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Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and

irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in

the absence of an organic, metabolic or systemic cause that readily explains these

complaints. Their pathophysiology is still not fully elucidated and animal models have

been of great value to improve the understanding of the complex biological mechanisms.

Over the last decades, many animal models have been developed to further unravel

FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on

stress-related models, starting with the different perinatal stress models, including the

stress of the dam, followed by a discussion on neonatal stress such as the maternal

separation model. We also describe the most commonly used stress models in adult

animals which brought valuable insights on the brain-gut axis in stress-related disorders.

In the second part, we focus more on models studying peripheral, i.e., gastrointestinal,

mechanisms, either induced by an infection or another inflammatory trigger. In this

section, we also introduce more recent models developed around food-related metabolic

disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking

FGID as a secondary effect of medical interventions and spontaneous models sharing

characteristics of GI and anxiety-related disorders. The latter are powerful models for

brain-gut axis dysfunction and bring new insights about FGID and their comorbidities

such as anxiety and depression.

Keywords: functional gastrointestinal disorders, animal models, stress, irritable bowel syndrome, functional

dyspepsia, intestinal permeability, visceral pain, mast cells

INTRODUCTION

Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel
syndrome (IBS) are highly prevalent, occurring in 10–30% of the general population depending on
the criteria used, and represent an important part of the workload of gastroenterology and primary
care clinical practice. Those syndromes are characterized by chronic abdominal symptoms in the
absence of an organic, metabolic or systemic cause that readily explains these complaints. Based on
the Rome IV criteria, FD is defined as bothersome postprandial fullness, early satiation, epigastric
pain and/or epigastric burning (1) while IBS is characterized by recurrent abdominal pain or
discomfort in association with altered defecation patterns (2, 3). The etiology and pathophysiology
remain incompletely understood, which is reflected in the paucity and limited effectiveness of
the available treatment options. Moreover, in the last years, FGIDs have been conceptualized as
disorders of brain-gut interaction, highlighting the bidirectional interplay between central and
peripheral mechanisms and opening new possibilities for anxiety and depression animal models
to study FGID.
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Over the last 20 years, many animal models, which originally
focused on one particular pathophysiological factor, have been
developed for FGID. These models have contributed a lot to the
understanding of the pathophysiological mechanisms behind the
symptoms and were also used to test and validate therapeutic
targets and potential therapies (4). However, many aspects of
functional disorders remain poorly understood and unsolved in
these unidimensional models. An animal model is considered
suitable for a disorder, when the etiology of the disease is as
close as possible to what is known in humans. Several conditions
must be fulfilled, among them (1) the construct validity, i.e.,
the experimental conditions used to produce the animal model
should replicate the cause of the disease in human, (2) the
face validity, i.e., the symptoms observed in the animal should
replicate the clinical features observed in the patients and (3)
the predictive validity where the response to drugs in the animal
models can predict reliably the potential response in the human
counterpart. It is clear that unidimensional models for FGID do
not fulfill these criteria. To overcome the weaknesses of the classic
models, more recently, several newmodels have been introduced,
either combining several of the putative factors involved in
FGID pathophysiology or using new insights such as the impact
of nutrition to try and represent the large panel of symptoms
and complex interactions between the pathophysiological factors
found in FGID (4).

In this review, we will summarize the state of the art
concerning the most relevant and most commonly used pre-
clinical models that have been developed for FGID and
highlight their contribution to the understanding of FGID
pathophysiology. Most of the published studies use rodent
models, due to the possibility of genetic manipulations and the
quick turnover of the models through fast reproduction and a
large number of pups in one litter, in comparison to larger animal
models such as pig models. Therefore, this review will largely
focus on rodent models.

Abbreviations: 5HT, serotonin; 5HT1A/1B/2A/2B, serotonin receptor type 1A,

1B, 2A, 2B; ACTH, adreno cortico trophic hormone; AMPA, α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid; BB-DP, biobreeding diabetes prone; BDNF,

brain-derived neurotrophic factor; CCL2, chemokine ligand 2; CEACAM6, CEA

cell adhesion molecule 6; CNS, central nervous system; COX-2, cyclo-oxygenase 2;

CGRP, calcitonin gene-related peptide; CRF, corticotropin-releasing factor; CRFR,

corticotropin-releasing factor receptor; DSS, dextran sodium sulfate; ELS, early

life stress; FD, functional dyspepsia; FGID, functional gastrointestinal disorders;

FODMAP, Fermentable Oligo-, Di-, Mono-saccharides And Polyols; FSL, Findler

sensitive line; GC-C/cGMP, guanylate cyclase C/cyclic guanylin monophosphate;

GI, gastro intestinal; GR, Glucocorticoid receptor; HPA, hypothalamus-pituitary-

adrenal; HSHF, high fat high sugar; IFN, interferon; IgE, immune globulin

E; IL, interleukin; IBS, irritable bowel syndrom; IBD, inflammatory bowel

disease; KO, knock out; MS, maternal separation; MPO, myeloperoxidase activity;

MUC2, Mucin 2; NGF, nerve growth factor; NMDA, N-methyl-D-aspartate; P2X,

purinergic receptor; PAR2, Protease-activated receptor 2; PI, post infectious; PND,

post-natal day; POI, post-operative ileus; SCFA, short chain fatty acids; SERT,

serotonin transporter; SHR, spontaneously hypertensive rat; SIS, social isolation

stress; TFF3, rail fold factor 3; TLR, toll like receptor; TNBS, Trinitrobenzene

sulfonic acid; TNF, tumor necrosis factor; TRH, thyrotropin-releasing hormone;

TRPV1, transient receptor potentiate vanilloid 1; VNS, vagal nerve stimulation;

WAS, water avoidance stress; WKY, wistar kyoto; ZO-1, Zona occludens 1.

PATHOPHYSIOLOGY OF FGID

Functional gastrointestinal disorders have long been regarded as
purely psychosomatic conditions. In the last decade, however,
evidence for a low-grade mucosal inflammation, dominated
by mast cells, eosinophils, and T-lymphocytes (5–8), as well
as impaired epithelial barrier function (9) and neuronal
hyperexcitability (10) leading to visceral hypersensitivity (11)
and dysmotility has accumulated in FGID, challenging the
traditional paradigm of a purely functional disorder. Mast cells
represent a crucial link in colonic neuro-immune interaction
as they communicate with both the intrinsic; i.e., enteric, and
extrinsic nervous system in the gut and release mediators such as
tryptase and nerve growth factor, which are involved in visceral
hypersensitivity and mucosal permeability in FGID patients
(12). A commonly cited hypothesis is based on the concept
that luminal antigens, originating from food components,
microbiota or other noxious substances such as bile and acid
can induce a mast cell and eosinophil predominant immune
activation through a failing mucosal barrier which has been
found in FD and IBS (13, 14). Nevertheless, it is still unclear
whether the mucosal barrier function has any causal role in
the pathogenesis of immune activation or whether it is a
consequence of the inflammatory response or an unimportant
epiphenomenon without a role in disease pathogenesis. Another
potentially important player, the microbiota, have been studied
intensively in the last years (15). While alterations in colonic
and fecal microbiota have been described by several groups
in IBS (16), disruption in microbial homeostasis in FD is still
largely uncharted territory. Only a limited number of studies
have reported alterations in gastric (17) and duodenal microbiota
composition in FD (15).

As mentioned above, FGIDs are currently understood
as disorders of the brain-gut axis, i.e., the neurohumoral
communication system between the brain and the
gastrointestinal tract, leading to gastrointestinal hypersensitivity
and dysmotility (18). However, central alterations have been
mostly studied in the context of visceral hypersensitivity, and
the anterior cingulate gyrus, the prefrontal cortex, and the
insular cortex have been found to be abnormally activated in IBS
patients with visceral hypersensitivity (19). Other structures such
as the amygdala or hippocampus have an altered functionality
in FGID patients (20). Furthermore, these brain areas are also
strongly implicated in psychiatric disorders such as depression
and anxiety, two co-morbidities highly represented in FGID
patients and associated with visceral hypersensitivity (11, 21, 22).

STRESS-RELATED MODELS OF FGID

Stress is biologically defined as a physiological response to a
stimulus that allows organisms to adapt to their environment
(23). However, when stress becomes chronic or occurs whilst
important development processes are ongoing, the consequences
can be harmful and lead to a predisposition for several diseases,
including cardiovascular diseases (24), metabolic disorders (25,
26), depression (27), neurodegenerative diseases (28), drug abuse
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TABLE 1 | Effect of stress on the Gastrointestinal tract and brain in animal models.

Stress models Stomach Small intestine Colon Central nervous system

Prenatal stress Hypersensitivity (66)

Dysbiosis (67)

Decreased innervation &

increase colonic secretory response to

adrenaline (68)

Overactivation of the HPA axis in

adulthood with female predominance

Epigenetic changes BDNF (SC-female

predominance) (67)

Maternal separation Susceptibility to

erosion (83)

Delayed gastric

emptying (84)

Hyperpermeability during separation

At weaning, fecal dysbiosis (74) &

hyperpermeability (75)

Adult hyperpermeability, mostly

transcellular pathway associated with

abnormal cholinergic regulation (81)

Hypersensitivity (76, 78)

Immune cells infiltration (MC Eo) (77)

Hypersensitivity of neurons from myenteric

plexus to IL6 modulation of secretory and

motility functions (79)

Increased number of enterochromaffin

cells & Increased expression SERT (92)

Decreased activity of glucocorticoid

negative feedback (85) increased ACTH

response to stressors (86)

Increased serotonin concentration in

frontal cortex

Increased expression 5HT1A/1B/2A in

parietal cortex & hippocampus

Increased activation of 5HT neuron in

raphe magnus and spinal cord (60, 89)

Increased sympathetic activity and

decreased of parasympathetic activity (94)

Increased release of glutamate &

AMPA/NMDA receptors involved in

remodeling of synapses in hippocampus

(95, 96)

Limited bedding At weaning, fecal dysbiosis (female

predominance) & hyperpermeability (69,

74)

In adulthood hypersensitivity (male

predominance) (102–104)

Decreased social/exploratory behavior &

impaired learning and memory (102, 103).

Decreased dendritic branching

hippocampus

Altered thalamo-cortico-amygdala

pathway

Increased connectivity in locus coeruleus

(females) (102)

Acts on neuronal development of dentate

gyrus (105)

Odor shock

conditioning

Hyperpermeability and hypersensitivity

through estrogen and GC-C/cGMP

pathway; female predominance (104)

Increased expression CRF & GR receptors

in central nucleus amygdala (109)

Water Avoidance

Stress

Impaired gastric

accommodation at

D2 via peripheral

5HT2B signaling

(119)

Increased

postprandial gastric

contractions at D2

(120)

Hyperpermeability at

D1 (112, 113)

Structural changes

mucus layer at D4

(115)

Dysbiosis at D8

(117, 118)

Hyperpermeability at D1 (112, 113)

Hypersensitivity at D3 (114)

Structural changes mucus layer at D4

(115)

Dysbiosis at D10 (117, 118)

Increased glial, neuronal activation in

hypothalamus and amygdala &

synaptogenesis

in the hippocampus (121, 123)

Restrain stress Increased fecal output CRFR1-dependent

manner (37)

Neuronal activation over several brain

structures and nuclei including the

supraoptic nucleus, locus coeruleus, the

ventrolateral medulla, the medial division

of the central amygdaloid nucleus, nucleus

of the solitary tract and even the dorsal

nucleus of the vagus nerve, structures

involved in food intake and stress

response.

Neurons also expressing phoexinin and/or

nesfatin (127, 128)

Partial restraint

stress

Delayed gastric

emptying through

sympathetic

activation (36, 137)

Increased active

ghrelin

concentration (137,

139, 140)

Hypersensitivity (134–136)

Hyperpermeability through re-organization

of the cytoskeleton (134)

Changes in mucosal morphology and

decrease of glial cells in the submucosa

plexus

Increased immune cells infiltration (MC Eo)

(135)

Overactivation of the insular cortex related

with colonic hypersensitivity (19)

(Continued)
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TABLE 1 | Continued

Stress models Stomach Small intestine Colon Central nervous system

Crowding stress Hyperpermeability

In WKY rat,

activated mast cells

(146)

Increased mast cells density (145)

In WKY rat activated mast cells, MPO level

& transient hyperpermeability, alteration of

mitochondrial activity (146)

Anxiety-like and depression-like symptoms

Early transient changes (Day 3) in the

nitrergic expression in the PFC,

hippocampus, hypothalamus (147)

Social isolation Alterations in the IL-18 pathway and

MUC2/TFF3 expression (149)

Anxiety-like and depression-like symptoms

Reduced BDNF levels & increased

reactivity of the HPA axis (148)

Changes in the nitrergic expression in the

PFC, hippocampus, hypothalamus (147)

Abdominal surgery Impaired gastric

emptying

Low ghrelin

concentration (249,

251, 252)

Impaired motility

through the

activation of the

inhibitory reflex

pathway

increased cytokines

expression (TNFa,

IL1α, IL6, IL1β,

CCL2) (241)

infiltration resident

macrophages (245)

Impaired motility, delayed transit increased

cytokines expression in muscular layers

(240) (241)

Increased permeability non-related to

TLR2/4 (244)

Activation of nuclei (supraoptic nucleus,

locus coeruleus, paraventricular nucleus of

the hypothalamus & rostral raphe pallidus)

expressing nucleobindin2/nefastin

complex involved in the decrease of food

intake and GI transit (253)

5HT, serotonin; 5HT1A/1B/2A/2B, serotonin receptor type 1A, 1B, 2A, 2B; ACTH, adreno cortico trophic hormone; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;

BDNF, brain-derived neurotrophic factor; CCL2, chemokine ligand 2; CRH, corticotropin-releasing hormone; CRHR1 corticotropin-releasing hormone receptor type 1; D1/2/3/4/8/10,

day 1/2/3/4/8/10; Eo, eosinophils; GC-C/cGMP, guanylate cyclase C/cyclic guanylin monophosphate; GI, Gastrointestinal; GR, Glucocorticoid receptor; HPA, hypothalamus-pituitary-

adrenal; IL, interleukin; MC, mast cell; MPO, myeloperoxidase activity; MUC2, Mucin 2; NMDA, N-methyl-D-aspartate; PFC, prefrontal cortex; SC, spinal cord; SERT, serotonin

transporter; TFF3, rail fold factor 3; WKY, wistar kyoto.

(29), etc. Over the last decade, the incidence of the stress-
related disease has increased, especially in societies where socio-
economic pressure plays a crucial role in daily life (30). Physical
and psychological stress have been documented intensively
as decisive factors in the clinical course of several disorders
including FGID (31). The hypothalamus-pituitary-adrenal gland
(HPA) axis is the endocrine effector of the stress response, with a
central role for corticotropin-releasing hormone (CRH), secreted
in the hypothalamus, but also locally in the GI tract (32). By
binding to its receptors, CRH stimulates the production and
the release of glucocorticoids including cortisol in humans and
corticosterone in rodents (33), key regulators of the physiological
adaptation to stress (34). In normal conditions, the HPA axis is
under rigorous regulation, at both the neuronal and hormonal
level, since the glucocorticoid and mineralocorticoid receptors
are part of a negative feedback loop which protects organisms
against the harmful effect of prolonged exposure to stressors.
Nonetheless, a combination of repeated environmental stressors
may lead to a maladaptive response resulting in altered brain
structure and function (35), predisposing to disease. CRH
receptors are found to be expressed in both the GI tract and the
central nervous system (CNS) suggesting a crucial role for this
factor in the stress-induced disruption of gut homeostasis (36)
including transit (37–39), visceral sensitivity (40–42), intestinal
permeability (36, 43, 44) and gastric inflammation (45).

Psychological stress and anxiety, often reported by FGID
patients, influence the onset of symptoms and predict the
clinical outcome (46). Recently, data from our group identified

a crucial role for CRH and mast cells in this response, translating
previous rodent studies to the human situation (47). Intriguingly,
also in inflammatory bowel disease (IBD), longitudinal studies
of patients in clinical remission have indicated that stress
increases the risk of disease relapse, although the underlying
mechanism remains elusive (48). It is still unclear whether stress
induces inflammatory changes or whether it is a modulator of
symptom perception independent of gut inflammation. Recent
studies found that stress influenced the composition of the
microbiota, associated with mood disorders and alterations in
neurotransmitter pathways (49). Several stress-related animal
models have been developed to elucidate the role of stress in
the observed changes in the altered sensorimotor function of the
gastrointestinal tract in patients with FGID.

In this section, we made a distinction between models of
stress applied to adult animals and those involving stress around
birth (pre- and post-natal models), i.e., early life stress (ELS).
The stress models presented in this section are summarized in
Table 1. Evidence from literature indicates that a similar stress
paradigm has different effects depending on whether it occurs
while the brain is still under development or when the neuronal
circuits are already fully developed. Indeed, several studies in
humans found that stressors in early life are more likely to result
in psychiatric and functional disorders, including FGID (50, 51).
Post-natal ELS models use this strategy to induce an increased
corticosterone concentration in pups during a period in which
they are normally only exposed to low corticosterone levels due
to the continuous maternal care (52, 53). The two first weeks of
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life in rodents (from PND2 til 14) correspond to an insensitive
period to environmental stimuli for the HPA axis called stress
hyporesponsiveness period (SHRP) (54). During this SHRP, the
HPA axis is quiescent and circulating corticosterone, ACTH and
CRH levels are very low (55). During this period, stimuli that
normally induce corticosterone increase in adults, do not affect
pups and the reduced adrenal sensitivity observed is illustrated
by the fact that pups do not show a significant elevation of
corticosterone concentration following injections of high doses
of ACTH (56). The HPA axis maturation mechanisms have not
been fully uncovered. Part of these involves enhanced negative
feedback due to the low expression of transcortin at the pituitary
level (57, 58) and also the decreased expression or transport
of hypothalamic secretagogues (59) further supported by the
fact that the glucocorticoid regulation of hypothalamic CRH
gene expression is not mature during the SHRP (60). Moreover,
the regulation of the hypothalamic expression of the arginine
vasopressin gene - that occurs at very early stages (61)—which
is involved in the ACTH stress response in young rats has a key
role for the control of ACTH release from the pituitary (62).
Furthermore, it is also themost critical period in the development
of central structures such as the amygdala (63) and hippocampus
(64). In those two structures, neurodevelopment is very active
with neurogenesis, cell differentiation, and migration (65). The
existence of such a hyporesponsiveness period suggests that high-
stress level might be harmful to the normal development of the
brain and could affect the maturation of behavior dependent on
those brain systems that are normally developing at that time like
the emotional learning systems (57).

Prenatal Stress
In the last decade, data coming from clinical psychiatry
showed that women’s health status before and during pregnancy
is a determining factor for the development of psychiatric
disorders, including schizophrenia and depression, socio-
emotional problems or altered stress response of the children
later in life (49). History of a poor socio-economic context,
malnutrition, obesity, metabolic disease, depression, and anxiety
in the mother, has been linked to the development of FGID
in the child (51). Several paradigms have been used in rodent
mothers, including repeated daily immobilization, exposure to
noise, sleep deprivation or an alternation of unpredictable
stressors to mimic the human situation (49). The effect of those
maternal stressors on the development of psychiatric disorders
in the offspring is well described, and their effect on the GI
tract have been studied in a couple of them. Winston et al.
demonstrated that unpredictable chronic stress, i.e., a random
sequence of twice daily application of either water avoidance
stress, cold restraint stress or forced swimming stress, applied
from mid-gestation until delivery in pregnant Sprague Dawley
rats induced colonic hypersensitivity in both male and female
offspring. Besides, when the animals were re-exposed to the
same pattern of stress as their dam at 8–12 weeks of age, they
displayed an increased response compared to the offspring of
non-stressed dams with a more pronounced effect in females
(66). The observed effect in females correlated with epigenetic
modifications of the brain-derived neurotrophic factor (BDNF)

gene in the dorsal horn of the lumbosacral spinal cord. Using
the same stress model in mice, Jasnarevic et al. could point out
a strong link between the stress-altered maternal microbiota and
neurodevelopmental alterations and microbiota composition in
the offspring (67). This important finding was further confirmed
in another study that demonstrated long-lasting changes in the
intestinal microbiota composition, associated with a deficiency
in the innervation of the distal colon and an increased colonic
secretory response to adrenergic stimulation and an exaggerated
response of the HPA axis to stress (68).

Neonatal Stress
Maternal Separation
The most frequently studied and used model of ELS is the
maternal separation (MS) model in which pups are separated
from the dam and the rest of the nest every day during their
first weeks of life. Multiple variations of the MS procedure have
been described, with changes in the duration of the separation
and the number of days of separation. Variations include MS
until weaning whereas other protocols use a 24 h separation
between post-natal day 3 (PND3) and PND4 (69). The most
common protocol consists of about 12 days of separation, 3 h
per day, starting from PND2 till PND14. This daily separation
induces anxiety in the mother (70) leading to a discontinuity in
maternal care and an abnormal mother-pups relationship (70,
71) and initiates the premature end of the hypo-responsiveness
period through a rise of corticosterone in the pups (72). Short
separation (< 60min) is not harmful and separation of 15min
even diminishes anxiety-related behavior and the pup’s response
to stress later in life (73). Repetitive, short separations are
reminiscent of the natural behavior of the mother who needs
to gather food. However, longer separation mirrors caregivers
neglect and physical and psychological abuse during childhood.

Pups who underwent the maternal separation, display an
increased intestinal permeability as well as changes in the
microbiota composition at the time of weaning which are
associated with an increase in the basal level of corticosterone
(74). Changes in the microbiota included a lower diversity of
the microbiome with a decrease of the fiber-digesting bacteria,
mucus-resident and butyrate-producing bacteria (74). Another
study showed that, during the maternal separation (at PND9)
in mice, the separated pups had an enhanced permeability
with a decreased trans-epithelial electrical resistance and an
increased transcellular permeability in the colon while the small
intestine was not affected (75). In adulthood, at 2 to 3 months,
animals who underwent the maternal separation protocol (12
days of separation 3 h/day) have an increased response to
colorectal distension, which was more pronounced in mice than
in rats (76). In fact, in rats, the MS protocol alone does not
change visceral sensitivity but rather induces a susceptibility to
develop visceral hypersensitivity when animals are re-exposed
to an acute stressor later on during adulthood. Interestingly,
this susceptibility is transmitted across generations through a
mast cell-dependent mechanism (77). The latter is an important
part of the immune cell infiltration characterized after MS
in the intestinal mucosa. When activated, mast cells released
mediators such as histamine and other inflammatory factors
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including IL6 and nerve growth factor (NGF), which are able
to sensitize the nerve endings located in the colonic mucosa
which express ionic channels including the transient receptor
potentiate vanilloid 1 (TRPV1). The modulation of this ion
channel has been shown to be an important factor in thematernal
separation stress-induced visceral hypersensitivity (78). O’Malley
et al. also demonstrated an IL6-dependent hypersensitivity of
the neurons from the submucous plexus, which are involved
in the secretory and motility function of the colon (79). Local
inflammatory mediators such as the myeloperoxidase activity
(MPO), IL4, IL1β, or IFNγ are also associated with intestinal
barrier dysfunction and to an alteration in morphology of the
colon of adult rats (80). The increased permeability described
in maternally deprived animals mainly involves the transcellular
pathway and seems to involve an abnormal cholinergic regulation
of the epithelial permeability (81). As previously mentioned,
CRH receptors are expressed along the GI tract and CRH is
one of the mediators of the GI effects of maternal separation.
However, the two receptors for CRH have a differential effect
on the intestinal physiology. Indeed, while maternally separated
adult rats treated with CRH Receptor1 (CRHR1) antagonists
displayed a decreased inflammation, the group treated with a
CRH Receptor2 (CRHR2) antagonist showed an inhibited stem
cell activity and injury repair. CRHR1 contributes to intestinal
injury and modulation of the microbiota while CRHR2 promotes
healing and repair of the intestine (82). Besides the well-
documented colonic injury in animals submitted to maternal
separation, studies also showed an alteration in gastric function
characterized by enhanced susceptibility to gastric erosion (83)
and a delayed gastric emptying associated with structural changes
in the glial cells (84).

The separated pups develop an increased reactivity of the
HPA axis in response to stress during adulthood (71), as
shown by a decreased activity of the glucocorticoid negative
feedback loop (85) and an increased adreno cortico trophic
hormone (ACTH) response to a stressor (86). Several central
neurotransmitter pathways are also affected by MS including
the serotonergic (87), cholinergic (81) and glutamatergic (88)
pathway. The serotoninergic pathway is altered with an increased
5-hydroxytryptamine (5HT, serotonin) concentration in the
frontal cortex and increased expression of the 5HT 1A, 1B,
and 2A receptors in the parietal cortex and the hippocampus
(60, 89). Furthermore, MS rats showed increased activation of
serotoninergic neurons in the raphe nucleus and the spinal
cord. Rat studies have demonstrated the involvement of the
5-HT1A receptor in the pathophysiology of stress-induced
visceral hypersensitivity as a treatment with the mast cell
blocker Resveratrol was potentiated by a pre-treatment with
a 5-HT1A agonist (90). In the same way, a therapeutic effect
of anti-depressants targeting the monoaminergic system has
been reported in this model (91). At the enteric nervous
system (ENS) level, an increased number of enterochromaffin
cells producing 5HT and increased expression of the serotonin
transporter (SERT) were observed in MS rats (92). These
findings may contribute to the observed altered sensorimotor
function in FGID patients with a childhood abuse history,
although the role of enterochromaffin cells and SERT has not

been studied in particular context. Increased noradrenaline
levels, the main neurotransmitter of the sympathetic branch
of the autonomic nervous system, in the cingulate cortex was
associated with fear and anxiety in the MS model (93). In IBS
patients, studies measuring heart rate variability confirmed an
increased sympathetic nervous system activity and a decreased
parasympathetic nervous system activity (94). Alterations have
also been described in the glutamergic pathway, which is
involved in emotion and cognitive behavior. Maternal separation
induced a release of glutamate in the hippocampus which
activated receptors leading to neuronal excitotoxicity (95). In the
hippocampus of the MS rat, an increased expression of the α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and the N-methyl-D-aspartate (NMDA) receptors have been
found to be associated with a remodeling of the synaptic
plasticity (95, 96). Alterations in the hippocampus also concerns
neurogenesis which explains the long-term consequences in adult
behavior. Maternal separation affects the neurogenes which is
very active during the SHRP and leads to impaired coping
behavior in adulthood and the learning process (97).

Limited Bedding
As mentioned above, the socio-economic status of caregivers
affects the onset of FGID in children. To mimic poverty
and precarious conditions in humans and also to limit the
intervention of an external experimenter which is subject to
variability, a model of limited cage bedding, mostly applied
between the PND2 and PND9, was developed first in rats and
later also in mice (98, 99). Some recent studies have proposed a
variation by applying intermittent limited bedding from PND1
to PND7 or limited bedding from PND8 to PND12 (100). In
this model, the female does not have access to any form of
enrichment to build a nest. This altered environment is stressful
for the mother and leads to a fragmentation of maternal care
without changing the overall duration. The periods of maternal
care are shorter and the behavior is more frequently shifted
from one to another e.g., grooming, nursing, going in or out of
the nest, self-licking, self-grooming. . . (101). The mother’s stress
can be modulated by varying the amount of nesting material
introduced in the cage. With this protocol, the stress applied to
the pups is chronic, unpredictable and uncontrollable which has
good construct validity for stress-related disruption of parental
care in a context of economic difficulties (69). The profound
chronic stress induced by this protocol leads to a transient
increase of the corticosterone concentration and hypertrophy
of the adrenal glands, increased intestinal permeability and
a fecal dysbiosis in 21-day old pups while these effects had
disappeared at 12 months (69, 74). Although the concentration
of corticosterone was strongly correlated with the hypertrophy of
the adrenal glands, the elevated concentration of corticosterone
was associated neither with the observed dysbiosis (lower
diversity and increased abundance of genera of Gram positive
cocci) nor intestinal permeability, for which a sex difference was
observed with the females being more affected than the males
(74). However, in adulthood, the rats submitted to this early life
stress showed a reduction in social and exploratory behavior,
impaired learning and memory processes, a decreased dendritic
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branching in the hippocampus, an increased response to a stress
challenge and visceral hypersensitivity (102, 103). The latter,
depending on the method used for the colonic pain assessment,
showed no sex difference or a higher colonic sensitivity in males
(104). Similar results were observed for anxiety-like behavior.
Moreover, differences in the brain connectivity of the thalamo-
cortico-amygdala pathway during a painful stimulus have been
reported to be altered in rats submitted to this protocol of ELS.
The authors pointed out a sex difference with increased brain
connectivity in the locus coeruleus/lateral parabrachial nucleus
in females only (102). A recent finding showed that limited
bedding affects the neuronal development of the dentate gyrus
and depletes the stem cell pool in adult animals but does not
influence neurogenesis (105).

Odor Shock Conditioning
Manymammals including rodents are born blind and deaf, and to
stay warm and obtain the food and care needed to survive, they
need to learn the odor of their caregiver, e.g., their mother. For
this purpose, during the first 9 days of their life, pups display
an enhanced capacity for odor preference learning through a
stimulated release of norepinephrine, produced in the locus
coeruleus, which binds to its receptors in the olfactory bulb (53).
This allows the pups to learn the odor of their caregivers without
associating it to fear or aversion. Furthermore, during this
period, the pups display an inability to initiate a stress response.
Once this period ends, the level of secreted norepinephrine
decreases, associated with the development of the α2 inhibitory
auto-receptors functionality and the downregulation of the α1
excitatory auto-receptors (53). In a second phase, called the
conditional sensitive period, from PND10 till PND15, pups start
to explore their environment and learn avoidance and fear for
aversive stimuli in the absence of the mother. As we described
earlier, the maturation of the HPA axis and maturation of fear
behavior happens during the time-window in which neuronal
circuits are located on the trajectory of the HPA axis maturation.
Several studies showed that the rise of corticosterone levels starts
during this period and is critical for the engagement of the
amygdala and the learning of aversion and fear in response to
a stimulus such as the odor of a predator (106). Interestingly,
during this period, the presence of the mother can reengage the
fear learning process (107).

Developed by and mostly used in the Greenwood-Van
Meerveld lab, the model of odor shock-conditioning consists
of predictable and unpredictable odor-shock pairings which
mimic attachment to an abusive caregiver. This model uses the
association between an odor and a modest electrical shock to
the tail to reproduce the pup-dam interaction and creates an
olfactory attachment to the conditioned odor in response to
predictable or paired odor/shock. In practice, pups are exposed
from PND8 to PND12 to an odor associated with an electrical
shock 2 minutes after the odor exposition while controls are
only exposed to the odor (104, 107–109). During adulthood,
only female Long-Evans rats displayed an increased colonic
permeability and a colonic hypersensitivity which persisted
later in life and seemed to be directly linked to estrogen
concentrations, as an ovariectomy in females subjected to

the odor shock conditioning model, rescued this phenotype
(108). Moreover, increased expression of the CRF and the
glucocorticoid receptor was found in the central nucleus of
the amygdala which was involved in the maintenance of
the colonic hypersensitivity (104). The use of linaclotide, a
guanylate cyclase C (GC-C) agonist used in clinical practice
to treat constipation-predominant IBS, restored both colonic
hypersensitivity and permeability, proposing the GC-C/cGMP
pathway as an important player in the peripheral regulation of
the persistent visceral pain in adults exposed to this form of
ELS (109).

Adult Stress
Physical Stress
Water avoidance stress (WAS) is one of the most frequently
used models of stress in adult rodents either alone or combined
with the maternal separation model. Several studies over the last
decade have used it to characterize acute and chronic stress-
induced GI symptoms and to study the effect of treatment,
including nutritional and probiotic interventions (110, 111).
During this protocol, the animal is placed on a platform (usually
10 × 10 for rats and 3 × 3 cm for mice) surrounded by
water, either cold or at room temperature, until 1 cm below
the platform. The water reservoir should be large enough to
avoid the animal to jump out and thus give the animal the
impression that no escape is possible. This protocol can serve
as either an acute or a chronic stressor and mimics resilience to
an uncomfortable situation. A large number of variations on the
protocol have been described in the literature and often differ
by their duration. WAS induces a robust activation of the HPA
axis which transiently alters gut physiology (110). One day of
stress induces an increased intestinal permeability (112, 113)
while 3 days of stress are needed for colonic hypersensitivity to
appear (114). Morphological changes, including the composition
and the structure of the mucus layer, were present from the
fourth day (115). Interestingly, the follicle-associated epithelium
in the ileum seemed to be more affected than the colon (116).
A fecal dysbiosis, including an altered composition and function
of the microbiota, has been described after 10 days of stress
in rats while in mice it already appears after 8 days in the
small intestine (117, 118). Gastric contractions after a meal
were increased in rats after two sessions of WAS, through the
activation of the peripheral CRH1 receptors (119). Impaired
gastric accommodation occurred after 2 days of stress and
was mediated through the peripheral serotoninergic receptors
5HT2B (120). In mice, after four sessions, alterations in the
brain occurred with an increase of the neuronal and glial
activation in the hypothalamus, hippocampus, and amygdala.
These structures are not only involved in the stress response but
also in memory, pain and emotion pathways which are often
found to be altered in IBS patients (121–123). A sex-difference
has been described in the processing of emotional signals in
healthy humans (124), in patients with FGID (125) and stress-
related visceral hypersensitivity in rats (126).

As for the maternal separation, several models of physical
constraint have been developed over the years, among them
three versions of physical constraint: the partial restraint stress,

Frontiers in Psychiatry | www.frontiersin.org 7 November 2020 | Volume 11 | Article 509681

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Accarie and Vanuytsel Animal Models Functional Gastrointestinal Disorders

full restraint stress and cold restraint stress. The extent and
the duration of the stressor differ amongst the protocols. With
a full body restraint stress applied in rats for 30min, studies
have shown neuronal activation over several brain structures
and nuclei including the supraoptic nucleus, locus coeruleus,
the ventrolateral medulla, the medial division of the central
amygdaloid nucleus, nucleus of the solitary tract and even
the dorsal nucleus of the vagus nerve, structures involved in
food intake and the stress response (127, 128). Interestingly,
in those nuclei and structures, the activated neurons also
expressed nesfatin-1 and/or phoenixin, two peptides involved
in the regulation of food intake and anxiety behavior (129,
130). Nesfatin-1 is mainly expressed in the hypothalamus
and brainstem where it colocalized with CRF (131). When
administered directly into mice brain, nesfatin-1 led to an
increase of plasmatic ACTH and corticosterone levels, as well
as an activation of neurons expressing CRH, noradrenalin
and serotonin, indicating both a central and a peripheral
response to stress. Furthermore, the nesfatin-1 system is activated
when rats are submitted to restraint stress for 1 h (132). In
mice, a protocol of 60min of full restraint stress showed a
CRF-dependent increase of pellet output which was abolished
by central injection of a specific CRFR1 antagonist—while a
CRFR2 specific antagonist had no effect—(37) and also by a
systemic injection of peptide YY (133). Partial restraint stress
is another common form of the model which consists of
restriction of the upper body movements. In this model, the
shoulders, upper forelimbs, and thoracic trunk of the animal
are wrapped in a confining harness of paper tape or cloth to
restrict, but not to prevent, body movements (134). This protocol
is mostly used as an acute stressor with a 1 to 2 h period of
restraint. However, this short exposure already promoted (1)
colonic hypersensitivity (134–136), (2) an increased influx of
immune cells in the mucosa, mostly consisting of mast cells and
eosinophils (135), (3) an intestinal hyperpermeability through
the reorganization of the cytoskeleton in epithelial cells (134),
(4) a delayed gastric emptying associated with the stress-induced
sympathetic activation, increased CRF (36, 137) and associated
peptides (138) as well as active ghrelin concentration (137, 139,
140), and (5) changes in colonic morphology and a decrease
of enteric glial cells especially in the submucosa plexus (135).
By using this model for 14 days, Yi et al. could demonstrate
the implication of the insular cortex in stress-induced visceral
hypersensitivity, a region found to be abnormally activated in
FGID patients (19) and more in general in patients with chronic
pain (141).

Social Stress
One of the important findings of the last century in the field of
psychobiology is the stress-buffering effect of social relationships,
with an important role for oxytocin (142). Social buffering
conceptualizes the idea that social support can attenuate the
stress response and reduce the release of stress hormones (143).
As we discussed in the previous section, the more powerful
demonstration of this concept is the mother’s social buffering of
the offspring in which the mother and the pups can influence
each other’s corticosterone concentration (144).

However, the positive effect of this social buffering depends
on the nature of the relationship between individuals as well as
on the social organization of the species and/or gender. Many
species, including humans and rodents, live for almost their
entire life in a group with a strong hierarchy. As a result, any
disturbance in this social order or abuse is a potential source of
stress. In rodents, stress models used either the isolation of one
animal from the rest of the group, i.e., social isolation stress, or,
at the other end of the spectrum, an overpopulation within a
small area, i.e., crowding stress. Often used as models for anxiety
and depression-related disorders alterations of the GI physiology
have also been studied in rodents submitted either to the
social isolation stress or the crowding stress models. Crowding
induces a strong competition for space, food, and water and
leads to a strong increase of the corticosterone concentration
in the first days associated with early transient alterations in
the nitrergic system in the hippocampus, prefrontal cortex and
hypothalamus, an increase of iNOS expression in all structures
and increased of nNOS in the hippocampus and hypothalamus.
These changes are normalized over time through a habituation
process but remains higher than in normal housing conditions.
This protocol is used for 2 to 9 weeks depending on the strain
and type of rodent and is often combined with other types of a
stressor to simulate the combination of chronic and (sub)acute
stressors that naturally occurs in humans. Work from our group
demonstrated that 14 days of crowding stress in Wistar rats
induced increased permeability in the jejunum which correlated
with plasma corticosterone levels. However, mast cell density was
only increased in the colon (145). In Wistar Kyoto rats, a strain
sensitive to anxiety, a crowding stress protocol applied for 15
days induced a transient increase of the small intestine and colon
permeability associated with a transient rise of MPO activity
and altered mitochondrial activity (146) as well as mast cell
infiltration (colon) and activation in the GI tract (small intestine
and colon) (146).

Conversely, in the social isolation stress (SIS) model, the
animal is isolated from the rest of the cage. Often applied
just after the weaning, SIS modifies the development of the
brain and influences the nitrergic system in several brain areas
such as the hippocampus, the frontal cortex by increasing the
nNOS expression in the hippocampus and hypothalamus and
iNOS in the prefrontal cortex (147). A decrease production of
BDNF, and an activation of the HPA axis which produce more
corticosterone.. Mice exposed to SIS, have an impaired reactivity
to stress with an overreaction to another stressor together with
increased anxiety- and depression-like symptoms (148). In the
GI tract, regional differences have been pointed out between the
colon and the rectum concerning MUC2/TFF3 expression and in
the IL-18 pathway in mice exposed to 16 days of SIS (149).

Combined Stress and Chronic Mild Unpredictable

Stress
Although the various animal stress models developed over the
last years have provided critical information about the influence
of stress on physiology, humans are usually not exposed to only
one stressor during their life and a combination of stressors
is often present in patients with FGID. Also, physiology can
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adapt to one homotypic stressor in humans and rodents, leading
to habituation and absence of effect after repeated exposure.
As a variety of animal models of stress are available, a wide
range of stress combinations can be used to better understand
the pathophysiological mechanisms behind stress-induced FGID
symptoms. Combinations of unpredictable mild stress are also
often used with a rotation between different stressors such as
light/dark cycle, isolation, crowding, predator odor exposure,
shock, cold environment, restraint stress. . . .

An often-used combination in rats is the maternal separation
combined with one session of water avoidance stress in adult
rats. In contrast to mice, maternal separation is not always
sufficient to induce GI symptoms in rats (76) but increases the
susceptibility for GI symptoms upon subsequent exposure to
stress (150) which is transmitted to the next generation (77). In
another type of combination of early life stress, i.e., odor shock
conditioning, and water avoidance, a sex-difference was observed
with a more pronounced female susceptibility to develop visceral
hypersensitivity, which is in line with the female predominance
in FGID (151).

With the use of unpredictable stress models, which consist
of applying a stressor (SIS, restrain, WAS. . . ) at unpredictable
moments of the day for a few days, the involvement of
nerve growth factor, endorphin, beta-adrenergic pathway, BDNF
and mast cells mediators and the toll-like receptor 4 (TLR4)
pathways have been demonstrated in stress-induced visceral
hypersensitivity (107). Recent studies suggested a role of an
altered microbiota in the anxiety and depression-like behavior
in animals exposed to unpredictable mild stress with a strong
correlation between the alterations in the microbiota and colonic
serotonin concentrations (152, 153).

LOW GRADE INFLAMMATORY,
POST-INFECTIOUS AND
POST-INFLAMMATORY MODELS OF FGID

Infections and inflammation are among the best-characterized
triggers for FGID symptoms. Although the pathophysiological
mechanisms are not yet fully understood, a low-grade
inflammation is considered as the main explanation for the
symptoms in so-called post-infectious (PI) IBS and FD (154).
Evidence from IBD patients in remission has also brought some
more arguments for this mechanism of persistent low-grade
inflammation triggering IBS-like symptoms (155). Psychological
factors have been shown to be associated with the prevalence of
PI-IBS as well as somatization which, when happening during
the infectious period, is positively correlated with the incidence
of IBS symptoms (156).

Low Grade Inflammatory Models
Low dose injections of inflammatory factors like the bacteria-
derived lipopolysaccharide (LPS), injected systemically at the
dose of 1 mg/kg can also trigger FGID features such as
rectal allodynia and colonic hyperpermeability. Visceral allodynia
appears 3 h after injection last up to 12 h and is mediated
by mast cell degranulation, IL1β and TNFa (157). When

Authors performed a subdiaphragmatic vagotomy, they observed
an increased allodynia compared to sham animal which
suggest that the rectal allodynia seen after LPS injection
is controlled by the vagus nerve (158). In another study,
both the hyperpermeability and allodynia observed 3 h after
injection, were normalized with antagonist of TLR4 and IL1β
as well as with a CRFR2 specific agonist and Astressin
a non-selective CRFRs antagonist suggesting an important
role of the CRF in the effect of LPS injection on visceral
sensitivity and permeability (159). Moreover, allodynia and
hyperpermeability were abolished with peripheral injection of a
selective CRFR2 agonist and with an non-selective inhibitor of
CRF receptors (157). Losartan, an angiotensin II blocker, and
lovastatin reversed the permeability and allodynia, dependent
on the macrophage peroxisome proliferator-activated receptor
gamma (PPARγ) and the endogenous opioid, dopaminergic
and nitrergic system, potentially opening the door for novel
therapeutic strategies of FGID (160, 161). Similarly, the tricyclic
antidepressant imipramine reversed LPS-induced allodynia and
colonic hyperpermeability (162).

Several models have also been developed using a low
concentration of dextran sodium sulfate (DSS) to induce
low-grade inflammatory changes (163). This model contrasts
with the post-inflammatory model of high-dose DSS followed
by a recovery period, discussed in the next paragraph. An
overexpression of the T-type calcium channel cav3.2 in this
model, which was also observed in colonic biopsies of IBS
patients, was associated with colonic hypersensitivity in this
model (163, 164).

Post-inflammatory Models
Rodent models of post-inflammatory GI disorders attempt
to simulate a post-inflammatory situation mostly represented
by the resolution of an acute infection. Most of the models
presented below originally are models for IBD but can be
instrumental to study certain aspects of the development of
GI symptoms after resolution of the acute inflammation. The
development of post-inflammatory GI disorders occurs in 25
to 100% of the treated animals depending on the trigger used.
Furthermore, the severity of symptoms and functional alterations
developed in the post-inflammatory period—except for the
visceral hypersensitivity—seems to be independent of the severity
of the initial inflammation (165).

An acute treatment with a high percentage of DSS followed
by a DSS-free period (166) creates a remaining low-grade
inflammation which is associated with visceral hypersensitivity
and SERT downregulation leading to gut dysmotility. The
expression of TRPV1, another ionic channel, has been shown
to be increased in the recovery phase only in the colonic
mucosa and linked to the persistent visceral hypersensitivity
(167). However, other studies have shown a quick restoration
of the original phenotype without colonic hypersensitivity to
mechanical stimuli (152).

Trinitrobenzene sulfonic acid (TNBS), leads to a Th1 immune
response with ulcers in rodents within the first 3 days after
instillation. Two weeks after instillation, the inflammation is
resolved, but a visceral hypersensitivity, motility dysfunction
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due to a persistent long-term smooth muscle hyperactivity to
acetylcholine, an increased mast cell infiltration in the mucosa,
an upregulation of the NMDA-NR1, as well as galanin and
tachykinin expression in the mucosa and myenteric plexus, a
barrier hyperpermeability and a decreased secretory function
through a cyclooxygenase-2 (COX-2) dependent mechanism
can be demonstrated (168). The long-lasting symptoms, such
as visceral hypersensitivity, are present up to 17 weeks after
the induction and involve overexpression of the NMDA
receptor NR1 in the spinal cord as well as changes in the
distribution and the sensitivity of the colonic afferents. A
TRPV1 antagonist, a guanylate cyclase agonist, melatonin and
a probiotic (Bifidobacterium infantis 35624) were able to rescue
this phenotype (169). Mast cells, through their main mediator
histamine and its receptors H4R and H1A, play a substantial role
in post-inflammatory visceral hypersensitivity (170). Recently,
Winston et al. demonstrated a gastric hypersensitivity in 8 weeks-
old rats previously exposed to TNBS (171) which positioned this
model as a general model for FGID and a goodmodel for patients
with FD and IBS overlap symptoms, which is common in clinical
practice (172).

Acid acetic, Zymosan and mustard oil are irritants
administered directly into the colon of adult or neonatal
animals by enema. When administered in pups, long-lasting
visceral hypersensitivity has been reported for 8 to 10 weeks
for Zymosan and mustard oil and up to 12 weeks for acid
acetic (168) without histological damage in adult rats (173).
Seven days after acid acetic induction in adult rats, when the
inflammatory phase has subsided, a defect of the intestinal
barrier function was reported with altered occludin and ZO-1
protein expression in a miR-144-dependent manner (174).
The same barrier defect was also observed in rats submitted
to the neonatal protocol. When administered directly into the
submucosal layer of the stomach using 15 to 20 injections in
adult rats, acid acetic promoted gastric hypersensitivity (175).
Zymosan and mustard oil sensitized the mechanoreceptor
and other neurons present in the colonic wall which persisted
after the inflammatory phase (176, 177). Both Zymosan and
mustard oil, induced neuronal changes in the spinal cord and
the brain by increasing the neuronal excitability as shown by an
increased presence of c-FOS positive neurons (178). The latter
was associated with an altered expression pattern in the NMDA
receptors in females which might be responsible for the female
predominance in visceral sensitization following the mustard
oil model (179). The stimulating effect of mustard oil on GI
motility has been documented in both the upper and lower GI
tract (180). Although the increased neuronal activation in the
central nervous system in those models would suggest behavioral
changes, anxiety-like symptoms have only been described in
the zymosan model in which these behavioral symptoms were
present during the inflammatory phase and remained present
for 2 weeks after the induction, associated with increased c-FOS
expression in different brain regions such as the amygdala,
prefrontal cortex, periaqueductal gray... and increased TNF-α
levels in the colonic mucosa (181).

Iodoacetamide is an alkylating agent administered by gavage
in neonate rodents to induce a mild inflammation of the
gastric mucosa that is associated with acute changes in sensory

and motor function. Inhibition of the glucocorticoid receptors,
adrenergic receptors, BDNF or the nerve growth factor (NGF)
during the neonatal period suppressed the induced gastric
hypersensitivity (171). The inflammation phase in pups is
characterized by a thickening of the neuromuscular layer
without increased MPO levels. During adulthood, histology and
inflammation levels are comparable to control animals while the
gastric sensory and motor dysfunction remained present up to 8
weeks after the treatment (182).

Post-infectious Models
Within the GI tract, the host and billions of micro-organisms
are co-existing, creating a unique symbiosis. Products secreted
by the microflora influence the gut function by their effect
on neurotransmitters, epithelial function, secretion, or muscle
contraction (183). The composition of the gut microflora
depends on different factors such as diet, geographic position,
genetics, and gender. The balance is strongly influenced
by changes in the diet, travel or bacterial and parasitic
gastrointestinal infections. The occurrence of FGID symptoms
after an infectious episode has been found in a range of 3 to
36% of an infected population (156, 184, 185). The latter has
been found to alter gut physiology through different mechanisms
including the triggering of an inflammatory reaction, alterations
at the neurochemical level and immune function, and alterations
of the nerve distribution (186). Some of the parasites and
bacteria that can infect the human GI tract, can also infect
rodents and trigger symptoms or GI abnormalities reminiscent
of human FGID.

Trichinella spiralis is an intestinal parasite found in humans,
rodents, and pigs and is used as a model of post-infectious IBS in
mice. For this purpose, mice are infected with 200 to 300 larvae
in one gavage. During the acute phase, parasites are evacuated
from the organism triggering a Th2 inflammatory phase in both
the mucosa and muscular layers (187, 188). The post-infectious
phase is defined at 4 weeks post-infection when the inflammatory
phase has subsided (188). However, Akiho et al. found that
transforming growth factor (TGF)-β remained overexpressed
during this post-inflammatory phase and the smoothmuscle cells
were still hyperreactive to an immune challenge (primary culture
of smoothmuscle cells incubated with Th2 cytokines TGF-β1 and
COX2) in a COX-2 dependentmanner (187).Moreover, the long-
lasting effects of the infection, such as visceral hyperalgesia which
has been reported up to 70 days after infection, were inhibited
by selective and non-selective COX-2 inhibitors (187, 189). Data
on the effect of COX-2 inhibitors in humans are still lacking.
In the post-infectious phase, the small intestine smooth muscle
contractility, as well as the mucosal transport, remained altered.
The latter shifted from a predominantly cholinergic in normal
conditions to a non-cholinergic regulation (188).

Other animal models used infections with Nippostrongylus
brasiliensis and Cryptosporidium parvum, which are both
characterized by mast cell hyperplasia, visceral hypersensitivity,
motility dysfunction with an increased motor response to
excitatory agonists due to a remodeling of the nerve pattern
as found in PI-IBS patients long after the infection. Other
bacteria have been used including Campylobacter rodentium,
Campylobacter jejuni or Salmonella enterica. However, those
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infections are less well-characterized regarding their FGID
features or have a low success rate in rodents (168).

Overgrowth of Escherichia coli in the ileum of IBS and IBD
patients has been associated with the expression of the human
bacterial colonizing receptor CEACAM6 (190). Expression of the
human CEACAM6 in the murine GI tract induced colonization
and growth of pathogenic Escherichia coli upon gavage and
led to an infection. In this model, mice are treated with the
bacteria for 3 days, leading to a transient inflammation, intestinal
hyperpermeability, and colonic hypersensitivity. The latter was
present until 3 weeks after infection and was associated with
a remaining low-grade inflammation and overexpression of the
purinergic receptors P2X receptors in the colon (191).

FOOD-RELATED MODELS OF FGID

Food indigestion, intolerance or allergy are major triggers for
abdominal symptoms. Due to genetic predisposition, infection
or stress, oral tolerance, which is critical in avoiding immune
reactions against food antigens, may be disrupted, leading to
FGID symptoms. In IBS patients, the ingestion of certain food
compounds triggers FGID symptoms (192) and elimination diet
strategies, such as low FODMAP or gluten-free diets, are effective
in some patients (193).

Food allergy represents a break in the oral tolerance
and the consumption of allergens trigger a Th2 response
and the activation of mast cells through the IgE pathway.
FGID manifestations such as low-grade inflammation, visceral
hypersensitivity, increased permeability, have been reported in
rodent models of food allergy (194, 195). In those models as well
as in humans, gender differences have been described. However,
studies are diverging on the effect of the gender with female
rodents being more affected than males while in children the
prevalence is higher in males. Those differences might be related
to the difference in the immune system response to allergens
which is strongly influenced by sex hormones (102, 195). Those
models differ by the allergen used, which can be egg proteins,
peanut components, milk or seafood extracts, but all follow
the same pattern with a phase of allergy-induction and a re-
challenge with the same allergen several days or weeks after the
induction (195). Many of the validation criteria for a rodent
allergy model are comparable to the evaluation of the FGID
related changes, e.g., presence of histological changes with local
and systemic inflammation and activation of eosinophils and
mast cells (195). In an elegant study, Aguilera-Lizarraga and
Florens demonstrated that the establishment of oral tolerance
can be impaired due to stress or intestinal infection, two major
triggers of FGID symptoms, without triggering a systemic allergic
reaction. Their results showed that this impaired tolerance
triggered a mast cell activation through local (but not systemic)
IgE, leading to colonic hypersensitivity and hyperpermeability
(196, 197).

Obesity is one of the main health problems of our society
and affects an increasing number of people over the world.
Obesity is often associated with metabolic disorders such as
diabetes or hypertension and also with FGID (198). IBS is

three times more frequent in obese patients compared to the
general population (199) and patients report both upper and
lower GI complaints (200). Moreover, studies have reported
an increased incidence of GI symptoms among fast-food and
western-diet consumers (201, 202). Although, no animal model
of FGID includes eating habits or genetic background leading
to obesity, several observations in obesity models have pointed
out a chronic GI low-grade inflammation and hyperpermeability
induced by high fat, high sugar diet (HFHS) (203) which is
associated with changes in the microbiota composition (204).
Therapeutic strategies targeting the microbiota (205) as well
as dietary strategies (204, 206) have shown some promising
results in this model on the immune dysfunction and colonic
hyperpermeability. Although the effect of obesity on low-grade
inflammation, neuropathy, and hyperpermeability is not specific
to the gut—some studies reported epigenetic changes in several
organs (207)—it will be interesting to further investigate the
effect of obesity on the gastro-intestinal features of FGID
and on how it affects the outcome and/or the development
of FGID.

The imbalance between some bacterial phyla such as
Firmicutes/Bacteroidetes has been reported in IBS patients
(208). The firmicutes are the predominant butyrate and other
short-chain fatty acids (SCFA)-synthesizing bacteria within the
colon. Although the benefits of SCFA has been demonstrated,
rectal butyrate instillation in animals has been linked to
visceral hypersensitivity (209, 210). This hypersensitivity without
inflammation involved the enteric glial cells-derived NGF
pathway which sensitized the nerve fibers within the colonic
wall (211).

SPONTANEOUS MODELS OF FGID

Spontaneous animal models sharing key characteristics with
human FGID are of great value to unravel the complex chain of
events ultimately leading to symptoms and to aid in preclinical
drug development. Only a few spontaneous models for FGID
have been described (212–214) often sharing common features
for FD and IBS, mostly in rats.

The BioBreeding rat (BB-rat) is an inbred colony originating
from Wistar rats and have been selected for their ability to
spontaneously develop type 1 diabetes (215). The BB-rat consists
of a diabetes-resistant (control) and a diabetes-prone (BB-
DP) strain of which about 50 to 90% develops hyperglycemia
depending on their environment (216). Originally mostly used as
a model for type 1 diabetes, several groups have demonstrated
GI alterations closely mimicking FGID. Indeed, Neu et al.
have described changes in intestinal morphology and intestinal
permeability before the onset of diabetes (217). In the last 5 years,
our lab has described a gastrointestinal phenotype in those BB-
DP animals which did not develop diabetes, at all levels of the
GI tract. The intestinal changes closely resemble the alterations
found in patients with FD and IBS (213, 218–220). Based on these
observations, we proposed the normoglycemic BB-DP rat as a
spontaneous animal model for FGID. A natural history study of
the small intestine demonstrated that the earliest abnormality was
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an increased intestinal permeability at 50 days of age, followed by
an immune cell infiltration, progressing from the mucosa to the
myenteric plexus in animals from 110 days onwards (213). This
myenteric plexitis is associated with a loss of nitrergic neurons
and disturbed motility (213, 220). Concomitantly, an impaired
gastric accommodation, like in functional dyspepsia, has been
observed in young normoglycemic rats (220). The immune
infiltration is affecting the stomach, the small intestine, and the
colon and is characterized by activated mast cells and eosinophils
(221). Although the barrier defect precedes the infiltration of the
immune cells in the small intestine, we observed that in the colon,
the infiltration of the immune cells, which is present at the same
age as in the jejunum, precedes the hyperpermeability suggesting
a different mechanism in both locations. At both levels, we
found a positive correlation between mast-cells density and
mucosal permeability. Following this immune activation, we also
demonstrated colonic hypersensitivity to colorectal distention
and anxiety-like behavior in older BB-DP rats, which, however,
was not associated with the increased permeability or immune
infiltration in the colon (219). Altogether, the BB-rat model
is a valid spontaneous animal model for FGID, recapitulating
the permeability defect, eosinophil and mast cell predominant
immune activation, motility disturbances at different levels of
the GI tract, visceral hypersensitivity and behavioral alterations,
similar to human FGID.

The Wistar Kyoto (WKY) rat, originally used as a control
normotensive strain for the spontaneously hypertensive rats
(SHR), has been studied in the last decades as a model
of brain-gut dysfunction. Those rats display an exaggerated
response to chronic stress compared to Sprague Dawley rats
(222–224), associated with a higher susceptibility to develop
anxiety-like and depression-like symptoms (225). Regional
differences in monoamines concentration within the brain may
explain their susceptibility to anxiety and depression (226).
As described above, stress is a potent trigger for alterations
in gut physiology, especially through the central expression
of CRH in key structures involved in stress but also in pain
and emotion regulation. Wistar Kyoto rats have an increased
response to colorectal distension associated with increased
neuronal activation in the cortex (227). Specific inhibition of
the CRH pathway in the central amygdala and inhibition of
central and peripheral 5HT2B inhibits the increased response
to colorectal distension (87, 228). Besides the well-described
colonic hypersensitivity (87, 228, 229) and impaired intestinal
permeability (223, 224), the WKY rats also display gastric
alterations such as an impaired gastric accommodation and
a higher sensitivity to gastric distension (230). Interestingly,
O’Malley et al. have compared the WKY to Sprague Dawley in a
maternal separation paradigm and showed that the susceptibility
to gastrointestinal dysfunction in stressed Sprague Dawley is
comparable to what is found in non-stressed WKY (231).

The Flinders Sensitive Line (FSL) rat originates from selective
breeding from Sprague Dawley and has been selected for
their resistance to the choline esterase inhibitor, diisopropyl
fluorophosphate (232). Used first as a model of cholinergic-
adrenergic hypothesis depression (233), they are now more
generally used as a model of depression without comorbidity

of anxiety and with a female predominance (234). The effect
of the microbiota composition has been studied in those
rats showing that their microbiota composition is different
(235) and might represent a target to improve the depression
phenotype (236). However, only a few studies have investigated
the gastrointestinal features in those rats. Some characteristics
of functional dyspepsia including a delayed gastric emptying
but not an impairment of the gastric accommodation have been
described (214). Taking into consideration the link between
depression and FGID, a more detailed study of the GI features
in the FSL rats may bring some new insights for the link between
GI symptoms and depression in FGID.

INTERVENTIONAL MODELS OF FGID

During abdominal surgery, the opening of the skin and the
abdominal cavity triggers adrenergic reflexes involving a spinal
loop which temporarily blocks GI motility. Considered as an
iatrogenic disorder, postoperative ileus (POI) occurs in most
patients undergoing abdominal surgery and is characterized by
a transiently impaired GI motility. However, when recovery
of bowel function is delayed for more than 3–7 days, this
disorder is defined as an illness (237). Several rodent models
exist to induce POI: briefly, either the abdominal cavity is
opened and exposed to room temperature air for 3 h (238) or
the intestinal tract is gently manipulated during 5–10min (239).
In both cases, an impaired GI motility affecting the stomach,
small intestine, and colon, an intestinal inflammatory response,
and hyperpermeability have been reported. The inflammatory
response is associated with increased production of TNFα, IL1α,
and IL6 in the early stage, followed by an increase of myeloid
cell-derived cytokines, e.g., IL1β and CCL2. During this early
stage, the inhibitory reflex pathway is activated, inhibiting gut
motility. The transit time is delayed from 12 h up to 1 week
after the surgery (240). At 24 h after the surgery, small intestine
and colonic transit were delayed and associated with increased
cytokine expression within the smooth muscle layer. The role of
mast cells in the POI is still controversial as some studies found
a mast cell-dependent mechanism in the POI-induced intestinal
hyperpermeability and bacterial translocation (241) while other
studies found no involvement of these cells by using another
type of mast cell knockout (KO) mice (242). While intestinal
permeability to bacteria is increased in this model, the TLR2/4
pathway does not seem to be involved (243). Although the role of
mast cells is still unsure, the infiltration of resident macrophages
through their expression of the alpha7 nicotinic acetylcholine
receptors plays a critical role (244). The early cytokines released
from the drop of temperature and dry stimulation due to
the opening of the abdominal cavity, are potent activators of
the macrophages. Furthermore, the afferent nerves activated
by the manipulation of the intestine may also activate the
resident macrophages and trigger an inflammatory response. In
this context, pharmacological or electrical stimulation of the
cholinergic anti-inflammatory pathway has been presented as an
attractive option to reduce POI (245). Moreover, stimulation of
the vagal nerve has been shown to reduce the severity of the POI
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in animal models (246). As mentioned before, the decrease of the
ambient temperature plays an important role in the inflammatory
response and also for the activation the thyrotropin-releasing
hormone (TRH) in the brain which stimulates gastric motility
and secretion for the activation of gastric myenteric cholinergic
neurons (247). Several hormones expressed both in the brain
and the GI tract are involved in the pathophysiology of
POI, including ghrelin, nesfastin-1, somatostatin, TRH, CRF
and calcitonin gene-related peptide (CGRP). In the POI
model, lower ghrelin concentrations were observed which—like
CRF and CGRP—leads to a delayed gastric emptying (248–
250). Pharmacological inhibition of somatostatin, a hormonal
modulator, in the POI model induced elevated ghrelin levels
(251). Centrally, POI activates brain nuclei (supraoptic nucleus,
locus coeruleus, paraventricular nucleus of the hypothalamus &
rostral raphe pallidus) expressing the nucleobindin2/nesfatin-1
complex which contribute to the decrease in food intake and
intestinal transit (252).

Manipulations of the central nervous system have also
been described as potential models of GI disorders associated
with anxiety-like symptoms. As described before, the limbic
system and especially the amygdala are strongly involved in
stress-induced colonic hypersensitivity associated with anxiety-
like symptoms and the manipulation of this brain region
is sufficient to induce colonic pain (253). Direct delivery
of corticosterone through a surgically implanted cannula
in the central nucleus of the amygdala (CeA) induces a
persistent colonic hypersensitivity, which is dependent on
CRH, mineralocorticoid and glucocorticoid receptors (169). The
activation with a specific agonist of one of those receptors in
the CeA, has the same effect on colonic sensitivity as stress
(254, 255). Furthermore, the infusion of corticosterone directly
into the amygdala leads to epigenetic modifications that enhance
the expression of those receptors in a long-term and transmissible
manner (256).

MISCELLANEOUS MODELS OF FGID

Genetic models of FGID include specific KO animals for several
receptors, ion channels, and cellular pathways. These models
have provided important knowledge of FGID pathophysiology.
Mostly used to better understand the pathophysiology of colonic
pain, they have demonstrated the importance of BDNF, guanylate
cyclase, serotonin transporters, and ion channels. The latter have
been extensively described in the literature to be involved in
the intestinal mechanoreception and inflammation (257, 258).
Therefore, all compounds capable of activation/inhibition of
those channels can trigger IBS-like symptoms and especially
colonic pain (169), the full description of which is beyond
the scope of the current review. Studies in mice deficient
for the protease-activated receptor 2 (PAR2) highlighted the
importance of this receptor in colonic sensitivity (259), and
immune response, notably against Trichinella spiralis (260).
Other key components of innate immunity, e.g., the TLRs, such
as TLR4, are expressed in the intestinal tract and the CNS (261).
The activation of TLR4 leads to the activation of inflammatory

cascade but also pain behavior through its expression in the spinal
cord. Furthermore, TLR4 has been found to be upregulated in the
GI tract of patients with IBS (262, 263). Studies in TLR4 KOmice
demonstrated a role of the central expression of TLR4 in visceral
hypersensitivity following maternal separation stress (264). More
generally, in the CRH-induced colonic hypersensitivity and
hyperpermeability, TLR4 is a pivotal factor for CRH-mediated
modulation of the immune system (159).

Several studies have demonstrated a cross-sensitization
between different abdominal organs. In the spinal cord and
the brain, the convergence of the sensory neuronal pathways
of the different organs is one of the mechanisms underlying
this sensory visceral crosstalk (265). Furthermore, within the
abdominal cavity, all organs are linked to each other through
physical contact and blood circulation. The best-documented
model of cross-sensitization is the interaction between the
bladder and the colon, in which inflammation in one of the two
will affect the other partner as well. Similar to FGID, bladder
pain syndrome and bladder hyperactivity syndrome has a female
predominance and is often associated with IBS (266). Animal
models of bladder irritation, e.g., triggered by protamine sulfate,
display an increased colonic hypersensitivity and permeability
(267, 268).

NON-RODENT MODELS

Although most of the research focuses on rodent models,
some other species have been used to investigate the FGID
pathophysiology. The guinea pig is a good model to study
intestinal motility and the enteric nervous system. The models
used are similar to what we previously described in rodents,
with the use of stress models such as water avoidance and CRH
injection (269, 270). As a model of altered GI transit, several
chemical approaches have been used in guinea pigs such as the
gavage with mustard oil and serotonin or the injection of TRH.
Mustard oil, given orally, induces elongation of the transit time
in the upper GI (esophagus) and a decreased transit time in the
lower GI part (colon) (271). Ricinoleic acid-induced defecation
in the guinea pig is suppressed by a specific tachykinin receptor
NK2 antagonist (272).

In rabbits, intracolonic infusion of Zymosan leads to colonic
hypersensitivity (272) which is reduced by a tachykinin NK2
receptor antagonist.

Pigs have a comparable GI system to humans, with an
equivalent size, anatomy, development and diet preference,
which are evidently very different in rodents (273). Also, the
enteric nervous system phenotype is comparable to the human
counterpart with more complex inter-neuronal connections and
plexi compared to rodents (274). It has been shown that pigs
have a more highly developed CNS with a complex behavior
response to psychosocial stimuli (275) and therefore are more
suitable as a model for the response of the GI tract to early
life stress in humans. In pigs, the weaning itself is considered
a very stressful event (both psychological and physical) which
promotes an intestinal barrier defect (276). In a model of early
weaning, the piglets are separated from their sow 1 week earlier
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TABLE 2 | Strengths and limitations for common models of Functional GI disorders.

Model Strengths Limitations Part of the GI tract

studied

Pre-natal stress Allows to study epigenetic changes Individual variation among animals, around 80

to 95% of animals are sensitized by the stress

applied

Small bowel and colon

Maternal separation Reproduces maternal neglect and

mistreatment of FGID patients

Colon

Limited bedding Non-interventional model, avoids experimenter

influence

Colon

Odor shock

conditioning

Specifically mimics alterations in learning and

fear conditioning

colon

Water avoidance Strong acute models reproducing a strong

stressor and mimicking resilience in an

uncomfortable situation

Limited construct validity: physical constraint is

not a factor commonly encountered in the

etiology of FGID in patients

Stomach

Ileum (more affected)

colon

Partial restraint stress Stomach and colon

Crowding stress Models capture the social component in

stress-induced FGID

Social organization, and individual reactions to

stress are obviously less standardized and

more complicated in humans

Small intestine and colon

Social isolation Colon

Combined stress Good model to reproduce anetiology

commonly found in human

Because of the more complex interaction of

stressors and depending on the protocol used,

results tend to be more difficult to reproduce

Colon

Post-inflammatory Reproduces low-grade inflammation often

found in FGID e.g., after infection or in IBD in

remission

Limited construct validity: interventional models

using irritants/chemicals

Local effect depending on

the targeted organ: mainly

Stomach and colon

Post-infectious Model for post-infectious FGID which allow a

detailed study of dysbiosis involved in FGID

Different infectious agents compared to

humans; most models have used parasitic

infections which is uncommon in human FGID

Depending on the infection,

small bowel or colon

Food allergy Murine immune response in case of loss of oral

tolerance closely resembles the human

counterpart

The nutritional pattern differs between rodents

and humans; evidence for immune reaction to

food is still limited in human FGID

Colon

Spontaneous models Non-interventional models, good face and

construct validity

Sensitivity to environmental factors (food,

stressors…) which makes these model more

difficult to reproduce

Stomach, small bowel,

colon

Postoperative Ileus Good construct validity. Allows to study of the

mechanisms of interventional surgery as a

trigger of intestinal alterations

Intervention is highly operator and experimental

condition dependent

Small bowel

Manipulation central

nervous system

Suitable for mechanistic studies of the

involvement of the central nervous system

Limited construct validity: far from human

etiology

Mainly colon

Genetic model Ideal models to study a specific genetic target

and its role in FGID

Compensation phenomena; human FGID is not

monogenetic

If KO: all levels of the GI

tract

If conditional KO: organ

targeted

Cross sensitization Understanding of the overlap in neuronal

pathways which is common in human FGID

Interventional models using irritants Depending on the organs

targeted (mainly bladder

and colon)

KO, knockout; FGID, functional gastrointestinal disorders; IBD, inflammatory bowel disease.

than usual. In this model, adult pigs display a defect in the small
intestinal and colon mucosal barrier function with an elevated
electrogenic transport activity, chronic diarrhea associated with
an enhanced mast cell activation and an upregulation of the
enteric cholinergic population (277, 278) Pretreatment of the
stressed animals with a CRH antagonist abolished the stress-
induced elevated secretory activity and increased intestinal
permeability in jejunum and colon (279). Ex-vivo experiments
demonstrated that CRH increased permeability via a TNF-α
dependent mechanism (280). Similar to rodent models and

humans, female pigs are more affected than males by this stress
paradigm (276). Despite the differences listed above, pig and
rodent models reach the same conclusions on the effect of stress
on the GI tract, confirming the critical and harmful effect of early
life stress across species.

SUMMARY AND CONCLUSION

Functional gastrointestinal disorders are complex and
multifactorial disorders involving a complex interaction between
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biological, psychological and social variables that none of the
current animal models can reproduce perfectly. The strengths
and limitations of the varied models are listed in Table 2. The
main limitation of those models remains the societal component
of the FGID pathophysiology that is extremely difficult to
reproduce in animals. Nevertheless, animal models have brought
pivotal insights into the pathophysiology of FGID, including
the complex interaction between the gut and the central
nervous system, and represent essentials tools for identifying
novel therapeutic targets and testing of new generations of
pharmaceutical and non-pharmaceutical therapies. Over the
years, the improved understanding of the FGID pathophysiology
has stimulated the conception of new animal models, which
are now more complex and include a combination of causes
triggering FGID features, which more closely resembles the
human condition. However, with the development of those
new multidimensional models using a multitude of slightly
different protocols—sometimes not explained in detail in the
literature—comes a lack of reproducibility hampering further
progression. Several guidelines have been created to address this
problem and to enhance scientific rigor (281, 282).

Most of the published studies still suffer from two limitations
which weaken their translational relevance. First, most of the
available studies focus on the lower GI tract (Table 2), while
increasing evidence points out the overlap between the different
FGIDs. Many of the models described above are characterized as
IBS models but might also be suitable as FD models if alterations
in the upper GI tract would be investigated. The second

limitation is that the large majority of the pre-clinical studies are
performed in male animals to avoid the “hormonal fluctuation”
problem although FGID are mainly affecting women. Moreover,
recent findings about the impact of sex hormones on the immune
response suggest that estrogen is an important player in the onset
and development of FGID. For each model presented in this
review, at least one study performed in females was available,
but often studies comparing both genders were lacking. The
early life stress models more frequently addressed the impact of
gender because of their methodology, since the stress is applied
to pups in a stage when the sex is more difficult to determine.
Although the field is slowly changing, studies including females
are still underrepresented and those taking the hormonal
parameters into account are even fewer. In order to improve
the construct validity of the animal models capturing the female
predominance of human FGID these studies are awaited in the
near future.
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