
OR I G I N A L R E S E A R C H

Electroacupuncture Regulates Pain Transition by

Inhibiting the mGluR5-PKCε Signaling Pathway in

the Dorsal Root Ganglia
This article was published in the following Dove Press journal:

Journal of Pain Research

Sisi Wang *

Junying Du*

Fangbing Shao

Wen Wang

Haiju Sun

Xiaomei Shao

Yi Liang

Boyi Liu

Jianqiao Fang

Junfan Fang

Department of Neurobiology and

Acupuncture Research, The Third

Clinical Medical College, Zhejiang

Chinese Medical University, Key

Laboratory of Acupuncture and

Neurology of Zhejiang Province,

Hangzhou 310053, People’s Republic of

China

*These authors contributed equally to

this work

Background: Acute pain can transition to chronic pain, presenting a major clinical chal-

lenge. Electroacupuncture (EA) can partly prevent the transition from acute to chronic pain.

However, little is known about the mechanisms underlying the effect of EA. This study

investigated the effect of EA on pain transition and the activation of metabotropic glutamate

receptor 5 (mGluR5)–protein kinase C epsilon (PKCε) signaling pathway in the dorsal root

ganglia (DRG).

Methods: The hyperalgesic priming model was established by the sequential intraplantar

injection of carrageenan (1%, 100 μL) and prostaglandin E2 (PGE2) into the left hind paw of

rats. EA treatment (2/100 Hz, 30 min, once/day) was applied at bilateral Zusanli (ST36) and

Kunlun (BL60) acupoints in rats. Von Frey filaments were used to investigate the mechanical

withdrawal threshold (MWT) at different time points. The protein expression levels of

mGluR5 and PKCε in the ipsilateral L4-L6 DRGs of rats were detected by Western blot.

Some pharmacological experiments were performed to evaluate the relationship between

mGluR5, PKCε and the MWT. It was also used to test the effects of EA on the expression

levels of mGluR5 and PKCε and changes in the MWT.

Results: Sequential injection of carrageenan and PGE2 significantly decreased the MWT of

rats and up-regulated the expression level of mGluR5 and PKCε in the ipsilateral L4-L6

DRGs. EA can reverse the hyperalgesic priming induced by sequential injection of carra-

geenan/PGE and down-regulate the protein expression of mGluR5 and PKCε. Glutamate

injection instead of PGE2 can mimic the hyperalgesic priming model. Pharmacological

blocking of mGluR5 with specific antagonist MTEP can prevent the hyperalgesic priming

and inhibit the activation of PKCε in DRGs. Furthermore, EA also produced analgesic effect

on the hyperalgesic priming rats induced by carrageenan/mGluR5 injection and inhibited the

high expression of PKCε. Sham EA produced none analgesic and regulatory effect.

Conclusion: EA can regulate pain transition and it may relate with its inhibitory effect on

the activation of mGluR5-PKCε signaling pathway in the DRGs.

Keywords: electroacupuncture, pain transition, hyperalgesic priming, mGluR5, PKCε,

DRGs

Introduction
Acute and chronic pain are the most common clinical symptoms.1–3 When acute

pain transitions to chronic pain (pain transition), adverse effects are induced at both

the physiological and psychological levels and cause unbearable suffering to the

patient. However, most analgesics fail to produce robust effects on chronic pain and

are accompanied by obvious side effects.4,5 Many studies have demonstrated that
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the mechanisms of pain change dramatically when the pain

transitions from acute to chronic.6–8 thus, the therapeutic

effects of various drugs are greatly weakened, causing

patients to suffer from chronic pain. Therefore, under-

standing the mechanisms of pain transition is of great

significance.

Protein kinase C epsilon (PKCε) is distributed in most

neurons of the dorsal root ganglion (DRG).9,10 It has been

shown that the activation of PKCε in the peripheral neuron

system is key to the generation and maintenance of

chronic pain.11,12 Recent studies have found that PKCε is

also involved in the process of pain transition.13–16 PKCε
inhibitors can effectively prevent the occurrence of pain

transition and modulate the long-term and severe chronic

pain caused by this process, which is clearly separate from

tissue damage.14,17,18 However, the upstream pathway that

is involved in pain transition remains an open question.

Metabotropic glutamate receptor 5 (mGluR5) is one of

the glutamate receptors expressed in small-diameter neu-

rons in the DRGs.19,20 Previous studies have found that

damaged peripheral tissue can release glutamate21,22 and

activate primary afferent neurons that express mGluR5,

causing hyperalgesia.23,24 The use of selective inhibitors

of mGluR5 can significantly reduce hyperalgesia.25,26 In

addition, the process of hyperalgesia induced by mGluR5

may be achieved through PKCε.23,27 Therefore, mGluR5

may be involved in pain transition by activating PKCε in

the DRGs.

Electroacupuncture (EA) is one of the most common

methods for treating pain in Chinese medical clinics and

has a therapeutic effect on acute and chronic pain.28,29

Previous studies have shown that EA can partly prevent

the transition from acute to chronic pain.30,31 However, the

mechanisms underlying its preventive effect remain

unclear. Related studies have shown that the therapeutic

effect of EA on pain is closely related to its intervention in

the peripheral nervous systems.32–34 A previous study

demonstrated that the therapeutic effect of EA on chronic

pain is partially achieved by regulating the PKCε signal

transduction pathway.35,36 EA can also exert its analgesic

effect by regulating the expression of mGluR5 in the

DRG.37 All of the above findings suggest that the effect

of EA stimulation in pain transition may be related to the

regulation of the mGluR5-PKCε pathway in the DRGs.

In this experiment, the hyperalgesic priming model was

established to explore the mechanism underlying pain

transition.38 The model was designed to separate the

acute pain from chronic pain.6,39 The chronic pain

(hyperalgesia) was induced by sequential injection of car-

rageenan and PGE2 in the model. However, PGE2 can

only induce an acute pain without the carrageenan. This

feature given the opportunity to observe the mechanism of

pain transition. In addition, the regulatory effect of EA on

the MWT and mGluR5-PKCε pathway in hyperalgesic

priming model rats was observed. Finally, mGlu5R was

inhibited to confirm the role mGluR5-PKCε pathway

played in the model and was activated to further explore

the effect and mechanism of EA on pain transition.

Materials and Methods
Animals
Male Sprague-Dawley rats weighing 160 to 180 g were

purchased from the Experimental Animal Center of

Zhejiang Chinese Medical University. All rats were fed

standard rodent food and water and housed at a constant

room temperature of 23 to 25 °C and at a relative humidity

of 55% ± 5% with a 12/12 h light-dark cycle. The entire

experimental procedures were in line with the Animal Care

and Welfare Committee of Zhejiang Chinese Medical

University, Zhejiang, China (approval no. IACUC-

20180319-12). We have minimized the animals’ suffering.

Drugs
Carrageenan, prostaglandin E2 (PGE2) and glutamate

were purchased from Sigma-Aldrich (Sigma-Aldrich,

Saint Louis, MO, USA). They were all dissolved in sterile

saline and then diluted to appropriate concentrations

before being injected into the plantar surface of the left

hind paw (carrageenan (1 mg, 100 μL), PGE2 (100 ng, 25

μL) and glutamate (0.17 mg, 25 μL)). MTEP, an inhibitor

of mGluR5, was purchased from Tocris Bioscience (Tocris

Bioscience, Minnesota, USA) and diluted to 10 mM in

sterile physiological saline.

Experimental Design
This study was divided into three parts. In the first part, we

studied the changes in pain threshold and protein expression

in the DRGs during pain transition. Rats were randomly

assigned to three groups (n=18/group): (1) the Normal (N)

group, (2) the sham hyperalgesic priming (sham HP) group,

and (3) the hyperalgesic priming (HP) group. The mechan-

ical withdrawal threshold (MWT) and the expression levels

of mGluR5 and PKCε were investigated by Western blot

according to the experimental schedule (Figure 1A).
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In the second part, the different effects of EA adminis-

tered for different periods on pain transition were

observed. The effects of EA on mGluR5 and PKCε were

also investigated. Rats were randomly assigned to six

groups (n=6/group): (1) the sham HP group, (2) the HP

group, (3) the EA I group, (4) the EA II group, (5) the EA

III group, and (6) the sham EA group.

In the third part, the involvement of mGluR5 in pain

transition and the analgesic effect of EAwere explored. This

part of the experiment was divided into three sub-parts. In the

first subpart, 8 rats were randomly assigned to three groups

(n=6/group): (1) the N group, (2) the sham HP group, and (3)

the Glutamate (Glu) group. In the Glu group, glutamate was

administered subcutaneously instead of PGE2 at 7 d after

carrageenan injection. In the second subpart, 12 rats were

randomly assigned to two groups (n=6/group): (1) the HP

group and (2) the MTEP (mGluR5 inhibitor) group. In the

MTEP group,MTEPwas subcutaneously injected into the left

paw 5min before PGE2 injection. In the third subpart, EAwas

used to regulate the pain transition induced by carrageenan/

glutamate injection. 24 rats were randomly assigned to four

groups (n=6/group): (1) the sham HP group, (2) the Glu

group, (3) the EA I group and (4) the sham EA group.

Hyperalgesic Priming Model
The hyperalgesic priming model was established by inject-

ing 100 μL of 1% carrageenan (1st injection) into the left

hind paw of each rat and 100 ng/25 μL of PGE2 (2nd

injection) into the same paw after 7 days.

In the sham HP group, 100 μL of 0.9% saline (1st

injection) was injected subcutaneously into the left hind

paw of each rat, and 100 ng/25 μL of PGE2 was injected

into the same paw after 7 days (2nd injection). In the

N group, 0.9% saline was injected subcutaneously into the

left hind paw (100 μL for the 1st injection and 25 μL for

the 2nd injection). In the Glu group, 100 μL of 1% carra-

geenan was injected into the left hind paw of each rat for the

1st injection, and 0.17 mg/25 μL glutamate was injected into

the same paw for the 2nd injection. In the MTEP group,
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Figure 1 (A) Schematic of the experimental timeline. (B) The hyperalgesic priming model was established by sequential intraplantar injection of carrageenan/PGE2 into the

left hind paw. The MWTwere measured before injection, 4, 24, 48, 72 h, 7 d after the 1st injection and 1, 4, 24, 48 h after the 2nd injection in all groups. Data are presented

as mean ± SEM, n=6; ##P<0.01 vs N group at the corresponding time point; ΔΔP<0.01 vs sham HP group at the corresponding time point.
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10 mM/25 μL of MTEP was preinjected into the left hind

paw of each rat 5 min before the 2nd injection.

Rats were briefly anesthetized with 2.5% isoflurane to

facilitate the intraplantar injection of carrageenan, PGE2

or the other drugs used in this study.

Mechanical Withdrawal Threshold (MWT)
The up-down method was used in this experiment.40 Von

Frey hairs (Stoelting Co, Thermo, Gilroy, CA, USA) with

forces of 0.4, 0.6, 1, 2, 4, 6, 8, 15, and 26 g were selected.

The rats were placed into individual cages for 30 min

before measurement to allow acclimation to the environ-

ment. A von Frey hair with a force of 4 g was first applied

to the central surface of the hind paw (avoiding the foot-

pad) until the hair bent into an “S” shape, and it was

maintained there for 6 s. If the rat did not exhibit

a positive avoidance response, the result was recorded as

“O”, and the von Frey hair was replaced with a hair of

higher force. Conversely, in the case of a avoidance

response, the result was recorded as “X”, and the von

Frey hair was replaced with a hair of lower force. The

stimulation interval was at least 2 min. After a “OX” or

“XO” combination of responses, 4 more measurements

were performed and recorded as above (for example,

“OXOXOO”). The pain threshold was calculated accord-

ing to the following formula: MWT (g) = (10[Xf + κδ])/
10,000, where “Xf” is the force of the last hair test, the “κ”
value is obtained from the k-value table, and “δ” is the

average value of the difference between the logarithm of

hairs of each force, which is approximately equal to 0.231.

Here, the maximum stimulation intensity was 26 g, and the

minimum stimulation intensity was 0.4 g.

EA Treatment
All rats in the EA group were treated with EA stimula-

tion. The EA stimulation procedure was performed as

described below. The intervention began after the com-

pletion of the behavioral test 4 h after the 1st injection.

The rats were gently immobilized in a cotton retainer.

Stainless-steel needles (0.18 mm × 13 mm) were inserted

to a depth of 5 mm into the bilateral Zusanli (ST36) and

Kunlun (BL60) acupoints. The needles were connected

to a HANS Acupuncture Point Nerve Stimulator (LH-

202H Huawei Co, Ltd, Beijing, China), the intensity was

set at 0.5 mA, 1.0 mA, and 1.5 mA (the intensity

increased every 10 min), and EA was administered

once per day at 2/100 Hz for 30 min until the end of

the experiment or as otherwise noted in specific cases.

Here, 2/100 Hz meant that the stimulator alternatively

administered electrical stimulation at 2 Hz and 100 Hz

every 3 seconds. In the EA II group, EA stimulation was

only administered once per day between 4 h after the 1st

injection and before the 2nd injection. In the EA III

group, EA stimulation was only administered once

per day after the 2nd injection. Other parameters were

consistent with the parameters described above.

Sham EA was also administered. The same needles

were inserted subcutaneously into the ST36 and BL60

acupoints (at a depth of 1 mm) of the animals. The needles

were connected to the same stimulator, but no electrical

stimulation was administered.

Western Blot Analysis
Animals were anesthetized with 2% pentobarbital

sodium and euthanized at 4, 24 or 48 h after the 2nd

injection once MWT testing was completed. They were

quickly perfused with 150 mL of 0.9% NaCl (4 °C).

Then, the DRGs were extracted rapidly and stored in

a −80 °C freezer for Western blot experiments. The

protein expression of mGluR5 and PKCε in the L4-L6

DRGs was detected by Western blot. The DRGs were

pulverized in RIPA buffer and centrifuged at 14,000 rpm

for 5 min at 4 °C. The supernatant was placed in a clean

EP tube. The protein concentration of the tissue lysates

was determined by the BCA method. Fifteen micrograms

of the lysates were denatured and loaded and then trans-

ferred to polyvinylidene difluoride (PVDF) membranes

(Merck KGaA, Darmstadt, Germany) by 5% SDS-PAGE

electrophoresis. Then, 5% skim milk powder was used

for blocking at room temperature for 1 h. Rabbit anti-

PKCε (ab124806, Abcam, Cambridge, UK) and rabbit

anti-mGluR5 (ab53090, Abcam, Cambridge, UK) were

used as the primary antibodies, and mouse anti-β-actin
(HRP) (ab20272, Abcam, Cambridge, UK) was used as

the internal control. The membranes were incubated

overnight at 4 °C (18 h). Subsequently, the immunoblots

were incubated with secondary antibody for 2 h at room

temperature. An ECL kit (Pierce, Rockford, lL, USA)

was used for development. The blots were photographed

after color development, the average optical density

values of the bands were calculated.

Statistical Analysis
All data are presented as the mean ± standard error of the

mean (x̄ ± SEM). For behavioral testing, the data were

analyzed using repeated-measures ANOVA followed by
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LSD post hoc test. When the interaction between the time

points and groups resulted in a P-value less than 0.05, one-

way ANOVA followed by LSD post hoc test was used to

analyze the data. Western blot was analyzed by one-way

ANOVA followed by LSD post hoc test. P < 0.05 was

considered statistically significant.

Result
MWT Gets Lower in Hyperalgesic

Priming Model Rats
Repeated measures ANOVA was conducted to compare

the effect of time on the MWT in the N, sham HP and

HP groups. The results did not meet Mauchly’s test of

Sphericity (P<0.01) and the within-subjects effects

revealed that there was a significant difference over

time (P<0.01) and between groups (P<0.01) and there

was also an interaction between time points and groups

(P<0.01). The data were normally distributed and ana-

lyzed using a one-way ANOVA. The overall experimen-

tal design is shown in Figure 1A. The hyperalgesic

priming model was established by sequential intraplan-

tar injection of carrageenan/PGE2 into the left hind paw.

As shown in Figure 1B, before the modeling, there was

no significant difference in the MWT between the

groups (P>0.05). The MWT of the HP group was sig-

nificantly lower than that of the N group and sham HP

group 4, 24, 48, and 72 h after the 1st injection

(P<0.01). Then, the MWT gradually recovered and

returned to the initial level approximately 7 d after the

1st injection. The MWT of the sham HP group and the

HP group decreased to the lowest level 1 h after the 2nd

injection and was significantly lower than that of the

N group (P<0.01). The MWT of the rats in the sham HP

group returned to the original level and was not differ-

ent than that of the N group 4 h after the 2nd injection.

However, the MWT of the HP group was still at a low

level and was significantly lower than that of the N and

sham HP groups (P<0.01, Figure 1B). The results indi-

cated that the hyperalgesic priming model was success-

fully established.

Protein Levels of mGluR5 and PKCε in

the DRGs at Different Time Points in

Hyperalgesic Priming Rats
The expression levels of mGluR5 and PKCε in the L4-L6

DRGs were investigated by Western blot 4, 24, and 48

h after the 2nd injection. As shown in Figure 2, the

protein levels of mGluR5 (Figure 2A, C and E) and

PKCε (Figure 2B, D and F) in the DRGs of the sham

HP group were not significantly different from those in

the DRGs of the N group 4, 24 and 48 h after the 2nd

injection. However, the protein levels of mGluR5 and

PKCε in the HP group were significantly increased com-

pared with those in the N group and the sham HP group

4 h (P<0.05) (Figure 2A and B), 24 h (P<0.01) (Figure

2C and D) and 48 h (P<0.01) (Figure 2E and F) after the

2nd injection. These results indicate that both mGluR5

and PKCε may be involved in the process of hyperalgesic

priming.

EA Stimulation Alleviates Pain and

Decreases the Protein Expression of

mGluR5 and PKCε in the DRGs Induced

by Hyperalgesic Priming
EA was administered for 3 different time periods to

investigate its regulatory effect on pain transition. The

entire EA stimulation procedure and the location of

ST36 and BL60 are respectively shown in Figure 3A

and B. The results of repeated measures ANOVA did

not meet Mauchly’s test of Sphericity (P=0.009) and the

within-subjects effects indicated that there was

a significant difference over time (P<0.01) and between

the different groups (P<0.01). There was a significant

interaction between time and group (P<0.01). The data

were normally distributed and analyzed using a one-way

ANOVA. The MWTs of the EA I group and EA II group

increased rapidly when compared with that of the HP

group during the period from the 1st injection to the 2nd

injection (P<0.05) (Figure 3C). However, the three dif-

ferent doses of EA produced varying effects on the

MWTs of model rats after the 2nd injection, especially

those in the EA I group and EA III group. The MWT of

the EA I group was significantly higher than that of the

EA II and EA III groups 4, 24 and 48 h after the 2nd

injection. In addition, the MWT of the EA III group was

significantly higher than that of the EA II group 48

h after the 2nd injection (P<0.05) (Figure 3D).

According to the above results, EA I was used in the

subsequent experiments. Then, Western blot was used to

detect the expression levels of mGluR5 and PKCε in the

L4-L6 DRGs. The results showed that the expression

levels of mGluR5 and PKCε in the L4-L6 DRGs of the

HP group were greatly increased 48 h after the 2nd

injection compared with those in the L4-L6 DRGs of
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Figure 2 (A–F) Western blot shows the expression of mGluR5 and PKCε in the L4-6 DRGs extracts from hyperalgesic priming rats at 4 h (A, B), 24 h (C, D), 48 h (E, F)
after the 2nd injection. Data are presented as the mean ± SEM, n = 6; ##P < 0.01 vs N group; ΔΔP < 0.01, ΔP < 0.05 vs sham HP group.
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the N group. EA stimulation significantly inhibited the

increase in mGluR5 and PKCε in the L4-L6 DRGs,

which was significantly lower than that in the HP

group and was not significantly different from that in

the N group. However, sham EA had no effect on the

expression levels of mGluR5 or PKCε, and the
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Figure 3 (A) The procedure of EA stimulation experiment. (B) Schematic picture of the locations of the acupoints ST36 and BL60 in rat. (C) The analgesic effect of EA stimulation on
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expression levels were not different from those of the

HP group (P<0.05) (Figure 3E and F).

mGluR5 Is Involved in Pain Transition by

Activating PKCε in the DRGs
To verify whether mGluR5 plays an important role in

hyperalgesic priming, glutamate was used in place of

PGE2 for the 2nd injection. The results of repeated

measures ANOVA met Mauchly’s test of Sphericity

(P>0.05) and the within-subjects effects indicated that

there was a significant difference over time (P<0.01)

and between the different groups (P<0.01). There was

a significant interaction between time and group

(P<0.01). The data were normally distributed and ana-

lyzed using a one-way ANOVA. As shown in Figure

4A, the MWT of the rats in the Glu group was sig-

nificantly decreased 1, 4, 24 and 48 h after glutamate

injection (P<0.01). In addition, compared with that in

the L4-L6 DRGs of the N group, the protein expression

level of PKCε in the L4-L6 DRGs of the Glu group

was significantly increased 48 h after the 2nd injection.

The expression level of PKCε in the sham HP group

was not different from that in the N group (P<0.01)

(Figure 4B). All the above results indicated that

mGluR5 may be involved in hyperalgesic priming by

promoting the expression of PKCε. However, the rela-

tionship between mGluR5 and PKCε is unknown.

MTEP, a selective inhibitor of mGluR5, was used to

modulate the MWT of the model rats in an attempt to

confirm the role mGluR5 plays in hyperalgesic priming

and PKCε activation. MTEP was injected into the ipsi-

lateral hind paw 5 min before the 2nd injection. The

results of repeated measures ANOVA met Mauchly’s

test of Sphericity (P>0.05) and the within-subjects

effects indicated that there was a significant difference

over time (P<0.01) and between the different groups
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(P<0.05). There was a significant interaction

between time and group (P<0.01). The data were nor-

mally distributed and analyzed using a one-way

ANOVA. It increased the MWT of the model rats

compared to the HP group rats 4, 24 and 48 h after

the 2nd injection (P<0.05) (Figure 4C). In addition, the

protein expression levels of mGluR5 and PKCε in the

L4-L6 DRGs of the HP+MTEP group were signifi-

cantly decreased compared with those in the L4-L6

DRGs of the HP group (P<0.01) (Figure 4D and E).
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The above results suggested that the mGluR5-PKCε
pathway plays a pivotal role in the process of pain

transition.

EA Stimulation Exerts Regulatory Effects

on Pain Transition Caused by Activating

the mGluR5-PKCε Pathway in the DRGs
Finally, we observed whether EA stimulation has an effect on

glutamate-induced hyperalgesic priming. The results of

repeated measures ANOVA did not meet Mauchly’s test of

Sphericity (P=0.006) and the within-subjects effects indi-

cated that there was a significant difference over time

(P<0.01) and between the different groups (P<0.01). There

was a significant interaction between time and group

(P<0.01). The data were normally distributed and analyzed

using a one-way ANOVA. As shown in Figure 5A, there was

an increase in theMWTof the EA I group compared with the

Glu group 24 and 48 h after the 2nd injection (P<0.05)

(Figure 5A). In addition, the Western blot results also con-

firmed that EA stimulation significantly inhibited the high

expression of mGluR5 and PKCε in the L4-L6 DRGs of

glutamate-induced hyperalgesic priming rats (P<0.01)

(Figure 5B and C). The data suggested that EA stimulation

can inhibit the transition from acute pain to chronic pain by

inhibiting the mGluR5-PKCε pathway in the L4-L6 DRGs.

Discussion
In this study, the rat hyperalgesic priming model was estab-

lished to investigate the potential mechanisms of pain transi-

tion. We found that the mGluR5 and PKCε were highly

expressed in the ipsilateral L4-L6 DRGs. By screening the

EA treatment options with different time points, we identified

an optimized EA protocol to be the option for relieving hyper-

algesia of model rats. In the terms of mechanisms, we found

EA reduced the overexpression of mGluR5 and PKCε in

DRGs of hyperalgesic priming rats. Besides, Glutamate can

replace PGE2 in the 2nd injection to mimics the hyperalgesic

priming model. Pharmacological blocking of mGluR5 with

specific antagonist MTEP can reverse the hyperalgesic prim-

ing and decrease the protein expression of PKCε in DRGs. EA
also reverse the hyperalgesic priming induced by mGluR5

injection and down-regulate the overexpression of PKCε in

the DRGs. These results indicate that EA prevents the pain

transition may involve in inhibiting the mGluR5-PKCε signal-
ing pathway in DRGs.

Chronic pain is one of the major challenges in the clinic.

Although many studies have focused on chronic pain, few

effective treatment strategies without side effects have been

developed in the last decade. Previous studies have proposed

that preventing the transition from acute to chronic pain may

be a new strategy for controlling chronic pain.41,42 In

a previous study, we observed that EA can regulate pain

transition in hyperalgesic priming model rats.30,31 Here, we

further investigated the potential mechanisms underlying the

analgesic and regulatory effects of EA on hyperalgesic prim-

ing. We found that EA not only produced an analgesic effect

on chronic pain but also prevented pain transition.

Furthermore, the analgesic and preventive effects of EA

were cumulative. In addition, we found that the activation

of mGluR5 was involved in hyperalgesic priming by activat-

ing PKCε in the DRGs. In addition, EA prevented pain

transition via mechanisms that may involve inhibiting the

mGluR5-PKCε signaling pathway in the DRGs.

Previous studies have demonstrated that PKCε is

involved in sensitizing nociceptors and inducing mechanical

hyperalgesia.43,44 In the current study, PKCε was increased
in the DRGs of hyperalgesic priming rats, which is consistent

with previous publications showing that PKCε plays an

important role in the process of hyperalgesic

priming.6,15,30,45 However, previous studies have specifically

focused on changes in the expression of PKCε and its down-
stream targets in the DRGs upon hyperalgesic priming. In

this study, we mainly evaluated whether upstream molecules

of PKCε are involved in the process of hyperalgesic priming.

As a type of glutamate receptor expressed in small-

diameter neurons in the DRGs,19,20 mGluR5 contributes to

the regulation of neuronal growth, neuroprotection and

excitotoxicity.46 It has been demonstrated that mGluR5 can

be activated by glutamate released from damaged peripheral

tissue and is involved in hyperalgesia. In addition, many

researchers have found that there is a certain relationship

between mGluR5 and PKCε.27,47 A previous study found

that PKCε contributes to the process by whichmGluR5 causes

hyperalgesia.22 In this study, glutamate and MTEP were cho-

sen to examine whether mGluR5 is involved in the process of

hyperalgesic priming and PKCε activation. Our study found

that glutamate can mimic hyperalgesic priming and increase

PKCε expression in the DRGs. Furthermore, an mGluR5

antagonist reversed the hyperalgesic priming and PKCε
expression in the DRGs induced by PGE2 injection.

Therefore, mGluR5 is upstream of PKCε and induces the

expression of PKCε in the DRGs of hyperalgesic priming rats.

Clinical and basic studies have confirmed that 2/100 Hz

EA can treat various types of pain. Our previous study demon-

strated that 2/100 Hz EA can regulate the MWT of
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hyperalgesic priming rats and inhibit the increasing expression

of PKCε in the DRGs. In this study, we further investigated

whether EA can regulate higher PKCε expression and the

MWT. First, we found that the analgesic effect of EA can be

divided into two phases. EA partly prevented pain transition

when it was only administered during the period between

carrageenan and PGE2 injection. EA produced a significant

analgesic effect on the MWT of hyperalgesia priming rats

when it was only given after PGE2 injection. In the current

study, we ultimately used a classical strategy in which EAwas

administered after carrageenan injection until the end of the

experiment. We observed that EA administration throughout

the experimental period produced the greatest analgesic effect

on hyperalgesic priming rats. This indicated that EA stimula-

tion may have a cumulative effect on regulating pain transi-

tion. We further studied the effect of EA on PKCε and

mGluR5 expression in the lumbar DRGs. EA significantly

decreased the overexpression of mGluR5 and PKCε in the

DRGs of hyperalgesic priming rats. Because mGluR5 induced

hyperalgesic priming by activating PKCε, we observed the

effect of EA on the mimic model established by carrageenan/

glutamate injection. EA also significantly depressed the

expression of mGluR5 and PKCε in the DRGs. All of the

above results suggested that EA may regulate hyperalgesic

priming by inhibiting the activation of mGluR5-PKCε in the

DRGs. However, the phase during which EA administration

mainly contributes to its effect and whether the administration

of EA before PGE2 injection can prevent pathway activation

are still open questions. We will further study them.

Conclusion
Our study suggests that the activation of the mGluR5-

PKCε pathway in the DRGs plays a pivotal role in the

pain transition. And EA can regulate pain transition that

maybe related with the effect on inhibiting the activation

of the mGluR5-PKCε signaling pathway in the DRGs.
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