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Quantum walk coherences on a 
dynamical percolation graph
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Igor Jex2 & Christine Silberhorn1

Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected 
to influence of a classical environment. For analysing quantum transport phenomena quantum 
walks emerge as suitable model systems. In particular, quantum walks on percolation structures 
constitute an attractive platform for studying open system dynamics of random media. Here, we 
present an implementation of quantum walks differing from the previous experiments by achieving 
dynamical control of the underlying graph structure. We demonstrate the evolution of an optical 
time-multiplexed quantum walk over six double steps, revealing the intricate interplay between 
the internal and external degrees of freedom. The observation of clear non-Markovian signatures in 
the coin space testifies the high coherence of the implementation and the extraordinary degree of 
control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on 
a dynamical percolation graph, paving the way towards complex simulation of quantum transport in 
random media.

The development of experimentally feasible quantum simulators that are capable of supporting a wide 
range of phenomena is presently the target of intensive research1–3. Discrete time quantum walks 
(DTQWs)4–6 are regarded as a promising platform for building quantum simulators. Various theoretical 
studies utilise this model to analyse e.g. the occurrence of localization effects7, topological phases8,9, the 
mimicking of the formation of molecule states10, and even energy transport in photosynthesis11,12 can be 
related13. The high level of attracted interest and the applicability of this model system is also reflected 
by numerous experimental realizations of quantum walks such as in nuclear magnetic resonance14,15, 
trapped ions16,17, atoms18,19, photonic systems20–24 and waveguides25–33. Using a discrete time-multiplexed 
quantum walk setup34, which provides a versatile and resource efficient system, Anderson localisation35,36 
on a one dimensional graph37 and two particle interaction effects based on a two dimensional square 
lattice38 have been demonstrated. Yet, all experiments to date have been limited to realising the walk on 
regular, fully connected and static graphs. Varying graph structures39–41 lie at the heart of percolation, 
which is one of the simplest yet non-trivial models at the intersection of several disciplines. The theory 
of percolation is concerned with the connectivity of random graphs, which in turn can be related to the 
dynamics of particles, excitations or fluids propagating accross a random medium. The model has been 
extensively studied in mathematics and physics, with applications ranging from phase transitions to a 
multitude of transport phenomena42–45. In the standard percolation model, links between vertices of a 
finite graph are present or absent with a given probability p. A generalisation of the model, known as 
dynamical percolation45, employs a constantly changing graph, yielding a model optimized to the simu-
lation of randomly evolving – fluctuating medium (even space itself), network or environment. Here, we 
pick up the idea of combining the percolation model with quantum mechanics, and present its experi-
mental realization based on quantum walks on varying graph structures41,46. The resulting new device is 
able to simulate quantum effects in imperfect media induced by local perturbations of the graph 
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structure. The programmed randomness plays the role of a fluctuating external field effectively giving rise 
to open system dynamics exhibiting a rich diversity of subtle decoherence mechanisms.

Results
Percolation model.  A quantum walk, defined in analogy with a random walk, is a particular quan-
tum mechanical process on a prescribed graph, which consists of iterative applications of a unitary oper-
ator usually called a step, which factorizes as =ˆ ˆ ˆU SC. The coin operator Ĉ modifies the walker’s internal 
coin state and is crucial for the non-trivial quantum dynamics, while the shift operator Ŝ implements 
transitions across the links of the graph in dependence of the internal state. The extension of quantum 
walks to dynamical percolation graph structures leads to the concept of percolation quantum walks41 
(PQW). Here, a finite set of vertices is considered, and at each step a graph with an edge configuration 
κ is probabilistically chosen from all possible configurations . On the graph with configuration κ the 
dynamics is defined in analogy to the DTQW. At the gaps, the shift operator Ŝ is modified by inserting 
reflection operators, leading to the shift operator41 κŜ . The probabilistic nature of the choice of the con-
figuration κ models an open system dynamics. The evolution of the walker’s state from ρ( − )ˆ n 1  to ρ( )ˆ n  
is described by the random unitary map (RUM)


∑ρ κ ρ( ) = ( , )( ) ( − )( ) ,

( )κ
κ κ

∈

ˆ ˆ ˆ ˆ ˆ ˆ †
pn p S C n S C1

1

where κ( , )pp  is the probability of each configuration κ. Generally, it is assumed that open dynamics 
results in the gradual loss of information about the initial state, destroying all coherence. The system 
evolution under RUM contradicts this intuition and can result in a variety of non-trivial asymptotic 
states41 attained after a dynamically rich transient regime. The typical characteristics already manifest 
themselves for a graph describing a linear chain. For their experimental observation we needed to design 
an apparatus, which is able to provide the following capabilities: first, the implementation of finite graph 
structures along with the dynamical creation or removal of edges between vertices; second, the easy and 
quick reconfigurability of the apparatus for the collection of data over the large configuration space  in 
a short time; third, the full access to the coin state to track coherences in the walker’s state during its 
evolution.

Experimental realisation.  We based our simulator on the time-multiplexing technique34,38. Thus it 
inherits advantageous features such as remarkable resource efficiency, excellent access to all degrees of 
freedom throughout the entire time evolution, and stability sustained over many consecutive measure-
ments providing sufficient statistical ensembles. As before the input state is prepared by weak coherent 
light at the single photon level, which is appropriate for studying any single particle properties of our 
walk47. Our detection apparatus is adapted to single photon detection, which makes our interference 
circuit compatible for future multi-particle experiments with coincidence detection. The greatest chal-
lenge in this experiment has been the implementation of the dynamically changing shift operator κŜ , that 
realises the reflecting boundary conditions as well as the dynamical creation of edges between vertices.

The implementation of the walk is based on a loop architecture where the walker is realised by an 
attenuated laser pulse34,38. Its polarization, expressed in the horizontal and vertical basis states H  and 
V , is used as the internal quantum coin and manipulated by standard linear elements, performing the 
coin operation Ĉ. Different fibre lengths in the loop setup introduce a well defined time delay between 
the polarisation components, where different position states are uniquely represented by discrete time 
bins (mapping the position information into the time domain). To attain repeated action, we have com-
pleted the apparatus with a loop geometry that consists of the two paths A and B (see Fig. 1), similarly 
to the 2d quantum walk38. In contrast to previous experiments, here one full step of the PQW is executed 
by two round-trips in the loop architecture, alternating between paths A and B. Additionally to the 
standard half-wave plate (HWP) in path A (red area) we include a fast electro-optic modulator (EOM) 
in path B (green area), which now allows to actually change the underlying graph structure, and defines 
the additional graph operation κĜ . It is embedded between two partial shifts Ŝ making up a full shift 
operation as =κ κ

ˆ ˆ ˆ ˆS SG S thus implementing the unitary =κ κ
ˆ ˆ ˆU S C. The EOM is programmed to perform 

the transmission T̂  or reflection operation R̂ depending on whether a link is present or absent at the 
particular time encoded position in the configuration κ. Thus, changing the structure or size of the graph 
requires only a reprogramming of the timings delivered to the EOM. Detection at each step by a pair of 
avalanche photo diodes gives us access to the time evolution in the coin as well as in the position degree 
of freedom.

Aiming for the reconstruction of the (reduced) density matrix σ( )ˆ n  of the coin at the nth step, we 
perform a full tomography48 of the coin state, and track its evolution over six full steps. We test our 
simulator by performing a PQW with a Hadamard coin on a graph consisting of three vertices and at 
most two links. This choice of system size enables us to observe all relevant dynamical features within 
limits of the number of possible iterations due to round-trip losses. The sample space for the complete 
dynamics over n steps corresponds to the set n of all possible patterns of length n. A restriction to the 
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configurations ′, obtained from  after removing graphs with both links present or both absent, reduces 
the size of the experimental sample space to 64 for a 6 step dynamics, while leaving the asymptotic 
behaviour unaffected (see supplementary material). We realise all configuration patterns from ′6 which 
corresponds to a link probability = /p 1 2. The transmission T̂  and reflection R̂ operations realized by 
the EOM in the setup yield stationary asymptotic dynamics characterized by the single asymptotic state 
ρ∞ˆ  being the identity. The study of the distance between the completely mixed coin state 
σ = ( + )∞ˆ H H V V1

2
 and our measured σ( )ˆ n  thus yields two kind of information. First, it allows 

us to track how far is the system from the asymptotic state, and second, any increase of the distance from 
the stationary state, that in our case is the completely mixed state, is a clear signature of non-Markovian 
evolution in the coin space.

Finite graphs.  The individual analyses of experimental measurement results for each of the 64 pat-
terns can be used to reveal the extent of accuracy to which the step operators κˆ ˆS C were realized. Residual 
populations outside the positions − 1, 0 and 1 constituted less than 2% on average, confirming the real-
ization of a finite graph. Since an unconfined walker would have spread over a length of 12 sites over the 
6 steps, the strong confinement to three sites achieved by a programmable boundary and not by a fixed 
one32 is remarkable. For horizontally polarised initial states, the experimentally obtained spatial distribu-
tions are displayed on Fig.  2 for selected configuration patterns, demonstrating the precision of the 
implementation of the dynamically changing graph structure. 

Quantum percolation walk.  We implement the open system dynamics by averaging tomographic 
data over 64 patterns at each step n, corresponding to taking the average over a fluctuating external 
field49. The open system dynamics is arises due to the loss of knowledge about the external field, and not 
due to a coupling to some external quantum heat bath. We reconstruct the reduced coin state σ( )ˆ n  by 
determining the Stokes parameters presented in Fig. 3a. The measured parameters (red lines) are com-
pared both to the ideal model (dotted lines) and to a realistic model incorporating the systematic errors 
present in the experiment (blue lines). All Stokes parameters are in very good agreement with the theo-
retical models, S1(n) and S3(n) show the oscillatory behaviour, and S2(n) is zero within the error bars. 
The systematic errors lead to small deviations only in the amplitude but not in the qualitative form and 
oscillation periods compared to the ideal model theory. Details on the realistic model and the errorbars 
can be found in the Methods section. On Fig. 3b we present the Hilbert–Schmidt distance50 of our meas-
ured density matrix σ( )ˆ n  from the completely mixed state σ∞ˆ . (See the supplementary material and 
extended data figures for vertically polarised input.)

Figure 1.  Implementation Scheme: (a) One pattern of a dynamically changing graph with 3 sites used in the 
experiment (shown explicitly for 3 steps). The full set of patterns used in the experiment is denoted by ′n 
for n steps. The input state (blue arrow) is evolved (red arrow) and measured tomographically at every step. 
(b) Implementation scheme of the example, the R̂ and T̂  operators are represented by filled and hollow 
diamonds, respectively. (c) Setup scheme of the time-multiplexed PQW. According to the implementation 
scheme the walker always alternates between paths A and B. The colour coding is used to mark 
corresponding entities in both panels. We average over all patterns to obtain the open system’s dynamics.
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Discussion
The initially pure reduced state σ( ) =ˆ H H0  (at distance 0.5, not shown on the plot) becomes com-
pletely mixed in a single step, however soon the distance increases. The observed curve is part of an 
oscillatory evolution41 that eventually decays to the maximally mixed state for the set of coin operators 
used in the experiment. The non-Markovian behaviour reflected in the revival from the completely 
mixed state is the witness that between the position and the coin degree of freedoms sufficient coherence 
survives the averaging over 64 patterns. The excellent agreement with the realistic model proves that the 
evolution is dominantly dictated by the controlled random unitary evolution, and other sources of deco-
herence, such as dephasing, are negligible.

In summary, we have demonstrated the percolation quantum walk over 6 steps using a quantum 
simulator exploiting enhanced time-multiplexing techniques. As a highlight, our system is capable of 
realizing the walk on arbitrary, dynamically changing linear graph structures in a programmable way. 
By its design the device allows access to internal and external degrees of freedom, facilitating the study 
of their intricate interplay, in particular revealing the exchange of coherences. The clear revival of coher-
ences in the coin state obtained by tomographic measurements confirms the precise control of the open 
system dynamics, and prove the sustained high stability of the system.

Our work paves the road to study coherence properties of systems with changing connectivity for 
materials resembling in structure and function grainy or porous substances. While losses restrict our 
proof-of-principle experiment there is no geometric limitation on the size of the graph. Classical light 
sources and amplification can be used for studying coherence properties over 300 steps51. Prospective 
phenomena to investigate experimentally include boundary induced effects such as edge states52 
and non-trivial asymptotic behaviour, transport on percolation structures, and critical phenomena 
in higher dimensions. The introduction of multiple single photon states in a system without ampli-
fiers, will open the route for the full experimental exploration of quantum interference effects in  
percolated media.

Methods
Experimental setup.  The laser used in the experiment is a diode laser with a central wavelength of 
805 nm. It produces pulses of approximately 88 ps FWHM duration which are attenuated by several neu-
tral density filters to a level of about 135 photons per pulse after the incoupling mirror of the experiment. 
This leads to only 1.2 photons arriving at the detectors in the first step relevant to our measurements, 
whereas the overall round trip losses sum up to 50%. The main contributions are the coupling losses at 
the fibres and the losses at the incoupling and outcoupling mirrors, where we probabilistically couple 
0.2% into the setup and 7% out at each round trip. The repetition rate is variable and chosen with respect 

Figure 2.  Spatial Distributions: Measured spatial distributions versus the step number for 3 example graph 
patterns (shown on the upper left panel) from ′6. Note that the height of a bar is unchanged from one step 
to the next if the site is disconnected. The high similarity (on average 95.6%) between the empirically 
observed probabilities and those from the ideal process makes a graphical comparison unnecessary.
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to the duration of a full quantum walk. To realise the partial shift two single mode fibres of 135 m and 
145 m length have been used leading to a position separation of 46 ns. This allows for 13 occupied posi-
tions without any overlap and signifies the maximum possible system size with this specific set of fibres. 
The EOM and its characteristics are discussed in the next section. The detectors used are silicon-based 
avalanche photo diodes operating in Geiger mode with a dead time of about 50 ns and detection efficien-
cies around 65%. The single photon detectors were chosen since their dynamic range is more accessbile 
in comparison to regular photo diodes, and also as a preparation for future genuine single photon input.

Characteristics and description of the EOM.  The operation of the electro-optic modulator (EOM) 
in our experiment is based on the Pockels effect. It has a rise time of below 5 ns and can switch faster 
than 50 ns between consecutive switchings, which is comparable to the distance between neighbouring 
positions in the quantum walk. The switched pattern can be an arbitrary non-periodic signal, however 
some technical restrictions apply. It consists of two identical birefringent crystals with their optical axes 
rotated relative to each other by 90° to compensate for their natural birefringence inducing a phase ϕ. 
By applying a voltage U an additional phase retardation φU can be achieved. The pair of crystals are 
rotated by 45° with respect to the horizontal and vertical polarisation axes defined by the polarising beam 
splitters in our setup. The action of the EOM on arbitrary polarization states is given in the ,H V{ } 
basis by the matrix
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The realistic model and calculation of errorbars.  We have identified four sources of systematic 
errors to define a realistic model of our experiment: first, the detector and power dependent detection 
efficiencies, which were determined in a separate measurement; second, the different losses experienced 
in different paths due to dissimilar coupling efficiencies and path geometries, which were similarly esti-
mated in an independent measurement with an accuracy of ± 2%; third, the transmission through the 
(switched) EOM is greater than 98%, but not exactly known; fourth, the angle of the HWP defining Ĉ 
can be set only with a precision of 0.2°.

Figure 3.  Coherence Measurements: (a) Values of the Stokes parameters of the reduced state σ( )ˆ n  of  
the coin: observed (solid red lines), ideal model (dashed lines), and realistic model (blue, solid lines).  
(b) Hilbert–Schmidt distance σ σ σ σ( ) − ≡ ( ( ) − )∞ ∞ˆ ˆ ˆ ˆn nTr{ }HS

2 2  between σ( )ˆ n  and σ∞ˆ , the maximally 
mixed, asymptotic state: observed data (red), ideal model (turquoise), and realistic model (blue). The insets 
show the experimental density matrix for the three chosen steps. Statistical errors are smaller than the 
symbol size. The depicted error bars are calculated using a numerical simulation of all relevant systematic 
errors and are discussed in detail in the Methods section.
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The power dependence of the detector efficiencies is constant from the second step on since the 
power in our experiment drops exponentially from step to step. To keep the number of parameters 
small, the resulting correction factor for the final steps was applied as a global correction factor yielding 
larger errors for the first step resulting in larger errorbars. For the determination of the parameters of 
the other three errors we resorted to a numerical model. We manually varied the parameters in the 
ranges suggested by the corresponding independent measurement results and device specifications. The 
parameters yielding the best fit within these ranges were chosen for the realistic model presented on the 
figures. The mean deviation of the statistics produced by a Monte Carlo scan of the parameters within 
these ranges was used to determine the size of the errorbars. For the first step, the errorbars produced by 
the Monte Carlo simulation vanish due to a symmetry, leaving the aforementioned deviation of detection 
efficiencies as the only source of error.
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