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Dry Eye as a Mucosal Autoimmune Disease
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Dry eye is a common ocular surface inflammatory disease that significantly affects quality of life.
Dysfunction of the lacrimal function unit (LFU) alters tear composition and breaks ocular surface
homeostasis, facilitating chronic inflammation and tissue damage. Accordingly, the most effec-
tive treatments to date are geared towards reducing inflammation and restoring normal tear film.
The pathogenic role of CD4+ T cells is well known, and the field is rapidly realizing the complex-
ity of other innate and adaptive immune factors involved in the development and progression of
disease. The data support the hypothesis that dry eye is a localized autoimmune disease originat-
ing from an imbalance in the protective immunoregulatory and proinflammatory pathways of the
ocular surface.
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THE PROBLEM

Dry eye was traditionally considered a condition of reduced tear volume. It is now
recognized in a broader context as a condition of abnormal tear composition that
no longer adequately supports the ocular surface. Tear dysfunction occurs when
the lacrimal functional unit (LFU) (Figure 1), composed of the tear secreting glands
(lacrimal glands, conjunctival goblet cells, and meibomian glands) and their neural
and immunological components [1–3], is no longer able to maintain a stable pre-
corneal tear layer. Altered tear film is a consequence of disease or dysfunction of one
or more components of the LFU. The etiology of LFU dysfunction is obscure; envi-
ronmental, microbial and endogenous stress, antigen localization, and genetic factors
may provide the trigger for an acute inflammatory event that initiates the inflamma-
tory circle of chronic dry eye originally published by our labs in The Ocular Surface in
2005 (Figure 2)[4].

Tear dysfunction is one of the most prevalent eye conditions. Epidemiological stud-
ies performed worldwide on different populations and using a variety of diagnostic
criteria have reported a prevalence ranging from 2%–14.4% [5–10]. This translates to
dry eye prevalence in the United States of 6 to 43.2 million people. A number of risk
factors for dry eye have been identified. Age is perhaps the biggest risk factor with the
prevalence increasing in both men and women with every decade of life over the age
of 40, with a greater prevalence in women than men at every age [9,10]. Other risk
factors identified include contact lens wear [11], high dietary consumption of n-6
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FIGURE 1. The Lacrimal Functional Unit. The LFU unifies the complex reflex network connect-
ing the sensory tissues and secretory glands that provide homeostasis on the ocular surface, and
is composed of the ocular surface tissues (cornea, corneal limbus, conjunctiva, conjunctival blood
vessels, and eyelids), the tear secreting machinery (main and accessory lacrimal glands, meibomian
glands, conjunctival goblet, and epithelial cells), and their neural connections. The LFU is tightly
controlled by neural input from the ocular surface tissues. Subconscious stimulation of the corneal
nerve endings triggers afferent impulses through the ophthalmic branch of the trigeminal nerve (V),
which integrate in the central nervous system and the paraspinal sympathetic tract, in turn gener-
ating efferent secretomotor impulses that stimulate secretion of the healthy tear film. Any one of
several sensory stimuli, e.g., pain, microbial/environmental insult, and emotion can stimulate the
tear secreting reflex. Illustration from Beuerman et al. The Lacrimal Functional Unit in Dry Eye and
Ocular Surface Disorders (eds. Pflugfelder SC, Beuerman RW, and Stern ME) (Marchel Dekker, Inc.,
New York, 2004) 11–39.

polyunsaturated essential fatty acids [12], diabetes mellitus [9,10], cigarette smok-
ing [10,13], prolonged video display viewing [11], and low-humidity environments
[14]. Recently, ocular surface wetness was shown to be regulated by corneal TRPM8-
dependent cold thermoreceptors [15], and it is possible that these fibers, along with
other nerve fibers [16], may be reduced with aging, drawing a link between aging,
corneal innervation, and tearing.

CLINICAL MANIFESTATIONS OF DRY EYE

Patients with tear dysfunction typically experience intermittent-to-constant eye irri-
tation, photophobia, and blurred and fluctuating vision. These symptoms are often
exacerbated by prolonged visual effort or a low-humidity environment, such as an air-
plane cabin. Chronic eye irritation may decrease quality of life in afflicted patients. In
fact, the impact of tear dysfunction on quality of life was rated to be equivalent to un-
stable angina using utility assessments [17]. In some cases, the consequences of tear
dysfunction can be devastating and result in functional and occupational disability.

Ocular surface pain and discomfort is a major symptom of chronic dry eye and is
frequently the primary reason patients seek an ophthalmologist. Clinically, there is
disparity in the extent of tearing, corneal innervation, sensitivity, and pain among the
patient population [18–24]. Although not confirmed, ocular surface discomfort may
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FIGURE 2. Inflammatory circle of chronic dry eye. Stress to the ocular surface triggers the initial
events leading to localized autoimmunity. Acute response cytokines, such as TNF-α, IL-1α, IL-1β,
and IL-6 further enhance proinflammatory cytokine/chemokine production, adhesion molecule
expression required for innate cell infiltration, and also activate resident antigen presenting cells
(APCs). Mature APCs home to the regional lymph nodes to activate Th1 and Th17 cells. Autoreactive
T cells traffic to the ocular surface tissues where they potentiate the chronic autoimmune response
and cause pathology. For example, IFN-γ alters mucins on corneal epithelial cells and is linked
to epithelial cell apoptosis, goblet cell loss, and squamous metaplasia. IL-17 increases MMP3/9
expression and induces corneal epithelial barrier dysfunction. In addition, recent data suggest
that autoantibodies bind to antigens expressed in the LFU to cause complement-dependent tissue
destruction.

be a sensory neuropathy caused by repeated stimulation of peripheral corneal nerve
fibers from the ophthalmic branch of the trigeminal nerve. Certainly, small diame-
ter myelinated and unmyelinated axons are present in the cornea and are potential
targets for peripheral nerve disorders. Inflammatory mediators released from the tis-
sues, and the damaged nerves, may overstimulate pain fibers, ultimately leading to
the development of central sensitization; factors associated with inflammatory pain,
including neuropeptides [25,26], proinflammatory cytokines [27], ganglioside-specific
antibodies [28,29], and infiltrating inflammatory cells [30] are well documented dur-
ing dry eye. Using the desiccating stress-induced murine model, we recently demon-
strated that dry eye mice developed tactile allodynia indicative of sensory neuropathy
(Schaumburg and Stern, unpublished observations). Dry Eye mice displayed tactile
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allodynia in the infraorbital branch of the maxillary nerve (V2 sensory region), which
was associated with increased levels of neuropeptides, e.g., calcitonin-gene-related
peptide (CGRP) and substance P in the trigeminal ganglia. Neuropathic pain associ-
ated with tear dysfunction may also be more common in patients with tear dysfunction
than is currently recognized. It is not uncommon for patients with chronic tear insta-
bility to develop irritation symptoms out of proportion to the severity of their corneal
epithelial disease. In some cases, agents approved for treatment of neuropathic pain,
such as pregabalin may improve these symptoms.

IMMUNOREGULATION OF THE OCULAR MUCOSA

Like other mucosal tissues, the eye contains an exquisite immunoregulatory network
designed to limit bystander tissue damage during microbial insults and maintain tol-
erance to self-antigens and commensal microbes. Like the gut, the eye contains its own
local lymphoid tissues, i.e., conjunctiva-associated lymphoid tissue (CALT), situated
to sample antigens and maintain tolerance to commensal flora [31–35]. Using two-
photon microscopy, Steven et al. showed that topical stimulation of the ocular surface
with microbe/microbial products (Chlamydia trachomatis, cholera toxin B) or a ubiq-
uitous antigen (ovalbumin) increased the number of intraepithelial lymphocytes and
CALT follicles consisting of lymphocytes, dendritic cells (DC), and macrophages in the
nictitating membrane [33]; use of this novel mouse model will lead to a greater under-
standing of the functional role of CALT in homeostasis and disease. We are also now
realizing that the eye, like other mucosal sites, has a diverse microbiome [36] whose
composition may be regulated by the antimicrobial and immunomodulatory factors
in tears. Together, the immune cells that reside in the ocular surface and the factors
they produce regulate immune homeostasis on the ocular surface.

Tears contain a biochemically complex mixture of factors that are produced by the
lacrimal glands and ocular surface epithelium that function to maintain corneal clar-
ity by lubricating, supporting, and healing the cornea, as well as suppressing inflam-
mation, microbial invasion, and tissue destruction (Table 1) [37–51]. Reflex tear secre-
tion, blinking, and drainage of tears into the nasolacrimal drainage system normally
clear potentially pathogenic inflammatory mediators that are produced by the resi-
dent epithelial and inflammatory cells. Additionally, tears contain a variety of anti-
inflammatory factors, such as transforming growth factor beta (TGF-β), interleukin-
1-receptor antagonist (IL-1RA), tissue inhibitor of matrix metalloproteinase (TIMP-
1), decay accelerating factory (DAF; CD55), membrane inhibitor of active lysis (MIRL;
CD59), and programmed death ligand (PD-L1) [27,52–55]. For example, TGF-β [40,56)
and the IL-1 receptor antagonist (IL-1RA) [57,58] can suppress resident DC matura-
tion, required for T-cell activation during experimental dry eye [59], by direct and in-
direct mechanisms, respectively. DAF (CD55) and MIRL (CD59) are present in the
cornea and conjunctival tissues/tears and may limit complement-mediated tissue
damage during ocular insults [54,55,60]; the potential role of complement in exper-
imental dry eye [61] will be discussed later. In addition, PD-L1 protects the ocular sur-
face from T-cell-mediated damage in murine models of corneal transplant and dry eye
disease [62–65]. However, decreased tear production and clearance during disease of
the LFU or in the closed eye during sleep cause the levels of inflammatory mediators
in tears to increase, which may compromise ocular surface homeostasis [53,66,67].

Intraepithelial lymphocytes (e.g., CD8+, γ δ, and NKT cells) and CD4+ T regulatory
cells (Tregs) on the ocular surface may provide protection against autoimmunity, as
demonstrated at other mucosal sites [68]. For example, CD8+ T cells predominate the
ocular surface epithelium [69], and we recently demonstrated that a subset of CD8+
suppressor cells exert regulatory function during desiccating stress-induced Dry Eye
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TABLE 1. Tear components supporting corneal health.

Role Component References

Lubrication MUC1, MUC4, MUC16, MUC5AC [38,43,44]
Wound healing EGF, Substance P, TGF-β [40,46,176]
Antimicrobial defense Lactoferrin, Lysozyme, Defensins (α and

β), IgA, TNF-α IL-1β, IL-8,
[27,41,47–49,51,52]

Anti-inflammatory IL-1RA, TGF-β2, DAF (CD55), MIRL
(CD59), PD-L1, VEGF-R1/3

[38,52,54,55,64,65,177,178]

Protease inhibitors TIMP-1, SLPI [42,50]

MUC = mucin gene, EGF = epidermal growth factor, TGF = transforming growth factor, IL-1RA =
interleukin 1 receptor antagonist, TNF-α = tumor necrosis factor alpha, IL = interleukin, DAF =
decay-accelerating factor, membrane inhibitor of reactive lysis (MIRL), PD-L1 = programmed
death ligand, TIMP1 = tissue inhibitor of matrix metalloproteinase 1, SLPI = secretory leukocyte
peptidase inhibitor, VEGF = vascular endothelial growth factor.

(Zhang, De Paiva, and Pflugfelder, unpublished observations). We have also demon-
strated that CD4+CD25hiFoxp3+ Tregs protect mice exposed to desiccating stress
from developing disease. When the Tregs were depleted mice developed full-blown
disease [70]; by contrast, co-transfer of CD4+CD25hiFoxp3+ cells dampened the ca-
pacity of dry eye-specific pathogenic CD4+ T cells to cause disease in T-cell-deficient
recipient mice [71]. Current studies are focused on identifying additional regulatory
cell types and specific mechanisms used by these cells to inhibit T-cell activation, dif-
ferentiation, proliferation, and effector function of pathogenic immune cells.

INNATE IMMUNE RESPONSE

What Triggers Inflammation in the LFU?
The immunological factors that initiate the development of dry eye disease are un-
known. Based on our current understanding, it is conceivable that acute inflammatory
episodes caused by environmental and/or microbial stress, in the context of hormone
imbalance and/or genetic predisposition are sufficient to break immunological toler-
ance and set the stage for LFU dysfunction and abnormal tear film. Increased tear os-
molarity in dry eye has been recognized for decades. Clinical studies have reported
a 10%–20% mean increase in tear osmolarity of the inferior tear meniscus [72,73];
ocular surface epithelial cells underlying areas of marked thinning or frank break-up
of the tear layer may be subjected to much greater osmotic stress [74]. In a murine
model of dry eye, sodium ion concentration increased in tear washings compared to
controls and accounted for a doubling in tear osmolarity [75].

Stress to the ocular surface activates signaling pathways in a variety of cell types,
including the ocular surface epithelia. Desiccating or osmotic stress to the ocular sur-
face epithelium is sufficient to activate MAPK and nuclear factor (NF)-κB [76–80]. We
reported that exposure of cells to increased osmolarity in vivo or in vitro activates
mitogen-activated protein kinase (MAPK) pathways, particularly p38 and c-Jun N-
terminal kinases (JNK), and NF-κB in the ocular surface epithelia [77,78,80,81]. These
pathways regulate transcription of a wide variety of genes involved in the inflamma-
tory/immune response. We found desiccating and osmotic stress, through activation
of MAPKs, stimulates production of a variety of inflammatory mediators by the ocular
surface epithelium, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and
IL-8, as well as a number of matrix metalloproteinases (MMPs; MMP-1, -3, -9, -10, and
-13) [76,77,81], which create an inflammatory milieu on the ocular surface (Table 2).
Epithelial-derived factors, such as IL-1β and TNF-α can activate immature resident
corneal DCs, and mediate recruitment into the cornea through upregulation of CC
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TABLE 2. Stress-specific expression of proinflammatory mediators in corneal and conjunctival
epithelium.

Mediators Desiccation, osmolar, or UV References

Activated signaling molecules JNK1/2, ERK1/2, p38 MAPK [78–80]
Growth factors ↑ TGF-β1 [85]
Protease ↑ MMP-1, 3, 9, 10, 13 [76–81]
Cytokines/Chemokines ↑TNF-α, IL-1, IL-6, IL-8, IL-23 [78,80,85]
Other mediators ↓ Bcl-2, ↑ Bax [79]

JNK = c-Jun N-terminal kinase, ERK = extracellular signal-regulated kinase, MAPK =
mitogen-activated protein kinase, TGF = transforming growth factor, MMP = matrix
metalloproteinase, TNF-α = tumor necrosis factor alpha, IL = interleukin, Bcl-2 = B cell
lymphoma-2, Bax = Bcl-2-associated X protein.

chemokine receptor 5 (CCR5) [82]. Dry eye also induces loss of conjunctival goblet
cells that produce and secrete the immunoregulatory molecule transforming growth
factor-β2 (TGF-β2) reported to suppress activation of ocular surface DCs [38]. How-
ever, the underlying mechanisms that trigger disease in humans are likely more com-
plex than induction of a general stress response [83].

Activation of pattern recognition receptors (PRRs), such as the membrane-bound
Toll-like receptors (TLRs), and/or the NOD-like receptor family (NLR) and AIM2
(absent in melanoma 2) cytosolic inflammasome mediators have been implicated in
early induction of proinflammatory factors and innate immune activation in virtually
every mucosal inflammatory disease. Dry eye is no exception. Many of the known TLRs
are expressed within the ocular surface tissues (reviewed in [84]), and there is evidence
to suggest a functional role in the pathogenesis of dry eye. For example, stimulation
with the dsRNA mimetic polyI:C resulted in production of IL-1β and IL-6 in corneal
epithelial cells [85]. More recently, TLR4 signaling was important for inducing upregu-
lation of IL-1β, IL-6, and TNF-α, and subsequent accumulation of infiltrating CD11b+
monocytes during the development of desiccating stress-induced dry eye [86]. While
the data are intriguing, the ligands that contribute to the initiation of autoimmune-
based inflammation during dry eye are still unknown.

In absence of pathogenic challenge, host-derived DNA and/or RNA from apoptotic
and necroptotic cells can activate nucleic acid-sensing endolysosomal TLR3 (dsRNA),
TLR7/8 (ssRNA), and TLR9 (dsDNA) in the context of systemic autoimmune diseases,
such as systemic lupus erythematosus and Sjögren’s Syndrome [87,88]. With regard to
both Sjögren’s and non-Sjögren’s dry eye, elevated epithelial apoptosis was noted dur-
ing the early stages of environmentally induced experimental disease [79,89], in dogs
with spontaneous keratoconjunctivis sicca [90] and in human disease [91]. Nuclear
complexes containing RNA derived from dying cells in Sjögren’s patients were suffi-
cient stimulators of first line anti-viral sensors, plasmacytoid dendritic cells (pDC),
even though there was no virus present [92]. Along these lines, type I interferon signal-
ing pathways were enhanced in Sjögren’s patients [93], and recent data from our lab
suggests desiccating stress stimulates activation and accumulation of pDCs within the
conjunctiva during the immunopathogenesis of environmentally induced experimen-
tal dry eye disease (Stern and Schaumburg, unpublished observations). Collectively,
the data imply that endogenous nucleic acids may trigger TLRs and result in induction
of mucosal autoimmunity during the development of dry eye disease.

Early Innate effectors
Acute response cytokines
Early expression of proinflammatory factors, namely IL-1β, IL-6, and TNF-
α, amplify the innate inflammatory response by enhancing proinflammatory
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cytokine/chemokine production, adhesion molecule expression required for innate
cell infiltration, and by activating resident antigen presenting cells (APCs). In response
to stress, ocular surface epithelial cells are a prominent source of acute response cy-
tokines and chemokines [70,76,78,80,85,94]. The observation that IL-1 receptor knock-
out mice displayed an attenuated proinflammatory cytokine response, including TNF-
α and IL-6, suggests a critical role of IL-1 in initiating the early stages of environmen-
tally induced disease [95]. IL-1, together with TNF-α, can amplify the innate inflam-
matory response by several mechanisms, for example, by driving endothelial adhesion
molecule expression, such as ICAM-1 [96,97], chemokine production (e.g., CCL3,
CCL4, CCL5, CXCL9, CXCL10, and CX3CL1) [98–101], and by upregulating costimu-
latory molecules (CD80/86), MHC class II and CCR7 on resident APCs [59,102–106].
IL-1β and TNF-α also upregulated MMP-9 in corneal epithelial cells [107], which
destabilized the tear film and directly contributed to corneal barrier dysfunction
by breaking down tight junctions and facilitating inflammatory cell migration
[42,76,107,108]. Blocking IL-1 signaling using an IL-1 receptor antagonist decreased
the number of CD11b+ cells and reduced corneal epithelial barrier dysfunction
during desiccating stress-induced dry eye [109]. In addition to its anit-inflammatory
properties, epithelial cell-derived TGF-β (85) can also induce MMP-9 production
[110–112] during desiccating stress, and may also contribute to fibrosis on the ocular
surface. Furthermore, there are several types of resident cells, including macrophages,
DCs, γ δ T cells, and infiltrating innate cells, such as natural killer (NK) cells and mono-
cytes that act in concert to potentiate the innate response, cause direct tissue damage,
and coordinate the chronic antigen-driven autoimmune response [106,113,114]. The
pathogenic role of these innate cell types in dry eye is now being realized.

γ δ T cells
γ δ T cells are a small subset of innate lymphocytes that produce cytokines and
exert cytotoxic effector function in both health and disease. Resident intraepithe-
lial γ δ T cells are important regulators of tissue homeostasis in the skin and mu-
cosal tissues [115]. Pathologically, γ δ T cells are an important source of IL-17
during antigen-induced autoimmunity, including experimental autoimmune en-
cephalomyelitis (EAE) [116], collagen-induced arthritis [117], and uveitis [118]. In-
deed, resident γ δ T cells are present in the ocular surface tissues [106,119,120] and IL-
17 expression was seen early in the ocular surface tissues and tears during the devel-
opment of desiccating stress-induced dry eye, before infiltrating T cells were present
(Figure 3). The observation that T and B cell-deficient RAG mice also produced high
levels of IL-17 in response to IL-23 stimulation suggests that there are other innate
immune cells that produce IL-17 during the development and progression of disease
[121]. In support, NK/NK T cells purified from ocular surface cells of dry eye mice up-
regulated IL-17 by 1 day of desiccating stress [106]. Moreover, ocular surface cells from
dry eye mice depleted of NK/NK T cells expressed significantly higher levels of IL-17
than purified NK/NK T cells (Figure 3), suggesting γ δ T cells, and possibly other in-
nate cell types, are the primary reservoir of IL-17, before Th17 cells arrive on the ocular
surface.

NK cells
Recent evidence suggests NK cells are important innate effectors during the im-
munopathogenesis of desiccating stress-induced dry eye. Accumulation of NK cells
within the ocular surface tissues by 1 day of desiccating stress correlated with in-
creased levels of IL-6, IL-23, IFN-γ , and IL-17 [106,122]. Chen et al. showed that NK
cells are an early source of IFN-γ , and that NK cell depletion reduced costimulatory
molecule and MHCII expression on CD11b+ and CD11c+ APCs in the draining lymph
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FIGURE 3. γ δ T cells and upregulation of IL-17 on the ocular surface early during the im-
munopathogenesis of desiccating stress (DS)-induced dry eye disease. (A) Immunohistochemistry
on sagittal sections of whole eyes showed positive staining for γ δ T cells using purified hamster anti-
mouse γ δ T cell receptor (8.75 μg/ml; BD Pharmingen). Images captured at 40×. (B) Reproduced
from Zhang et al. [106] mRNA levels in NK/NKT positive (+) and NK/NKT negative (–) ocular sur-
face cells isolated from nonstressed (NS) spleen and ocular surface (OS) and at different time points
after DS. Unfractionated spleen was used as a calibrator. ∗indicates p <0.05, ∗∗∗indicates p < 0.001
comparison versus NS control NK/NKT+. ∧ indicates p < 0.05, ∧∧∧ indicates p < 0.001 compar-
ison versus NS control NK/NKT. (C) Tear levels of IL-17. Relative levels of IL-17 in the tears of dry
eye using Luminex analysis as previously described [71]. (B and C) DS; DS1 = DS for 1 day, DS3 =
DS for 3 days, DS5 = DS for 5 days, DS10 = DS for 10 days.

nodes, along with overall disease severity [122]. Studies from our lab went on to show
that NK cells from dry eye mice also produced IL-6, IL-23, and IL-17, and NK cell-
depleted dry eye mice displayed a significant reduction in pathogenic Th17 cells and
reduced corneal barrier dysfunction [106].

Beyond APC modulation, cytokines produced by NK cells are also linked to tis-
sue pathology. IFN-γ is associated with reduced goblet cell density, altered corneal
epithelial mucins, and/or squamous metaplasia [123–125], and IL-17 was shown to
activate MMPs and promote corneal epithelial barrier dysfunction [126]. In addi-
tion to infiltrating NK cells, resident NK/NK T cells are present on the ocular sur-
face [106,113,127]. Resident NK/NK T cells secrete IL-13 to protect goblet cells and
maintain ocular surface homeostasis [127], and it is likely that these cells are a proin-
flammatory reservoir under stress [106,113,127]. To date, it is evident that NK cells
are a prominent source of key inflammatory mediators, which exert direct pathogenic
effects on the ocular surface and enhance APC maturation required for subsequent
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activation of autoreactive Th1 and Th17 cells during desiccating stress [106,122]. How-
ever, the role of NK cells in human dry eye disease is unknown.

Monocytes
Infiltrating monocytes/macrophages deliver a variety of proinflammatory cytokines
and act as APCs during autoimmunity. Infiltration of monocyte/macrophages, using
markers such as CD11b and CD14, was demonstrated in both human and the des-
iccating stress-induced model of dry eye, and appear to be critical mediators of full-
blown experimental disease [103,113,128]. For example, blocking CD11b+ monocyte
infiltration using a CCR2 antagonist dampened proinflammatory cytokine expres-
sion (e.g., IL-1β), pathogenic T-cell infiltration, and the overall severity of desiccating
stress-induced dry eye disease [128]. Our recent studies also indicate that CD11b+
(monocytes/macrophages) and CD11c+ (DCs) cells play a pivotal role as APCs dur-
ing the development and progression of dry eye disease: i) by bridging the innate
and adaptive immune response to activate autoreactive T cells and ii) by maintaining
primed and targeted T cells at the ocular surface [59].

Bridging the Innate Immune Response

Antigen presenting cells
APCs, most notably resident DCs, provide the fundamental link between the relatively
nonspecific innate immune response and development of the antigen-specific adap-
tive response in the regional lymph nodes [129,130]. We previously demonstrated that
mice exposed to desiccating stress develop clinical and histopathological similarities
to the human disease, including a robust CD4+ T cell infiltrate into the LFU [70,131];
these CD4+ T cells were sufficient to mediate full-blown dry eye disease when adop-
tively transferred to athymic T-cell-deficient nude-recipient mice [70] (Figure 4). Now,
there is convincing evidence that APCs are necessary for activation of autoreactive
T cells during the development and progression of dry eye. APCs are present in the
healthy corneal stroma [132–134] and were shown to increase in frequency and/or
number, and upregulate expression of costimulatory molecules CD80/86, MHC II re-
quired for antigen presentation to CD4+ T cells, and the chemokine receptor CCR7
[59,102–106]. Trafficking of APCs from the ocular surface to the draining cervical
lymph nodes (CLN) was dependent on CCR7:CC21 signaling [133], and was enhanced
by corneal lymphangiogenesis during desiccating stress-induced experimental dry
eye [135]. Indeed, accumulation of mature CD11c+ DCs in the draining CLN occurred
by 24 hours of desiccating stress, and correlated with subsequent activation of CD4+
T cells with the kinetics indicative of an antigen-driven T-cell response [59].

APCs are necessary for both the generation and maintenance of ocular-specific
autoreactive CD4+ T cells during desiccating stress-induced disease supporting the
long-standing hypothesis that dry eye is a local self-antigen-driven autoimmune
disease [59]. Van Rooijen et al. previously showed liposome-encapsulated clodronate
induces apoptosis of macrophages [136]. In the context of the ocular surface, subcon-
junctival injection of clodronate-loaded liposomes depleted CD11b+ and CD11c+
APCs, which was associated with a reduction in the number of infiltrating CD4+ T
cells and preservation goblet cells in mice exposed to desiccating stress [59]. Surgical
lymphadenectomy also attenuated CD4+ T-cell infiltration and protected goblet cell
density in dry eye mice. Functionally, CD4+ T cells isolated from the draining CLN of
APC-depleted mice were not pathogenic in T-cell-deficient recipient mice, indicating
APCs are necessary for antigen-specific activation of dry eye-specific autoreactive
lymphocytes (Figure 5). Furthermore, pathogenic dry-eye-specific CD4+ T cells did
not accumulate in the ocular surface tissues of APC-depleted mice that were not
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FIGURE 4. Desiccating stress-induced model of dry eye. Female C57BL/6 mice (6–8 weeks old)
exposed to desiccating stress (DS: subcutaneous scopolamine (1 mg/0.2 ml) three times per day,
humidity <40%, and sustained airflow) display similar clinical and histopathological features to
patients with dry eye disease. Moreover, CD4+ T cells isolated from the cervical lymph nodes and
spleen of dry eye mice are sufficient to cause disease in T-cell-deficient nude-recipient mice. Des-
iccating stress-induced model of dry eye was originally described in Dursun et al. 2002. IOVS.
43[3]:632–638 and Niederkorn et al. 2006. J. Immunol. 176: 3950–3957 (70;131).

exposed to desiccating stress, suggesting that resident ocular surface APCs are
required for T-cell maintenance and effector function. Whether or not antigen
re-exposure is a requisite for reactivation and maintenance of activated T cells at sites
of inflammation (e.g., interaction with DCs and/or macrophages) is still a topic of
debate. The observation that MHCII is also upregulated on corneal and conjunctival
epithelial cells under inflammatory conditions [30,96,104,113,137] suggests that these
non-professional APCs contribute to secondary activation or triggering of pathogenic
T cells.

AUTOREACTIVE LYMPHOCYTES

CD4+ T cells play a primary role in the immunopathogenesis of chronic dry eye. As
noted, activated CD4+ T cells are localized within the ocular surface tissues of dry
eye patients [30,104,138], CD4+ T cells are sufficient to induce dry eye in mice [70],
and compounds that inhibit T cells decrease disease severity in both animals and hu-
mans [30,139]. Th1 and Th17 cells are essential for development of desiccating stress-
induced dry eye and are thought of as the primary pathogenic players during the pro-
gression of disease [27,85,140,141].

Th1 Cells
CD4+ Th1 cells were the first pathogenic lymphocyte subset identified in mouse mod-
els and patients with dry eye [70,104,131,142]. Our understanding of the mechanisms
involved in activation, trafficking, and effector function of Th1 cells is expanding.
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FIGURE 5. Antigen-presenting cell depletion in mice exposed to desiccating stress attenuating
the generation of autoreactive CD4+ T cells and blocking the ability to adoptively transfer T-cell-
mediated disease to nude-recipient mice. CD4+ T cells were isolated from the CLN of clodronate-
or PBS-treated mice exposed to DS and adoptively transferred to nude-recipient mice to determine
if the absence of a full repertoire of APCs within the ocular surface tissues inhibits generation of
ocular surface-specific autoreactive CD4+ T cells. (A) H&E staining showed a (B) significant de-
crease in overall inflammatory cell infiltration within the ocular surface tissues of nude recipients
of CD4+ T cells from clodronate-treated donor mice compared to PBS controls (3 days postadop-
tive transfer). Furthermore, (C) IHC confirmed that CD4+ T cells isolated from clodronate-treated
donor mice did not readily accumulate within the conjunctiva as there was only trace CD4+ stain-
ing, which accounted for a (D) significant decrease in CD4+ T cells and (E, F) protection from the
loss of PAS-positive goblet cells. (A) H&E staining; (B) overall inflammatory score ± SEM (scale
0–3); (C) CD4+ T cell staining in the conjunctiva; (D) is average conjunctival (conj.) CD4+ T-cell
counts ± SEM; (E) PAS+ goblet cell staining in the conjunctiva; (F) is average conjunctival gob-
let cell counts ± SEM. The data are representative of three independent experiments, with an n =
5–6 mice/group. Statistically significant values (∗p ≤ 0.05, ∗∗p ≤ 0.01) are indicated relative to nude
recipients of CD4+ T cells from PBS liposome-treated mice. Reproduced from Schaumburg et al.
2011. J Immunol. 187[7]:3653–3662 [59].

IL-12 and IFN-γ influence APC-dependent activation and differentiation of autore-
active Th1 cells [143]. As discussed, depletion of conjunctival APCs in dry eye mice
blocked generation of autoreactive CD4+ T cells in the draining CLN [59]. Efferent traf-
ficking of Th1 cells is dependent on adhesion molecule and chemokine/chemokine
receptor signaling. Adhesion molecule interactions (e.g., LFA-1:ICAM-1) are hypoth-
esized to contribute to homing and diapedesis of autoreactive T cells [104]. Indeed,
IFN-γ facilitates diapedesis of targeted lymphocytes to the ocular surface [144]. In ad-
dition, Th1-associated chemokine receptors (e.g., CCR5 and CXCR3) are expressed on
CD4+ T cells, and cognate ligands (e.g., CCL5 and CXCL10) are expressed in the ocular
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surface tissues of animal models and patients with dry eye [98–100,142]. Furthermore,
CCL5 and CXCL10 expression was upregulated in human conjunctival epithelial cells
in response to cytokine stimulation [145]. In humans, Th1-derived IFN-γ correlated
with disease severity [27,104,146], and during desiccating stress-induced dry eye, ac-
cumulation of infiltrating Th1 cells was associated with increased cytokine production,
epithelial cell apoptosis, reduced goblet cell density, altered mucins, and squamous
metaplasia [70,89,98,123,124,147]. Importantly, goblet cell density was not affected in
IFN-γ knock-out mice exposed to desiccating stress, confirming specificity to IFN-γ -
mediated pathology [124].

Th17 Cells
Th17 cells also appear to be key drivers of chronic dry eye disease. In dry eye mice,
Th17 cells are present in the draining CLN and within the LFU [126,140,142], and
the cytokines required for Th17 cell differentiation are present in mice and humans
[27,85,148]. For example, stress (e.g., hyperosmotic media, a variety of TLR ligands,
and TNF-α) stimulated the production of Th17 skewing cytokines (e.g., IL-1, IL-6, IL-
23, and TGF-β) in primary human corneal epithelial cells (HCEC) [85]. Moreover, co-
culture of naı̈ve CD4+ T cells with HCECs (stimulated with polyI:C or TNF-α) was suf-
ficient to drive Th17 polarization, indicated by upregulation of IL-17A, IL-17F, IL-22,
CCL20, and STAT3 gene expression, elevated levels of IL-17 in cell supernatant, and
increased numbers of IL-17-secreting CD4+ cells [85]. Cytokines required for differ-
entiation and effector function of Th17 cells were also significantly elevated in patients
[27,148]. The CCR6:CCL20 signaling access is important for Th17 trafficking in mice
and humans [149]. On the ocular surface, CCL20 was upregulated in response to stress
[106,126], and recent studies from our lab indicated that CCR6:CCL20 signaling is crit-
ical for the development of experimental dry eye (Coursey, De Paiva and Pflugfelder,
unpublished observations). In the context of desiccating stress, dry eye-specific Th17
cells inhibited Treg-mediated suppression of pathogenic T cells [140]. Anti-IL-17 treat-
ment decreased the severity of disease, and was associated with reduced IL-6 pro-
duction, reduction in Th17 expansion, and re-establishment of Treg function [140].
Furthermore, IL-17 neutralization dampened MMP3/9 expression and blocked break-
down of corneal epithelial tight junctions in dry eye mice [126]. These data suggest that
Th17 cells suppress peripheral tolerance and cause epithelial cell metaplasia and tis-
sue destruction during the progression of chronic disease.

Autoantigen(s)
There is mounting evidence that dry eye is a localized self-antigen driven
autoimmune-based inflammatory disease. Stress, or otherwise, may alter ex-
pression and/or localization of endogenous autoantigens and break peripheral
tolerance to autoreactive lymphocytes. While putative autoantigens were identified in
the context of autoreactive sera from animal models and patients with Sjögren’s and
non-Sjögren’s dry eye, the functional contribution of a specific T-cell immunodomi-
nant epitope(s) has not been clearly defined. For example, work from the laboratory
of the late Dr. Michael Humphreys-Beher and others established a link between
autoantibodies to the type 3 muscarinic acetylcholine receptor (anti-M3R Ab) and
the secretory response during the immunopathogenesis of Sjögren’s syndrome.
Anti-M3R Abs were present in sera of patients and animal models [150–155], and
passive transfer of IgG from Sjögren’s patients or rodent anti-M3R Abs were sufficient
to induce exocrine dysfunction in recipient animals [156,157]. In further support,
chronic M3R stimulation caused endosomal proteolytic processing of autoantigens
[158], and it is possible that these cryptic M3R epitopes are secreted and sampled
by APCs. Putative autoantigens were also identified from the Kallikrein family (e.g.,
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Klk1, Klk13) [159,160]. Jiang et al. induced T-cell-mediated Sjögren’s-like disease
by immunizing rats with Klk1b22 drawing the association between an autoantigen
and experimentally induced T-cell-mediated disease [159]. In addition, our group
identified the EGF binding protein Klk13 as a putative B-cell autoantigen, discussed
in detail in the following section [61]. In theory, identification of an immunodominant
epitope(s) would provide a basis for new animal models (e.g., active immunization)
and immunological reagents (e.g., MHC tetramers), but from the perspective of hu-
man disease the specific self-antigens are still widely unknown among organ-specific
autoimmune diseases.

B Cells and Autoantibodies
The role of B cells in various systemic autoimmune diseases, such as systemic lupus
erythematosus, rheumatoid arthritis, and Sjögren’s syndrome has been demonstrated.
As noted, serum from patients and animal models of Sjögren’s syndrome were positive
for circulating anti-M3R antibodies [150–155]. This makes sense in that tear secretion
is known to be a cholinergic process and interference in this portion of the LFU could
result in an altered pattern of aqueous secretion. We have previously published data
indicating that Klk13 may be one of the putative antigens in the initiation of dry eye.
Using PCR, Klk13 was found in the cornea, conjunctiva, and lacrimal glands of dry eye
mice after 5 or 10 days of desiccating stress [61]. B cells can play a variety of roles dur-
ing autoimmunity; it is possible that these cells function as APCs [161–164] pathogeni-
cally through the secretion of various cytokines such as IL-2, IL-12, TNF-α, and IFN-γ
[165], and/or as terminally differentiated plasma cells that secrete autoantibodies
[166]. These autoantibodies can utilize the Fcγ receptor to recruit inflammatory cells
via receptor signaling or through the complement activation cascade [167].

Adoptive transfer of autoantibody-containing serum from mice with experimen-
tal dry eye, but not naı̈ve controls, was sufficient to induce dry eye in nude-recipient
mice, independent of pathogenic T cells [61]. Nude recipients receiving a 1:1 (donor-
to-recipient) equivalent of dry-eye-specific serum from mice exposed to desiccating
stress for 3 weeks demonstrated an increase of several cytokines including IL-1α, IL-
1β, and TNF-α. Serum derived from hen egg lysozyme-specific B-cell receptor trans-
genic mice exposed to desiccating stress was not pathogenic suggesting that autoanti-
bodies, and not cytokines or contaminating immune cells present in dry-eye-specific
serum, were sufficient to mediate inflammation-induced dry eye in the context of the
nude-recipient mouse. Furthermore, IgG purified from the dry eye mouse serum, but
not from naı̈ve control mice, maintained the ability to transfer ocular surface disease,
including an elevated proinflammatory cytokine response and marked Gr1+ neu-
trophil infiltrate, which was associated with tissue damage, i.e., goblet cell loss [61].
Collectively, the data are consistent with autoantibody-mediated pathology by Fcγ -
receptor-mediated activation/recruitment of neutrophils/macrophages and/or acti-
vation of the complement system [167].

Induction of ocular surface inflammation in nude-recipient mice following transfer
of dry-eye-specific serum or IgG was dependent on complement activation. The role of
complement in recruiting effector cells via C3a/C5a, and increasing the pathogenic ef-
fects of autoantigens (C3b/C5b) and its ability to eliminate target cells via formation of
a membrane attack complex (MAC) has been well documented. Immunohistochem-
ical staining of mice receiving dry eye antibodies showed the presence of C3b in the
conjunctiva, but staining was negative if the transfer was from a control mouse [61].
To determine the role of complement in serum/IgG-mediated disease, Cobra Venom
Factor (CVF) was used to systemically deplete complement [168–170]. Complement-
depleted nude mice receiving dry eye serum or IgG displayed a marked reduction in
inflammatory burden, including a significant decrease in neutrophil infiltration and
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FIGURE 6. Working Hypothesis: the contribution of autoreactive B cells during dry eye. 1) Au-
toreactive B cells recognize putative dry eye autoantigens through B-cell receptor interactions (e.g.,
M3R, Klk13), [2] intenalize the antigen, and [3] subsequently present the antigen to [4] Th2 cells: cy-
tokines derived from activated Th2 cells promote B-cell differentiation to [5] plasma cells, which [6]
produce autoantibodies (e.g., anti-M3R, anti-Klk13) that [7] cause complement-dependent tissue
damage.

proinflammatory cytokine/chemokine levels compared to recipient mice with intact
complement system that were not treated with CVF. Based on these data, we propose
a working hypothesis in which autoantibodies contribute to the predominantly CD4+
T cell-mediated disease by complement-dependent recruitment of innate cells (e.g.,
neutrophils) to the ocular surface (Figure 6).

THERAPEUTIC STRATEGY

There are a handful of different therapies used to treat dry eye patients according to dis-
ease severity (Table 3) [171]. Artificial tears provide a palliative relief of eye irritation
in patients with aqueous tear deficiency, but do not prevent the underlying inflamma-
tion or reverse conjunctival squamous metaplasia in chronic dry eye. Combinations
of artificial tears, oral omega-3 essential fatty acid supplements, mucin secretagogues,
short-term steroids, and daily cyclosporine A are used to combat underlying inflam-
mation and restore normal tear film in patients with mild-to-moderate disease (Level
1–2). Use of more aggressive treatment options, such as autologous serum, oral tetra-
cyclines, prosthetic lens, and systemic immunosuppressants are restricted to patients
with more severe forms of dry eye (Level 3–4). Surgical intervention, including
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TABLE 3. Dry eye disease severity and treatment strategy.

Dry eye severity 1 2 3 4∗

Discomfort,
severity, and
frequency

Mild and/or
episodic; occurs
under
environmental
stress

Moderate
episodic or
chronic, stress
or no stress

Severe frequent
or constant
without stress

Severe and/or
disabling and
constant

Visual
symptoms

None or episodic
mild fatigue

Annoying and/or
activity-
limiting
episodic

Annoying,
chronic and/or
constant,
limiting
activity

Constant and/or
possibly disabling

Corneal
staining

None to mild Variable Marked central Severe punctate
erosions

Conjunctival
staining

None to mild Variable Moderate to
marked

Marked

Corneal/tear
signs

None to mild Mild debris, ↓
meniscus

Filamentary
keratitis,
mucus
clumping, ↑
tear debris

Filamentary
keratitis, mucus
clumping, ↑ tear
debris, ulceration

Lid/meibomian
glands

MGD variably
present

MGD variably
present

Frequent Trichiasis,
keratinization,
symblepharon

TFBUT (sec) Variable ≤10 ≤5 immediate
Schirmer score

(mm/5 min)
Variable ≤10 ≤5 ≤2

Treatment
strategy

Artificial tears,
omega-3 fatty
acids

Artificial tears,
mucin
secretagogues,
steroids,
cyclosporine A

Autologous
serum, oral
tetracyclines,
punctal plugs

Systemic immuno-
suppression,
moisture goggles,
prostestic lens,
surgery
(tarsorrhaphy,
AMT)

TFBUT = fluorescein tear film break-up time, MGD = meibomian gland disease, AMT = amniotic
membrane transplant.

∗Must have signs and symptoms.
Modified from the 2007 Report of the International Dry Eye Workshop (DEWS). The Ocular

Surface. 5[2]:75–92.

tarsorrhaphy and amnionic membrane transplant, is also used in patients with the
most severe forms of chronic dry eye (Level 4) often associated with systemic disease,
such as Sjögren’s and Stevens–Johnson syndrome.

The most effective treatments are geared toward reducing inflammation and restor-
ing normal tear film. Corticosteroids are potent inhibitors of multiple inflammatory
mediators (e.g., cytokines/chemokines, MMPs, and adhesion molecules) that effec-
tively reduce the inflammatory cell burden within the ocular surface tissues. Topical
corticosteroid use is highly effective, but is limited to short-term use (2–4 weeks) due to
a wide range of potential side effects including glaucoma, cataracts, ocular infection,
and apoptosis of ocular surface cells. Topical steroids are used to control episodes of
exacerbation and as an adjunct therapy to other treatments, such as the fungal-derived
T-cell inhibitor cyclosporine (CsA). Topical CsA (0.05% BID) was FDA-approved in
2002 following two pivotal 6-month independent Phase III clinical trials. Topical CsA
(0.05% or 0.1%, BID) treatment resulted in a significant (p ≤ 0.05) improvement in
corneal fluorescein staining and tear production compared to patients treated with
vehicle alone [172]. In addition to clinical improvement, topical CsA also decreased
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expression of HLA-DR and IL-6, infiltration of T cells, and increased goblet cells in the
conjunctiva of patients with chronic dry eye [30,138,173,174].

Several other immunomodulators are in clinical trial for dry eye disease. Among
the putative therapies, SAR1118, a 615 Dalton integrin alphaLbeta2 (LFA-1) inhibitor,
showed improvements in corneal staining, total ocular surface disease index (OSDI),
and visual-related function OSDI scores compared to placebo in Phase II clinical
trial conducted in a controlled adverse environment chamber [175]. LFA-1 is a vali-
dated target for inhibiting leukocyte adhesion and infiltration into inflamed tissues,
and more recently, blocking cell-to-cell interactions and signal transduction of proin-
flammatory pathways. SAR1118 is designed to mimic the LFA-1 binding epitope on
intercellular adhesion molecule 1 (ICAM-1), thereby interfering with cognate LFA-
1:ICAM-1 interactions. Indeed, LFA-1:ICAM-1 is implicated in the immunopathogen-
esis of CD4+ T-cell-mediated dry eye, and may function in promoting T-cell adhe-
sion/infiltration and activation in the ocular surface tissues [97]. The phase III clinical
trial was recently completed, but the results are pending.

CONCLUSION

The wealth of new data from animal models and humans have generated a better
understanding of the events leading to tear dysfunction and the immunopathogen-
esis of dry eye disease. While the etiology remains elusive, there is evidence to sup-
port a role of ocular surface stress, genetic factors, and/or hormone imbalance un-
derlying inflammation and dysfunction of the LFU. Autoreactive Th1 and Th17 cells
are key pathogenic players, and the essential role of APCs in initiating and main-
taining chronic activation of desiccating stress-induced CD4+ T cells in mice sup-
ports the long-standing hypothesis that dry eye is a localized autoimmune disease.
Recent discoveries have uncovered the pathogenic role of other innate and adaptive
immune players, such as monocytes [103,113,128], NK cells [106,122], and autoreac-
tive B-cells/autoantibodies [167], and a greater appreciation of the regulatory mecha-
nisms involved in maintaining ocular surface homeostasis. Still, there is a significant
gap in understanding, for example: i) disparities in the signs and symptoms of dis-
ease, ii) the interactions between the immune and nervous systems and the devel-
opment of clinical manifestations, such as pain, and iii) differences in the underly-
ing immunopathology among the patient population and the factors that render some
patients more susceptible to environmental exacerbation of disease. As the field ad-
vances, we are challenged to translate findings from animal models to humans and
develop novel therapeutic strategies designed to reduce key inflammatory pathways
and restore healthy tear film while maintaining, or even boosting, the protective im-
munoregulatory mechanisms.
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