (PCCi) increases, and the average PCC between the
DNB members and others (PCCo) decreases. (B) DNB analysis on 19
signature genes from healthy to HCC disease states. The critical stage
was identified as cirrhosis, with a max CI score. (C) Networks graph-
ically illuminate the dynamic changes of the 19 signature genes in
the network structure.

metabolism and communications (e.g. focal adhesion, cell adhe-
sion molecules, complement and coagulation cascades, steroid
biosynthesis, and transcriptional misregulation in cancer) were
significantly and abnormally active across all stages of HBV-
associated carcinogenesis; six related to the immune response
(i.e. Th1 and Th2 cell differentiation, B cell receptor signaling
pathway, cytokine–cytokine receptor interaction, toll-like recep-

tor signaling pathway, Th17 cell differentiation, and chemokine
signaling pathway) were enriched only in stages of HBV infec-
tion and CHB (Lara-Pezzi et al., 2001). Similarly, results of GO
analysis showed that dysfunctions in HBV infection and CHB
are mainly involved in fatty acid/lipid oxidation and regulation
of cell proliferation, while dysfunctions in HCC initiation and
development are mainly involved in regulation of the Wnt sig-
naling pathway (Supplementary Table S7 and Figure S1). These
findings might suggest that complicated dysfunctions in immune
responses from HBV infection to final HCC were involved in a
failure of anti-tumor immunity and an altered tumor microenvi-
ronment (Marshall et al., 2013).

Generally, hub molecules have been considered to play impor-
tant regulatory roles in conducting biological functions and main-
taining stability of a network. Thus, we extracted 19 hub genes
with the highest degrees as candidate biomarkers (Figure 2D).
These signature molecules presented stage-characterized
dynamics during the progression of HBV-associated HCC
(Supplementary Table S8); furthermore, their involved bio-
logical functions and processes were significantly related
to human hepatic dysfunctions and hepatocarcinogenesis
(Supplementary Figure S2). These functional analysis results
showed that these candidate biomarkers played different and
complicated roles during the progression of HBV-associated
HCC.

The candidate molecular signatures satisfied the three criteria
of DNBs

Traditionally, molecular biomarkers for disease diagnosis or
prognosis are mainly based on their static information (e.g.
different concentrations), which cannot provide early-warning
signals at the tipping point or critical period (i.e. pre-disease
state) during disease progression. To address this issue for
early diagnosis, DNBs were introduced based on the three
criteria from the non-linear dynamic theory (e.g. fluctuation
changes of concentrations of leading molecules, dynamic
associations, or correlations among leading molecules) to
predict malignant phase transition during disease initiation and
deterioration (Chen et al., 2012). Here, we tested whether these
19 candidate molecules have dynamic characteristics according
to the three criteria of DNBs. The DNB method has been applied
successfully to studies in multiple fields (e.g. disease diagnosis
and prognosis, therapeutic response, and cell differentiation)
(Mojtahedi et al., 2016; Richard et al., 2016; Lesterhuis et al.,
2017; Li et al., 2017b; Yang et al., 2018). Specifically, if a
system approaches the critical phase transition, a leading
group of indicative molecules (i.e. DNBs) appear and satisfy the
following three conditions: (i) drastic increases in fluctuation
for molecular concentrations, which can be evaluated by the
coefficient of variation (CV); (ii) increases in correlations among
molecules in this leading group, which can be evaluated by
Pearson correlation coefficients (PCCs) (PCCi); and (iii) decreases
in correlations between molecules in this leading group and
others, which can be evaluated by PCCs (PCCo). A criterion
index (CI) is provided as a numerical signal by comprehensively

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
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Figure 4 Diagnostic capacity assessments for the four core candidate genes. (A) RT-PCR validation of COL5A1, HLA-DQB1, CDK4, and MMP2 in
blood samples of other independent participants from our cohort. The vertical axis represents GAPDH-normalized relative expression values
and their expression differences among stages during the progression of HBV-associated HCC measured by Mann–Whitney U tests. (B–E)
ROC curve analysis of the logistic panel, individual genes, and panels in AFP-negative (AFP <20 ng/ml) patients (n = 72 out of 150 HCC
samples; n = 77 non-HCC samples), HCC vs non-HCC patients and cirrhosis patients vs HCC patients. (F–I) Comparison of the edge panel, the
traditional biomarker AFP, and the new proposed biomarkers GPC3 and DKK1 in the GEO data set GSE25097 by ROC curve analysis.

integrating the three parameters (CV, PCCi, and PCCo) of the DNB
method. When CI reaches the peak across the measured stages,
the corresponding stage is considered the critical period of the
biological system (Figure 3A).

After calculating the CIs according to expression data of these
candidate molecules in each stage during HCC progression, we
found a strong signal of critical stage before hepatocarcinogen-
esis at cirrhosis (Figure 3B), which is considered as the tipping
point. This result is consistent with the liver morphological alter-
ations during the initiation and evolution of HBV-associated HCC
(Wang et al., 2002; Sung et al., 2008). As shown in Figure 3C,
the series of networks graphically demonstrated the dynamic
changes in the network structure and expression variations of
these candidate biomarkers. This result also confirmed that the
19 signature genes possessed both network features (hubs) and

dynamic features (DNBs) of HCC progression that not only char-
acterized disease progression but also provided early-warning
signals of disease deterioration.

The candidate signatures were validated in other independent
samples of the clinical cohort

In clinical practice, biomarkers are expected to provide
accurate predictions and to be convenient on operation.
Therefore, it is necessary to further select core typical mark-
ers from the previous 19 candidate molecules. After litera-
ture mining and Ingenuity Pathway Analysis (IPA) biomarker
searching, 8 out of 19 molecules were further selected and
confirmed to have significant relationships to hepatic diseases
(Supplementary Table S9). Then, to obtain the robust signatures
for predicting the progression of HBV-associated HCC, we

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
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Figure 5 Kaplan–Meier plot analysis and log-rank test survival analysis. (A–C) Negative associations between the vertex panel, edge panel,
and AFP with overall survival were noted for HCC patients (all P < 0.001, log-rank test) in an experimental data set. (D–F) Negative associations
were found between the vertex panel and edge panel with overall survival (all P < 0.001, log-rank test) on our experimental data and
independent ICGC data, but the AFP mRNA level did not show a prognostic capacity for HCC patients in the ICGC data set.

validated the expression profiles of these 8 candidate molecules
across all stages of disease progression in other independent
samples of the clinical cohort, which includes 30 healthy donors
as well as 30 HBVC, 30 CHB, 30 cirrhosis, and 150 HCC samples.
Finally, four out of the eight genes (COL5A1, CDK4, MMP2, and
HLA-DQB1) were used for the further diagnosis and prognosis of
HBV-associated HCC due to their stage-characterized signatures
and remarkable consistency in expression levels in other
independent samples (Figure 4A; Supplementary Figure S3).

The edge-based biomarkers achieved better performance in
diagnosis

Traditionally, molecular biomarkers (i.e. node-based biomark-
ers) contribute to HCC diagnosis mainly according to individual
and static information (e.g. differential expression). However,
considering the complicated and personalized pathogenesis of

HBV-induced HCC, edge-based biomarkers with the interaction
effects of individual molecules (e.g. pair-wise correlations of
molecules) were expected to improve biomarker performance in
terms of precision, sensitivity, and specificity. Here, we created
predictive models via logistic regression based on individual
gene expression values (vertex panel) and co-expressions of
gene pairs (edge panel) (details shown in Methods).

According to the expression levels of the last four candidate
biomarkers measured by quantitative RT-PCR in the independent
samples, we found that the diagnostic performance of the
edge panel was better than individual gene pairs, even for the
typical AFP (Figure 4B; Supplementary Table S10) as with the
vertex panel (Figure 4C; Supplementary Table S10). Obviously,
the edge panel had its own advantages in HCC diagnosis in
AFP-negative patients (Figure 4D; Supplementary Table S10).
Meanwhile, these identified molecules with dynamic information

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
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were expected to predict the critical transition to HCC for
early diagnosis. Thus, we respectively used the vertex panel
and the edge panel to distinguish cirrhosis from other stages
during the progression of HBV-associated HCC and found that
the edge panel showed better performances in indicating
cirrhosis, which was considered as the critical stage of malignant
transition to HCC (Figure 4E; Supplementary Table S10). To
test the generality and superiority of our edge panel for HCC
diagnosis, we collected another independent data set from the
Gene Expression Omnibus (GEO) (GSE25097), which included
268 HCC patients, 40 cirrhosis patients, and 6 healthy samples,
and we compared diagnostic performance of our edge panel
(Figure 4F) with the traditional biomarker AFP (Figure 4G) and the
new biomarkers GPC3 (Filmus and Capurro, 2013) (Figure 4H)
and DKK1 (Shen et al., 2012) (Figure 4I) by receiver operating
characteristic (ROC) curve analysis and found that our edge panel
had higher discriminatory power (Figure 4F). These findings
suggested that our edge panel might be useful in clinical practice
based on blood testing, not only to non-invasively distinguish
HBV-associated HCC and non-HCC but also to signal imminent
carcinogenesis for early diagnosis.

The edge-based biomarkers can also be used for prognosis
Diagnostic biomarkers are also expected to be used for

prognosis (e.g. AFP) (Trevisani et al., 2001; Qin and Tang,
2002). Here, we performed Kaplan–Meier and log-rank test
survival analyses to assess the correlations of the vertex and
edge panels with overall survival in HCC patients. According
to the data from our clinical cohort, the results of the ROC
analysis showed that values of the vertex and edge panels
were significantly negatively associated with overall survival
similar to AFP (all P < 0.001; Figure 5A–C), while the vertex
and the edge panels had better performances in HCC prognosis
than individual genes (Supplementary Figure S4) and gene
pairs (Supplementary Figure S5). In addition, we validated our
results by using other cohorts (including 298 HCC patients)
from the International Cancer Genome Consortium (ICGC) and
unexpectedly found that the vertex and edge panels could
robustly contribute to HCC prognosis (Figure 5D and E); however,
it seemed that AFP lost its power in HCC prognosis (Figure 5F).
These results suggested that the vertex and edge panels
consisting of the candidate molecules identified by our algorithm
could also be a powerful and robust prognostic indicator for HBV-
associated HCC.

Discussion
In this study, we broadly recruited 273 patients suffering

from liver diseases (i.e. HBVC, CHB, cirrhosis, and HCC) and
33 healthy donors (Supplementary Table S1). Then, we profiled
whole-genome expression levels of PBMCs from blood samples
of the above cohort to identify molecular biomarkers for non-
invasively diagnosing HBV-associated HCC. After GCGO analysis,
19 candidate genes were found to predict the critical transition
stage (i.e. cirrhosis) before hepatocarcinogenesis based on the

3 criteria of DNBs (Figure 3). Then we narrowed the selection
(Supplementary Figure S2 and Table S8) and introduced the
edge-based biomarker, considering the complicated and person-
alized pathogenesis of HBV-induced HCC (Figure 1). We selected
4 core genes (COL5A1, HLA-DQB1, MMP2, and CDK4) from the
19 candidates to form the node/edge panel after performing
literature mining and expression validation in independent
cohorts (Figure 4A; Supplementary Figure S2). Interestingly,
following our algorithm, most candidate signatures belonged
to well-known cancer hallmarks (Hanahan and Weinberg, 2011).

Although the complex process of hepatocarcinogenesis is still
not fully understood, several signal pathways have been identi-
fied as critical players in the pathophysiology of HCC, including
the Wnt/β-catenin pathway, the p53 pathway, and so others
(Aravalli et al., 2008). The alterations in these pathways may
differ at the same time, which is probably the cause of the insuf-
ficient sensitivity of single biomarkers. The possibility to perform
gene profiling in combination with systems biology approaches
has led to a new era in biomarker development using multiple
genes (Schütte et al., 2015). In our study, though COL5A1, HLA-
DQB1, CDK4, and MMP2 are related to different functions in com-
plex pathways of hepatocarcinogenesis, they formed a promising
biomarker panel with diagnostic and prognostic capacities.

For each gene in this panel, studies have indicated relation-
ships with carcinogenesis. The COL5A1 gene is a member of
the clade B fibrillar collagen gene family and is involved in
the regionalization of fibril-associated macromolecules that are
necessary for tissue-specific regulation of the later fibril growth
and matrix assembly stages (Wenstrup et al., 2004). Meanwhile,
the type V collagen assembled by COL5A1 may mediate inter-
leukin products and further regulate immune responses, which
play especially important roles in auto-immunity (Yamada et al.,
2009; Sullivan et al., 2017). Another possible mechanism is
COL5A1’s involvement in extracellular matrix (ECM) formation
(An et al., 2015). CLO5A1 has been verified to be correlated with
several types of cancer (Chai et al., 2016; Zhao et al., 2016; Li
et al., 2017a; Liu et al., 2018). COL5A1 may play an oncogene
role, as it can promote cell proliferation, invasion, and survival
(Liu et al., 2018). In our study, COL5A1 expression in cirrhosis
was higher than in CHB, which indicated that COL5A1 might play
important roles in the initiation and activation of liver fibrosis
as well as the regulation of immune responses (Figure 4). In
most organs, the principle components of the ECM are colla-
gens and numerous other proteins that make up the basement
membrane. The MMP family has been implicated in the ECM
degradation associated with tumor growth and angiogenesis,
one of the earliest stages of tumor progression (Lamoreaux et al.,
1998; Fang et al., 2000). MMP2 has been studied as a potential
diagnostic or prognostic biomarker of colorectal and ovarian
cancers (Hilska et al., 2007; Périgny et al., 2008). Upregulated
MMP2 expression is often detected in solid tumor tissues and
is associated with tumor metastasis in HCC (Tang et al., 2016).
Interestingly, matrix metallopeptidase 2 encoded by MMP2 can
mediate type V collagen degradation (Veidal et al., 2012; Van
Doren, 2015) and can also initiate an innate immune response

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
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with activation of the pro-inflammatory pathways by regulating
inflammatory cytokines and chemokines (Nissinen and Kahari,
2014). Overactive cyclin protein in cancer cells often leads to
uncontrolled proliferation. Cyclin-dependent kinase 4, encoded
by CDK4, might play key roles in the tumorigenesis (Wang et
al., 2017) of a variety of cancers through deregulation of the
CDK4/6–cyclin D–INK4–RB pathway (Graf et al., 2010). In addi-
tion, CDK4 might control cell cycle progression by inducing and
maintaining cytokine responsiveness in lymphocytes (Modiano
et al., 2000). In our study, CDK4 expression was significantly
increased in the HCC stage (Figure 4). This result is consistent
with previous studies, which also reported overexpression of
CDK4 in many tumor types (Lindberg et al., 2007; Poomsawat
et al., 2010), suggesting that CDK4 is a key factor in promoting
the initiation and development of tumors. HLA class II molecules
have a relevant role in the inflammatory response elicited by
most infections. Human HLA-DQB1 belongs to the HLA class II
beta chain paralogs that are expressed in APCs and plays a cen-
tral role in the immune system by presenting peptides derived
from extracellular proteins, which has been recommended for
the diagnosis and prognosis of HBV-associated liver diseases
(Doganay et al., 2014; Liu et al., 2016b).

To summarize the discussion, the potential mechanisms by
which COL5A1, HLA-DQB1, CDK4, and MMP2 can predict disease
stage could include the following: (i) these genes are closely con-
nected to key mechanisms of hepatocarcinogenesis, including
immunity (HLA-DQB1), ECM-induced tumor formation (COL5A1
and MMP2), and cancer cell proliferation (CDK4); (ii) unlike the
conventional method of biomarker hunting, these genes were
selected from continuous disease stage data with both static
and dynamic characteristics instead of comparing HCC vs healthy
group only; and (iii) from the networks and dynamics perspec-
tives, we integrated four genes as edge biomarkers that included
high-dimensional information and could achieve accurate early
diagnosis for HCC.

After determining the core biomarker genes that were signifi-
cantly associated with the pathogenesis and progression of HBV-
induced HCC, we introduced the edge-based method to build
an edge panel by logistic regression with integrating interaction
terms (e.g. co-expression) among signature molecules instead
of a traditional model of diagnosis or prediction by using the
vertex panel with a composite of expression levels or concen-
trations of individual molecules. As a remarkable advantage,
edge-based biomarkers can predict phenotypes in an accurate
manner, even though their individual genes may have no signifi-
cantly different expression profiles. As expected, we found better
performances of the edge panel in both diagnosis (Figure 4) and
prognosis (Figure 5) for HCC than in the vertex panel and the
typical biomarkers (e.g. AFP). In particular, the edge panel had a
clear advantage for HCC diagnosis in patients without significant
increases in AFP (Figure 4D), which implied that our edge-based
biomarker could have wider applications in the clinic.

In summary, we recruited specific participants (including
HBVC, CHB, cirrhosis, and HCC patients as well as healthy
donors) to identify non-invasive biomarkers of HCC. The iden-

tified candidate genes at both the network and dynamic levels
could not only characterize the progression of HBV-associated
HCC but also identify cirrhosis as the critical transition stage
before carcinogenesis according to the mathematical model
of DNBs. Meanwhile, we introduced edge-based biomarkers
with differential correlation/network information instead of
traditional differential gene/protein expression information
to build the prediction model, which demonstrated that the
edge panel had better performances in both the diagnosis and
prognosis in terms of both precision and specificity for HCC,
especially for patients with AFP-negative HCC, than individual
genes and gene pairs as well as the vertex panel. Thus, our study
not only provided a novel edge-based biomarker for non-invasive
and effective diagnosis of HBV-associated HCC for individual
patients based on blood testing but also introduced a new way
to integrate the interaction terms of individual molecules for
clinical diagnosis and prognosis from the network and dynamics
perspectives.

Materials and methods
Study design and participants

The study design is shown in Figure 1. First, we broadly
recruited participants who satisfied the eligibility criteria
(Supplementary Table S1) from the Shuguang Hospital, Shang-
hai University of Traditional Chinese Medicine (TCM), and the
Qidong Liver Cancer Institute between August 2012 and Decem-
ber 2014. A total of 306 blood samples from these participants
(including 33 healthy donors, 33 HBVC, 40 CHB, 40 cirrhosis,
and 160 HCC patients) were collected (Supplementary Table S2).
This study was approved by the Official Ethics Committee of
the Shanghai University of TCM, and written informed consent
was obtained from all participants. The healthy volunteers
had no history of liver disease, no viral infections, and no
other diseases. All patients were screened by the diagnostic
standard as referred to the ‘Chronic hepatitis B prevention and
treatment guidelines (2010)’ (Chinese Medical Association,
2011) (Supplementary Table S1). Tumor differentiation was
graded using the Edmondson–Steiner grading system. Demo-
graphic and clinic-pathological characteristics were collected
for all included participants. Trial registration—Identifier:
NCT03189992. Registered on June 4, 2017. Retrospectively
registered (www.clinicaltrials.gov).

In addition, we obtained a data set (GSE25097) from the
GEO database (http://www.ncbi.nlm.nih.gov/geo/) and one HCC
data set from the ICGC (https://icgc.org/) for our independent
assessment of diagnostic or prognostic capacity. The HCC data
set from ICGC provided by RIKEN (project code: LIRI-JP) includes
298 donors (Hudson et al., 2010).

RNA isolation
Leukocytes were isolated from the blood samples by Ficoll-

optimized density gradient separation and were frozen at −80◦C
(Gertler et al., 2003). Total RNA was extracted using a ‘two-step’
protocol as described previously (Guo et al., 2012). Total RNA
was extracted from leukocytes from whole blood using TRIzol®

https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
https://academic.oup.com/jmcb/article-lookup/doi/10.1093/jmcb/mjz025#supplementary-data
www.clinicaltrials.gov
http://www.ncbi.nlm.nih.gov/geo/
https://icgc.org/
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Reagent (Invitrogen) and was frozen at −80◦C. A quality control
check was carried out using the NanoDrop ND-1000 (NanoDrop).

Microarray detection
We randomly selected blood samples from 3 healthy donors, 3

HBVC, 10 CHB, 10 cirrhosis, and 10 HCC patients from our clinical
cohort to measure the transcriptomic profiles of PBMCs. Total
RNA was extracted, and the biotinylated cDNAs were hybridized
to the NimbleGen Homo sapiens 12x135K Array (Roche, CAT
No. A6484-00-01). Raw data were extracted as pair files by the
NimbleScan software (version 2.5); the data were considered
robustly expressed if the signal-to-noise ratio was >2. The Nim-
bleScan software uses a robust multi-array analysis algorithm
that offers quantile normalization and background correction.
Probe level and gene summary files were produced. All microar-
ray data were deposited in the GEO (http://www.ncbi.nlm.nih.
gov/geo/), accession number GSE114783. The gene summary
files were imported into the Agilent Gene Spring Software (ver-
sion 11.0) for further analysis. An expression signal cutoff level
was set at 50.0 as the minimum number of falsely called probes.
Only genes with a signal value above the cutoff level were used
in the subsequent analyses.

Data processing
We selected DEGs according to a random variance model-

corrected analysis of variance (ANOVA). An RVM F -test is com-
monly used to filter DEGs because it can effectively increase the
degrees of freedom in cases with small sample sizes (Wright
and Simon, 2003). These values were FDR-adjusted P-values and
were considered significant if they were <0.05. All data analyses
were performed using the statistical software R version 3.1.0
(http://www.R-project.org).

Gene profile clustering combining gene ontology analysis
(GCGO)

In accordance with the different signal density change tenden-
cies of genes under different situations, we identified a set of
unique model expression tendencies. The raw expression values
were converted into log2 ratios. We defined unique gene profile
clusters by using cluster analysis of gene expression dynamics
(Ramoni et al., 2002; Hömann, 2003) according to the time-
series gene expression data. The significance of each profile
pattern was estimated by Fisher’s exact test and a multiple
comparison test. Additionally, GO analysis was used for function
detection for genes of each cluster with specific expression ten-
dencies to uncover potential HCC-associated biological functions
enriched by these identified genes.

Static network
To further select candidate signature genes with network

information for distinguishing different stages during hepato-
cellular carcinogenesis, we constructed a static network with z-
transformed PCCs of gene pairs to obtain the hub genes with high
degrees (Barabási and Oltvai, 2004). We considered absolute
PCCs > 0.9 as strong co-expressions (i.e. links).

Criteria of DNBs
DNBs were considered to predict the tipping points or crit-

ical transitions during disease progression, whose theoretical
derivation was demonstrated in our previous work (Chen et al.,
2012). Briefly, when a biological system approaches the tipping
point or critical state just before the critical transition, the DNB
(i.e. a dominant cluster of molecules) would appear and satisfy
three criteria as a predictive signal:

(i) The molecules in the cluster are highly fluctuated in terms
of their expression levels at the critical stage (i.e. the average
coefficients of variation or standard deviations of DNB members
are large).

(ii) The molecules in the cluster are highly correlated in terms
of their expression levels (i.e. the average expression correlation
among the DNB members in absolute values is high).

(iii) The molecules in the cluster are weakly correlated in terms
of expression levels with other molecules (i.e. the average corre-
lation between the molecules of the cluster and other molecule
clusters in absolute values is decreased).

Thus, we have the following criterion index CI to quantify DNB
molecules as well as the tipping point.

CI = CVI
PCCI

PCC0
,

where CVI is the average standard deviation of the DNB mem-
bers, PCCI is the average PCC of the cluster of molecules in abso-
lute values, and PCCo is the average PCC between the cluster of
molecules and other molecules in absolute values.

Based on non-linear dynamic theory, when a biological system
is near the critical stage or tipping point, a DNB cluster exists
and satisfies the above three features. This system will undergo
drastic deterioration after the critical stage and further develop
to the late disease state (Figure 3A). Thus, the DNB method is
able to provide early-warning signals of the critical transition by
quantifying DNBs (Chen et al., 2012).

Predictive models by logistic regression
We created predictive models via logistic regression based

on individual gene expression values (vertex panel) and co-
expressions of gene pairs (edge panel) as follows.

(i) Vertex (gene) panel. In the logit model based on the four
vertices (genes) combined with AFP,

logit (P = HCC) = −0.998 + 1.42 × COL5A1 + 1.278 × HLA-
DQB1−0.816 × CDK4 + 0.051 × MMP2 + 0.019 × AFP.

(ii) Edge (gene-pair) panel. After stepwise logistic regression
selection, three edges (gene pairs), including all four genes, were
enrolled in the edge panel. In the logit model based on the three
edges combined with AFP, we have

logit (P = HCC) = −1.714-6.892 × (COL5A1∼CDK4) + 2.088 ×
(HLADQB1∼CDK4) +7.267 × (CDK4∼MMP2) + 0.029 × AFP.

Real-time RT-PCR
RNA samples were qualified for further processing if the

A260/A280 spectrophotometric ratio was between 1.8 and
2.1. A total of 1 mg of total RNA was transcribed into cDNA

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.R-project.org
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in a 20 µl reaction volume. The primers used are listed in
Supplementary Table S3. Each real-time RT-PCR in a final volume
of 25 µl contained 2× SYBR Green Real-Time RT-PCR Master
Mix, 0.4 µm primers, and 0.5 µl of template cDNA. The cycling
conditions consisted of an initial single cycle of 5 min at 95◦C,
followed by 40 cycles of 30 sec at 95◦C, 30 sec at 54◦C, 15 sec
at 72◦C, and fluorescence acquisition at 83◦C for 1 sec. The
cDNA was synthesized using reverse transcriptase (TOYOBO),
oligo (dT), and random primers with 5 µg of RNA from the same
samples used in the microarray. The PCR amplifications were
performed in duplicate for each sample. The gene expression
levels were quantified relative to the expression of β-actin by
employing an optimized comparative Ct (�Ct) value method.
The differences in gene expression levels between groups
were compared using Student’s t-test. A P-value of <0.05 was
considered significant.

Statistical analyses
Differences in gene expression levels between groups were

compared using the Mann–Whitney U test. A P-value of <0.05
was considered significant. A stepwise logistic regression
model was used to combine diagnostic markers. The predicted
probability of being diagnosed with HCC was used as a
surrogate marker to construct the ROC curve. The area under
the ROC curve (AUC) was used as an accuracy index to evaluate
the diagnostic performance (Hanley and McNeil, 1983). We
defined the cutoff value according to the best predictive
values calculated by the ROC analysis, where the Youden’s
index (sensitivity + specificity − 1) was maximal. Survival
probabilities were calculated using the Kaplan–Meier method,
and differences in survival between two patient groups were
determined by the log-rank test.

Functional analysis
Genes were subjected to GO analysis (www.geneontology.

org/) to uncover their biological processes and molecular
functions. Similarly, KEGG pathway analysis (www.genome.jp/
kegg/) was used to identify significant pathways associated with
the DEGs. We used Fisher’s exact test and the χ2 test to select
significant GO terms or pathways with a threshold of significance
defined by the P-value and FDR. Within the significant category
of both the GO/pathway analyses, the enrichment Re was given
as follows:

Re = (
nf /n

)
/
(
Nf /N

)
,

where nf is the number of DEGs within the particular category,
n is the total number of genes within the same category, Nf is
the number of DEGs in the entire microarray, and N is the total
number of genes in the microarray.

Conventional biomarker filtration analysis of the selected gene
set was performed using IPA software (Ingenuity® Systems).

Supplementary material
Supplementary material is available at Journal of Molecular

Cell Biology online.
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