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1  |  INTRODUC TION

Lung cancer is the most commonly diagnosed cancer type, contrib-
uting to a majority of cancer burden worldwide.1 Non- small cell lung 
cancer (NSCLC) consists of approximately 85% of all lung cancer 
cases, of which lung adenocarcinoma (LUAD) is the most common 

histologic subtype. The 5- year survival rate of lung cancer patients is 
lower than 20%, as most of patients were already at advanced stage 
when diagnosed.2 Smoking or smoke exposure is a major risk factor 
resulting in the development of lung cancer, with male population 
presenting a higher incidence rate. In addition, females have more 
favorable outcomes than males in the US.3 Apart from non- genetic 
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Abstract
Background: Lung adenocarcinoma (LUAD) results in a majority of cancer burden 
worldwide. TP53 is the most commonly mutated in LUAD. This study aimed to reveal 
the relation between TP53 and tumor microenvironment (TME) for improving LUAD 
treatment.
Methods: Differentially expressed genes (DEGs) related to immunity were analyzed 
between TP53- WT and TP53- MUT groups. Least absolute shrinkage and selection 
operator (LASSO) Cox regression was applied to screen prognostic DEGs. Two inde-
pendent datasets were included to evaluate the robustness of the prognostic model.
Results: An 8- gene prognostic model containing ANLN, CCNB1, DLGAP5, FAM83A, 
GJB2, NAPSA, SFTPB, and SLC2A1 was established based on DEGs. LUAD samples 
were classified into high-  and low- risk groups with differential overall survival in the 
two datasets. M0 macrophages, M1 macrophages, and activated memory CD4 T cells 
were more enriched in high- risk group. Immune checkpoints of PDCD1, LAG3, and 
CD274	were	also	high-	expressed	in	high-	risk	group.
Conclusion: The study improved the understanding of the role of TP53 in the TME 
modulation. The 8- gene model had robust performance to predict LUAD prognosis 
in clinical practice. In addition, the eight prognostic genes may also serve as potential 
targets for designing therapeutic drugs for LUAD patients.
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risk factors, a number of studies have demonstrated that specific 
gene mutations affect the development, progression, and treatment 
efficiency of lung cancer.4

Tumor mutation burden (TMB) has been considered as a bio-
marker in resected NSCLC, and the patients with high nonsynon-
ymous TMB had a better prognosis.5 Meanwhile, patients with low 
nonsynonymous TMB were more sensitive to benefit from adjuvant 
chemotherapy,5 which provided a direction for personalized ther-
apy. Up to now, large amount of evidences have illustrated that 
EGFR, ALK, and KRAS were frequently mutated in lung cancer pa-
tients.4,6– 8 Based on the close relations between these mutations 
and prognosis, several inhibitors targeting these genes have been 
explored and achieved encouraging outcome.

Tumor protein p53 (TP53) is an oncogene and its mutations 
are the most commonly detected in all cancer types including lung 
cancer. TP53 gene alteration is associated with poor overall sur-
vival of NSCLC patients.9 The status of TP53 mutations differs ac-
cording to different stages and pathological types,9 indicating that 
TP53 mutations play an important role in tumorigenesis and can-
cer progression in lung cancer. Tumor microenvironment is verified 
as a critical factor in determining cancer development or the re-
sponse to immunotherapy such as immune checkpoint blockade.10 
Lin et al. discovered a different TME between TP53- mutated and 
TP53- wild type groups in LUAD patients,11 suggesting that TP53 
status could affect the modulation of TME and immune- related 
pathways.

In this study, we further described molecular features of TP53- 
mutated and TP53- wild type groups and identify differentially 
expressed genes (DEGs) related to immunity between the two 
groups. We constructed an 8- gene model based on DEGs related 
to immunity and validated the effectiveness and robustness of 
the model for predicting LUAD prognosis. The model could clas-
sify LUAD patients into high-  and low- risk groups with differential 
overall survival, TME, and enriched pathways. Overall, the rela-
tion between TP53 and immunity was further demonstrated and 
cleared. A nomogram based on the model and clinical stages could 
be applied in clinical practice.

2  |  MATERIAL S AND METHODS

2.1  |  Data source and data preprocessing

The expression profiles and clinical information of 522 samples and 
mutation of somatic cells of 516 samples in TCGA- LUAD dataset 
were obtained from The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/repos itory). Ensembl ID was trans-
ferred to gene symbol according to gff3 (v22 and v33) file down-
loaded from GENCODE (https://www.genco degen es.org/human). 
Median expression value was taken when multiple gene symbols 
matched to one gene. Log2 transform was performed for all expres-
sion data. GSE30219 dataset containing 293 LUAD samples, and 14 
normal samples was downloaded from Gene Expression Omnibus 
(GEO) dataset (https://www.ncbi.nlm.nih.gov/geo/).

2.2  |  Gene set enrichment analysis (GSEA)

GSEA is a methodology for evaluating the enrichment of a pathway 
or a group of cells based on gene sets.12 GSEA software (v3.0) was 
used to calculate the enrichment score of TP53- WT and TP53- MUT 
groups	based	on	the	gene	set	of	“c7.immunesigdb.v7.4.symbols.gmt”	
downloaded from Molecular Signatures Database (MsigDB, http://
www.gsea- msigdb.org/gsea/downl oads.jsp). The minimum and max-
imum number of genes was set as 5 and 5000, respectively.

2.3  |  Identification of differentially 
expressed genes

Limma R package (v3.40.6) was applied to select DEGs between 
TP53- WT and TP53- MUT groups.13 Specifically, multiple linear re-
gression was performed by lmFit function. eBays function was con-
ducted to analyze moderated t- statistics, moderated F- statistic, and 
log	odds	of	differential	expression.	|Log2	(fold	change	[FC])| > 2	and	
P < 0.05	were	determined	to	screen	DEGs.

2.4  |  Establishing an immune prognostic model 
(IPM)

A total of 486 samples with expression data and TP53 mutation 
data in TCGA- LUAD dataset were included in the following analy-
sis. Univariate Cox regression analysis was performed to assess the 
prognostic significance of immune- related DEGs, and P < 0.05	 was	
confirmed to screen prognostic DEGs. Least absolute shrinkage and 
selection operator (LASSO) Cox regression in glmnet R package were 
employed to reduce the number of prognostic DEGs.14 Then multivar-
iate Cox regression was used to calculate coefficients of the remained 
prognostic genes. The IPM was defined as: risk score = coefficient 
1*gene	1 + coefficient	2*gene	2 + … + coefficient	n*gene	n.	GSE30219	
was used as a validation dataset. Risk score was calculated for each 
sample. Survminer R package (http://www.sthda.com/engli sh/rpkgs/ 
survm iner/) was implemented to determine the optimal cutoff of risk 
score for classifying samples into high- risk and low- risk groups.

2.5  |  CIBERSORT analysis

CIBERSORT was applied to estimate the proportion of 22 immune 
cells for each sample.15 It supports the calculation of the enrichment 
score for a group of immune cells based on the corresponding markers 
or a gene set, and it has been widely used for cancer data analysis. For 
each sample, a total proportion of all immune cells were set as 100%.

2.6  |  Functional analysis

ClusterProfiler (v3.14.3) R package was introduced to annotate the 
terms of gene ontology (GO) and Kyoto Encyclopedia of Genes and 

https://portal.gdc.cancer.gov/repository
https://www.gencodegenes.org/human
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.sthda.com/english/rpkgs/survminer/
http://www.sthda.com/english/rpkgs/survminer/


    |  3 of 10WU et al.

Genomes (KEGG) pathways in high- risk and low- risk groups.16 The 
gene	set	of	 “c5.go.mf.v7.4.symbols.gmt”	downloaded	from	MsigDB	
was used as a basis to annotate GO terms. The latest information of 
KEGG pathways (https://www.kegg.jp/kegg/rest/kegga pi.html) was 
used. For GO terms and KEGG pathways, the minimum and maxi-
mum number of genes were set as 5 and 5000, respectively. P < 0.05	
was considered as significant.

2.7  |  Constructing a nomogram for application 
in clinic

Firstly, univariate and multivariate Cox regression analyses were 
performed on risk score and clinical features for identifying inde-
pendent	risk	factors	(hazard	ratio	[HR] > 1,	P < 0.05).	Then,	risk	score	
and stage served as a basis to construct a nomogram for predict-
ing 1- year, 3- year, and 5- year overall survival using rms R package 
(http://CRAN.R- proje ct.org/packa ge=rms). Concordance index 
(C- index) and receiver operation curve analysis were conducted to 
evaluate the effectiveness of the nomogram through comparing it 
with other predictors.

2.8  |  Statistical analysis

All statistical analysis was performed in R software (v4.1.0). Two- 
tailed Student t test was conducted to compare the gene expres-
sion of two groups. Log- rank test was used in Kaplan– Meier survival 
analysis and Cox regression analysis. P < 0.05	was	considered	as	sig-
nificant. Parameters of software or packages not shown were set as 
default.

3  |  RESULTS

3.1  |  Differential molecular features between 
TP53- MUT and TP53- WT groups

In TCGA- LUAD dataset, the frequencies of different types of 
single- nucleotide variations (SNVs) were calculated (Figure 1A). 
In these types, C- to- A and C- to- T contributed over half of all 
SNVs. Transversions (Tv) were almost twice as much as transi-
tions (Ti). Of the top 20 mutated genes in the samples, TP53 
was the most mutated gene (48% mutated in 565 samples), 
and missense mutations consisted of the majority of muta-
tions (Figure 1B). Compared with other mutated genes, TP53 
had a higher proportion of nonsense mutations and frame- shift 
deletions.

Then TCGA- LUAD samples were grouped into two groups 
according to whether TP53 mutated. TP53- WT referred to the 
group without mutation of TP53 (333 samples), while TP53- MUT 
indicated the group with mutations of TP53 (241 samples). GSEA 
on the two groups showed that immune- related gene sets were 

significantly enriched in TP53- WT group. Eight biological pro-
cesses related to immunity were visualized (Figure 1C), suggest-
ing a relation between immunity and TP53 mutation. Differential 
expression analysis verified that 119 DEGs related to immunity 
were identified between the two groups (Figure S1, P < 0.05,	
|log2FC| > 2).

3.2  |  Constructing a prognostic model based 
on DEGs

Univariate Cox regression analysis was performed on 119 DEGs, 
and 89 DEGs were screened to be significantly associated with 
LUAD prognosis. Then LASSO Cox regression was used to iden-
tify DEGs closely associated with overall survival. At last, eight 
DEGs including ANLN, CCNB1, DLGAP5, FAM83A, GJB2, NAPSA, 
SFTPB, and SLC2A1 remained. An 8- gene prognostic model named 
as IPM was established based on the normalized expression and 
multivariate Cox coefficients of these genes. Risk score was cal-
culated for each sample based on the prognostic model. In TCGA- 
LUAD dataset, samples were classified into high- risk and low- risk 
groups with differential overall survival (Figure 2A, p = 1.8e- 10, 
HR = 2.58 [1.91– 3.49]). Dead samples were more accumulated in 
high- risk group (Figure 2B). Except for NAPSA and SFTPB show-
ing a relatively higher expressing in low- risk group, other six prog-
nostic genes were all relatively higher expressed in high- risk group 
(Figure 2B). ROC analysis demonstrated that IPM had favorable 
area under ROC curve (AUC) in predicting 1- year, 3- year, and 5- 
year	overall	survival,	with	an	AUC	of	0.73,	0.68	and,	0.70,	respec-
tively (Figure 2C). In GSE30219 dataset, we observed the similar 
results that two groups manifested distinct prognosis (p = 6.9e- 12, 
HR = 3.83) although a lower AUC was presented (Figure 2D– F). 
Compared with an 8- gene signature proposed by Li et al.,17 our 
model had better scores of both C- index and AUC in predicting 
1-  to 5- year overall survival (Figure 2G,H).

3.3  |  The performance of IPM in classifying TP53- 
based groups

On the overall survival in TCGA- LUAD dataset, TP53- MUT and 
TP53- WT groups showed no significant difference (Figure 3A, 
p = 0.31). However, IPM could classify LUAD samples into high-  and 
low- risk groups for TP53- MUT and TP53- WT groups, respectively 
(Figure 3B,C, p < 0.0001).	 Pearson	 correlation	 analysis	 revealed	 a	
significantly negative correlation between IPM risk score and sur-
vival time in TP53- MUT group (Figure 3D, p = 1.3e- 3, R =	−0.21),	
but there was no obvious correlation in TP53- WT group. Univariate 
and multivariate Cox regression analysis on IPM risk score and TP53 
status exhibited that risk score was an independent risk factor in 
univariate analysis (Figure 3E, HR =	 3.77,	 95%confidence	 interval	
[CI] = 2.55– 5.56, p < 0.001).	 In	addition,	we	analyzed	whether	dif-
ferent mutation types of TP53 had different influence on overall 
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survival. The result showed no significant difference among them 
(Figure 3F, p = 0.63). Noteworthy, IPM was also effective to di-
vide samples with missense and nonsense mutations into high-  and 

low- risk groups (Figure 3G,H, p = 4.64e- 4 and p = 0.01, respec-
tively), suggesting that our 8- gene signature was robust to different 
types of LUAD samples.

F I G U R E  1 Classification	of	LUAD	samples	based	on	TP53	status	in	TCGA-	LUAD	dataset.	(A)	Mutation	frequencies	of	different	SNVs	
in TP53. Ti and Tv indicate transitions and transversions respectively. (B) The top 20 mutated genes. Horizontal axis indicates samples and 
vertical axis indicates genes. The right line indicates sample numbers of different types of mutations labeled in different colors. (C) GSEA for 
TP53- MUT and TP53- WT groups, and eight immune- related pathways of TP53- WT group were visualized. Ti, transition Tv, transversion
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3.4  |  Comparison of TME between high-  and low- 
risk groups

To understand the difference of TME between high-  and low- risk 
groups, we applied CIBERSORT to estimate the proportion of 
22 immune cells in TCGA- LUAD dataset. The distribution of 22 
immune	cells	of	574	LUAD	samples	was	delineated	 (Figure 4A). 
Pearson correlation analysis on the proportion of different im-
mune cells revealed obvious correlations among some immune 
cells, such as M1 macrophages and CD8 T cells, M1 macrophages 
and activated memory CD4 T cells, resting memory CD4 T cells 
and CD8 T cells (Figure 4B). We observed that the expression 
of M0 macrophages, M1 macrophages, activated memory CD4 

T cells and resting memory CD4 T cells were differentially dis-
tributed between high-  and low- risk groups, with the former 
three cell types showing greater enrichment in high- risk group 
(Figure 4C, p < 0.0001).	 Furthermore,	we	 examined	 the	 expres-
sion of six critical immune checkpoints (CTLA4, PDCD1, IDO1, 
LAG3,	 CD274,	 and	 HAVCR2),	 and	 found	 close	 correlations	 be-
tween these checkpoints and risk score (Figure 4D). Three im-
mune	checkpoints	including	CD274,	LAG3,	and	PDCD1	exhibited	
differential expression levels between high- risk and low- risk 
groups, with high- risk group presenting higher expression of all 
three checkpoints (Figure 4E, p < 0.05).	 This	 indicated	 that	 two	
groups may respond differently to immune checkpoint blockade 
therapy.

F I G U R E  2 Establishment	and	verification	of	IPM.	(A)	Kaplan–	Meier	survival	plot	of	high-		and	low-	risk	groups	in	TCGA-	LUAD	dataset.	
Log- rank test was conducted. (B) Survival status and expression of eight prognostic genes ranking by risk score in TCGA- LUAD dataset. (C) 
ROC analysis on the effectiveness of IPM for predicting 1- year, 3- year, and 5- year overall survival in TCGA- LUAD dataset. (D- F) Verification 
of IPM in GSE30219 dataset. (G) C- index of IPM and 8- gene signature from Li et al. (H) AUC of IPM and 8- gene signature from Li et al. ROC, 
receiver operation curve. AUC, area under ROC curve
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3.5  |  Differentially expressed genes between 
high-  and low- risk groups

By comparing the expression profiles of high-  and low- risk groups, 
we observed that 200 immune- related genes were differentially 
expressed (p < 0.05,	Figure	S2). Functional analysis revealed that 
these genes mostly enriched in GO terms of microtubule bind-
ing and tubulin binding (p < 0.05,	Figure 5A). Of KEGG pathways, 
cancer- related pathways such as cell cycle, cellular senescence, 
P53 signaling pathway, and central carbon metabolism in cancer 
were significantly enriched (p < 0.05,	 Figure 5B). The above re-
sults suggested that these differentially expressed genes related 
to immunity may be involved in the cancer development through 
modulating TME.

3.6  |  Application of IPM in LUAD patients

Compared with other clinical factors, IPM risk score was a better 
independent risk factor, with HR =	3.756	 (95%	CI	=	2.397–	5.885)	
in univariate Cox regression and HR = 3.11 (95% CI = 1.96– 4.93) in 
multivariate Cox regression analysis (p < 0.001,	Figure 6A). C- index 
analysis on T stage, N stage, Stage, sex, age, and risk score showed 
that risk score had the highest C- index in predicting short- term or 
long- term survival (Figure 6B). Based on risk score and stage, we 
then constructed a nomogram for more precisely and conveniently 
predicting LUAD prognosis in clinical practice (Figure 6C). The sum 
of two points could be obtained according to risk score and stage 
status, with each total point corresponding to predicted 1- year, 3- 
year, and 5- year overall survival. The predicted overall survival by 

F I G U R E  3 IPM	performance	in	groups	classified	by	TP53	status	in	TCGA-	LUAD	dataset.	(A)	Kaplan–	Meier	survival	plot	of	TP53-	WT	and	
TP53- MUT groups. (B- C) IPM performance in classifying high-  and low- risk groups for TP53- WT (B) and TP53- MUT (C) groups, respectively. 
(D) Pearson correlation analysis between risk score and TP53 status (MUT and WT). (E) Univariate and multivariate Cox regression analysis 
on risk score and TP53 status. (F) Kaplan– Meier survival plot of samples grouped by different types of TP53 mutations. (G, H) Kaplan– 
Meier survival plot of IPM performance in TP53- missense and TP53- nonsense groups. Log- rank test was conducted. HR, hazard ratio. CI, 
confidence interval
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the nomogram was corrected by the observed overall survival, with 
3- year survival prediction showing a higher accuracy (Figure 6D). 
ROC analysis also demonstrated that the nomogram was effective to 
predict 1- year, 3- year, and 5- year prognosis (Figure 6E, AUC =	0.76,	
0.74,	and	0.72,	respectively).

4  |  DISCUSSION

TP53 status was associated with the prognosis of lung cancer 
patients. In LUAD patients, TP53- WT and TP53- MUT groups 

have differential TME, with more activated immune infiltra-
tion in TP53- MUT group.11 Growing evidence has demonstrated 
that silencing TP53 in fibroblasts leads to the overexpression of 
Endothelial Nitric Oxide Synthase (eNOS), subsequently inducing 
an imbalanced state in TME.18– 20 Microenvironment homeostasis 
is disrupted following with oxidative stress damaging DNA in stro-
mal and tumor cells.21 In an animal model lacking TP53 expres-
sion, decreased amount of CD8 T cells and increased number of 
myeloid- derived suppressor cells and leukocytes were discovered 
when compared with wild type,22 further supporting the evidence 
of TP53 in modulating TME.

F I G U R E  4 TME	of	high-	risk	and	low-	risk	groups	in	TCGA-	LUAD	dataset.	(A)	CIBERSORT	analysis	on	22	immune	cells.	Horizontal	axis	
indicates samples and vertical axis indicates estimated proportions. (B) Pearson correlation analysis between either of two types of immune 
cells. Dot size indicates |correlation coefficient| and the shade of color indicates correlation coefficient. (C) Comparing the proportion of M0 
macrophages, M2 macrophages, activated memory CD4 T cells, and resting memory CD4 T cells between high-  and low- risk groups. (D) The 
correlation	between	risk	score	and	six	immune	checkpoints.	(E)	The	expression	of	CD274,	LAG3,	and	PDCD1	in	high-		and	low-	risk	groups.	
Student t test was performed. rs, risk score
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F I G U R E  5 Functional	analysis	of	immune-	related	DEGs	in	TCGA-	LUAD	dataset.	(A)	Circle	plot	of	enriched	biological	process.	Left	part	
indicates genes and right part indicates GO terms. (B) The top 10 enriched KEGG pathways of DEGs. Count represents gene counts in one 
pathway. DEGs, differentially expressed genes

F I G U R E  6 Application	of	IPM	in	clinic.	(A)	Univariate	and	multivariate	Cox	regression	analysis	on	IPM	and	clinical	features.	(B)	C-	index	
of IPM and clinical features. (C) A nomogram based on IPM and stage for predicting 1- year, 3- year, and 5- year overall survival. (D) The 
correction for nomogram- predicted survival based on the observed survival. (E) ROC curve of the nomogram for predicting 1- year, 3- year, 
and 5- year overall survival. HR, hazard ratio. CI, confidence interval
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In our study, we also observed a number of immune- related 
genes differentially expressed between TP53- WT and TP53- MUT 
groups, indicating that TP53 mutations could influence immune reg-
ulation in LUAD. Based on immune- related DEGs, we established 
an 8- gene prognostic model consisted of ANLN, CCNB1, DLGAP5, 
FAM83A, GJB2, NAPSA, SFTPB, and SLC2A1. The prognostic model 
was stable to divide LUAD samples into high-  and low- risk groups 
with distinct overall survival in two independent datasets. In addi-
tion, the model manifested a favorable performance in classifying 
samples with different TP53 status.

By comparing high- risk to low- risk groups based on TME fea-
tures, we discovered that M0 macrophages, M1 macrophages, and 
activated memory CD4 T cells were more accumulated in high- 
risk group. Moreover, some critical immune checkpoints including 
CD274,	PDCD1,	and	LAG3	all	showed	higher	expression	in	high-	risk	
group. These observations supported that TME could be regulated 
by TP53 status and therefore may have a difference in the efficiency 
of immune checkpoint blockade therapy. Furthermore, compared 
to	the	8-	gene	model	(KIF2C,	MKI67,	CCNA2,	CCNB2,	TTK,	HMMR,	
ASPM, and CDCA8) developed by Li et al., our model exhibited a 
stronger performance with higher C- index and AUC.

ANLN has been identified as a potential prognostic biomarker in 
lung cancer in previous research.23,24 Overexpression of ANLN is asso-
ciated with metastasis and poor prognosis,25 which is consistent with 
our result that high- risk group had higher expression of ANLN. Suzuki 
et al. have found that ANLN may induce carcinogenesis through the in-
volvement in PI3K- Akt signaling pathway in NSCLC cells.26 CCNB1 ex-
pression has been reported to be involved in the cancer development 
in many cancer types including in breast cancer,27 colorectal cancer,28 
gastric cancer,29 and lung cancer.30 DLGAP5 is reported as a mitosis- 
related gene associated with NSCLC prognosis, and high expression of 
DLGAP5 was correlated with unfavorable prognosis.31,32

FAM83A is considered as a potential target for designing 
therapeutic drugs for NSCLC.33 Chen et al. have revealed that 
FAM83A- AS1 facilitates cancer cell migration and progression 
through HIF- 1α/glycolysis axis in LUAD cells.34 Hippo signaling and 
Wnt signaling could be regulated by FAM83A in lung cancer cells.35 
GJB2 is one of connexin genes, whose expression is significantly el-
evated in NSCLC patients.36,37 LUAD patients with high GJB2 ex-
pression exhibit poorer prognosis compared with LUAD patients 
with relatively low GJB2 expression.38 NAPSA is less reported com-
pared with the above genes, but it is identified as one of surfactant 
metabolism- related genes associated with the prognosis of primary 
LUAD and LUAD with brain metastasis.39 Pro- SFTPB is considered 
as a risk biomarker for predicting the risk of developing lung can-
cer.40,41 SLC2A1 encodes a glucose transporter (GLUT1) partici-
pating in the metabolism of glucose, which is an energy source for 
tumor cell growth. High expression of SLC2A1 is associated with 
diminished prognosis in gastric cancer.42

The total of eight prognostic genes related to immunity have been 
reported to be associated with cancer development and progression. 

The mechanism of their regulation in TME is complicated possibly 
through oncogenic pathways such as Hippo, Wnt, PI3K- Akt signaling 
as previous research reported. The direct interaction between these 
genes and immunity is less described in the previous studies. Some 
of prognostic genes are not only related to immunity, but associated 
with other roles such as metabolism and cell cycle. This study paved 
a way for uncovering the regulation network among TP53, TME and 
oncogenic pathways.

Overall, this study focused on TP53 status and identified a num-
ber of DEGs related to immunity. Based on the comparison between 
high- risk and low- risk groups, we further clarified the interaction 
between TP53 and TME, and the role of eight prognostic genes in 
cancer development in LUAD patients. The prognostic model was 
robust to be applied in clinical practice for predicting LUAD progno-
sis, but also could serve as potential targets for exploring therapeu-
tic drugs for LUAD treatment.
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