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Abstract
This paper presents two approaches to the individual-based modelling of bacterial
ecologies and evolution using computational tools. The first approach is a fine-grained
model that is based on networks of interactivity between computational objects
representing genes and proteins. The second approach is a coarser-grained, agent-
based model, which is designed to explore the evolvability of adaptive behavioural
strategies in artificial bacteria represented by learning classifier systems. The
structure and implementation of these computational models is discussed, and some
results from simulation experiments are presented. Finally, the potential applications
of the proposed models to the solution of real-world computational problems, and
their use in improving our understanding of the mechanisms of evolution, are briefly
outlined. Copyright  2004 John Wiley & Sons, Ltd.
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Introduction

The application of computer science to biology
has opened up many new and interesting areas of
inquiry. The most obvious has been in the area
of genomics and now proteomics. These fields
owe their practicality to the ability to store, sort
and search massive databases of genetic data with
relative ease, giving possibly the only means of
amassing and organizing datasets that will grow
to be outside of comprehension. Other emerging
areas of computation, with regard to modelling and
simulation, now allow what is otherwise impossible
in the real world, viz. complete measurement
(within the limitations of the model resolution)
and the ability to restart time and so ask ‘what
if’ questions, knowing that initial conditions really
are the same.

A good example of investigating the complex
demands of realistic biological models comes from
evolution. It is possible to breed bacteria and

monitor genetic changes, but measurement is then
limited to the population as a whole, rather than
the specifics of the individual. Measuring the gene
expression levels of a single bacterial cell would
mean killing it, ensuring that whatever was learned
from that cell can still only be put in the context
of the whole population. In the computational
world, any parameters, attributes and values are
always available. The limitations come from the
crude nature of computation as we know it today,
compared to the complexity of even the simplest
single-celled organism. Fortunately, computers are
getting faster and, although we still have decades
of improvement ahead to be close to the real world,
the flip side of this is that measurement in the
real world is likely to not move much further
than it is, suggesting that computational biology
is, perhaps, the key to understanding how these
currently intractable systems evolve.
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Network-based bacterial
modelling — COSMIC

On the basis of the limitations of computational
power when compared to the biological counter-
parts, and the knowledge limitations in real-world
organisms, we derived a model now known as
COSMIC, which stands for ‘computing systems of
microbial interactions and communications’ [3,4].
This model is based around the biological ideas of
evolution and individuality, coupled with the com-
putational requirements of repeatability and, most
importantly, tractability. In doing so, we gave this
model some important qualities that make it an
interesting tool for simulating bacterial evolution
that runs almost in real-time, while being entirely
quantifiable.

The most central theme of COSMIC is the
genome and the proteome. Unlike many simulation-
based genomes, the COSMIC genome is orga-
nized as a long string of codons over which addi-
tional markers denote genes and control sequences
(promoters, operators, terminators and attenuators).
When transcribed, the gene sequences become the
sigma factors, RNA polymerase, repressors, anti-
repressors and signalling proteins. It is vital that the
gene sequence-to-function mapping be stable, as
given a stable interpretation this same genome can
be interpreted in the same way in another organ-
ism, but it is also vital that the interpretation be
fluid enough to allow the incorporation of other
gene sequences from other organisms, as well as
sequence duplication and deletion events. The ideal
solution involves finding the solution to the protein-
folding problem but, as this is currently impossible,
the only solution is to compare sequence similarity
between transcribable genes and control sequences
at the codon level.

The overall effect is to fulfil the evolvability
requirement. The genome interpretation is stable
over the cell’s lifetime and carries the same mean-
ing to later generations, while also allowing for
a mutating genome — all this without creating
semantic problems when combining genomes.

The COSMIC genome and proteome is then
encapsulated inside a simulated cell wall. On
the cell wall are receptors and flagella that give
the cell the ability to sense and move in its
environment. In the biological world, the cell acts
as the protective bag separating the many proteins
and basic chemicals from the outside world. The

same is true in COSMIC, as genes and transcription
products are all made up of individuals, each with
their own lifetime, position in space and set of
possible reactants. There can be on the order of
100–1000 genes in a cell’s genome, with anywhere
from 10 to 500 000 individual proteins in the cell’s
wall. These are free variables and so can increase
further.

The cell presented so far is only one of many,
each cell having its own genome and so its own
proteome. Each cell coexists in a substrate-enriched
environment that is continually changing by the
action of the cells themselves. As they consume the
substrate, the best areas are continually changing
into the worst areas. This leads on to the evolution-
ary goal of COSMIC, to evolve a genome which
uses input from the receptors on the cell wall, to
then control the flagella and so move toward the
better areas. Growth, and so cell division, depends
on the concentration of substrate. Better cells tend
to be in better areas of the environment, and so
divide more often and replicate their genomes more
often, making cell fitness an implicit function.

Figure 1 shows a snapshot of the environment
taken during a simulation run. 305 min into the
simulation 87 cells are alive in this image, as shown
by the black or white dashed circles and numbers
(each cell is tracked and recorded individually).
A white background shows a nutrient-rich area,
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Figure 1. Snapshot of the environment taken during
a simulation run of the network-based bacterial model
(COSMIC)
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black shows a nutrient-restricted area, which also
includes dead cells. 218 cells had been tested at this
point, all related to different lineages. This simula-
tion then went on to test another 1000 cells before
it was stopped with a living population of 412 cells,
and having created 95 GB of data to analyse.

The individual-based nature of the simulation
means that analysis can be extremely detailed.
This, however, comes at a price. COSMIC was
designed from the beginning to run on a loosely-
coupled computer cluster, thus allowing for the
complexity of the model while still making execu-
tion almost real-time. With its parallel implementa-
tion [4], COSMIC has been placed in a seemingly
unique position of having the depth of simulation,
the speed of execution and the evolutionary oper-
ators (mutation, etc.) to experiment with bacterial
evolution in a meaningful way. Current work with
COSMIC involves running the system in a Globus
II environment.

Rule-based bacterial modelling —
RUBAM

This approach to bacterial modelling is different
from the one adopted in COSMIC, in that the
environment/organism interactions are modelled
using a rule-based approach. The derived system is
known as RUBAM, which stands for ‘rule-based
bacterial modelling’. RUBAM is not intended to
be an accurate model of any specific real-world
ecologies or bacteria, but rather to capture their
most important elements, in order to be capable
of exhibiting adaptive and evolvable behavioural
patterns. Other models with similar features have
been developed in the past, most notably ECHO
[6] and HERBY [1].

RUBAM consists of a number of fundamental
elements, which work together to construct an
artificial ecology. The most important of these are
listed below:

• The artificial environment.
• The artificial organisms.
• The environment/organism interaction mecha-

nisms.
• The evolutionary operators.

The artificial environment is represented by an n-
dimensional grid, in which the artificial organisms
are left to survive, interact, multiply and evolve.

The environment contains a number of resources
in various concentrations, arranged in a specific
way that is a function of our problem objectives.
The resources provide the ‘energy’ that is neces-
sary for the organisms to sustain life. The system
is designed to conserve matter and energy, which
are conflated for the purpose of tractability. Most
importantly, the resources (in certain combinations
of concentrations) can trigger different types of
behaviour in the organisms. This behaviour can be
destructive to the organism, or it can generate a
desired effect, in which case the organism grad-
ually accumulates enough energy to multiply and
generate copies of itself in the environment. In this
way, those organisms that are better able to exploit
the resources have a higher chance of propagating
through to successive generations and maximizing
their presence in the population.

The artificial organisms are at the heart of
RUBAM, and collectively contain all knowledge
gained through evolution. They are implemented
using the concept of a learning classifier system
(LCS). More details on learning classifier systems
and their applications can be found in Holland
et al. [7] and the references therein. Learning clas-
sifier systems are rule-based systems (also known
as agents or, in this case, virtual bugs), which
are able to receive ‘messages’ coming from exter-
nal sources (the environment or other organisms
present in their neighbourhoods), process them in
some way, and generate appropriate actions which
can affect the organisms themselves, as well as
the outside world. The ‘genetic material’ of each
organism consists of a collection of rules, which
map its ‘inputs’ (known as detectors) to its ‘out-
puts’ (known as effectors). This set of rules deter-
mines the behaviour of the organism when sub-
jected to different types of stimuli. The objective
is to modify the rules in such a way that a desired
behaviour is obtained. In the context of evolution,
‘desired behaviour’ is one that maximizes the lifes-
pan of an individual and guarantees reproductive
success.

In order to enable the model to potentially exhibit
interesting and complex behavioural patterns, the
organisms must be given sufficient degrees of
freedom to be able to interact with the environ-
ment and themselves. This is achieved by equip-
ping the organisms with a set of detectors and
effectors that enable them to modify their energy
reserves, be able to sense the presence of resources
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around them, be able to move in different direc-
tions, and also be able to generate signals that
can be received by other organisms, thus facilitat-
ing coordinated behaviour. The organisms modify
their energy reserves by ‘consuming’ the resources
around them. This means that the resource sur-
faces do not remain static throughout the simulation
run, but dynamically change as the organisms con-
tinuously interact with the environment. The pro-
posed model was designed to be expandable and
customizable, so that additional interaction mecha-
nisms can be introduced as modules to the existing
computer code, thus making the model suitable for
evolving strategies suited for particular tasks.

Evolution takes place by means of a set of evolu-
tionary operators. These operators are stochastic in
nature, and alter the behaviour of the organism in
some way by modifying its rules. There are several
schemes that could be employed, with mutation (in
various forms) being the fundamental evolutionary
operator. The behaviour of an organism can also
be altered by modifying the ‘importance’ of each
of the rules in the corresponding LCS, based on
their observed performance. A popular mechanism
for doing this is the bucket-brigade algorithm [5].
Other reinforcement learning algorithms can also
be employed. An overview of reinforcement learn-
ing and its applications can be found in Kaelbling
et al. [8].

Another important element in RUBAM is the
choice of logic that is used to map the messages
received by the detectors to actions taken by
the effectors. The proposed system is capable of
using both traditional (Aristotelian) logic as well
as fuzzy logic [11]. In this work, fuzzy logic was
employed because it was experimentally found that
it generally resulted in faster convergence to ‘well-
behaved’ rule bases containing fewer rules than
using traditional logic. Furthermore, fuzzy logic
generally results in rule bases that are easier to
comprehend and express in natural language. The
inference method used to drive the effectors of
the organisms was the one proposed in Mamdani
et al. [10].

Figure 2 shows a snapshot of a typical RUBAM
simulation run, on a two-dimensional grid (i.e.
a plane) consisting of 100 × 100 points, with an
initial population size of 100 bugs. Dark-to-light
areas correspond to low-to-high concentrations of
resources. Organisms with moderate energy levels
are marked with small circles, while those with

high energy levels (ready to divide) are marked
with large circles. When an organism’s energy level
drops below a given threshold, then it becomes
inactive and does not normally respond to mes-
sages. Inactive organisms are marked with crossed
circles. In this simulation, the organisms have
evolved ways to ‘climb’ the hills formed by the
resources, in order to reach nutrient-rich areas in
the environment, which in turn enables them to
grow and reproduce. The paths followed by some
of them can clearly be observed in Figure 2, all
leading to areas of high resource concentrations.
Upon examination of the rule bases of the fittest
organisms in the population, it was observed that
the evolved behaviour closely resembles that of a
typical hill-climbing optimization algorithm, viz.
the movement towards the direction of ascend-
ing gradient of the resource surface. This result,
although relatively simple, demonstrates the abil-
ity of RUBAM to evolve behavioural patterns
that are applicable to real-world problems, such
as function optimization problems. Other RUBAM
simulation runs have generated strategies that can
help locate multiple solutions in multimodal search
spaces. Furthermore, RUBAM allows the use of
environments of higher dimensions (i.e. n > 2),
thus enabling the investigation of environments that
may not necessarily exist in the natural world, but
can be used to solve particular problems.
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Epoch: 15 – Number of bugs: 429 – Inactive: 22 – Ready to divide: 132

Figure 2. Snapshot of the environment taken during a
simulation run of the rule-based bacterial model (RUBAM)
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It should be stressed at this point that RUBAM is
neither a genetic algorithm (GA) approach [2] nor
a genetic programming (GP) approach [9]. There
is no external objective function being optimized
as such, but rather, a fitness measure that is inter-
nal to the individual organism. In other words, the
fitness of an individual can only be assessed by
subjecting it to an environment and letting it inter-
act with it for some time (generally until its energy
reserves are exhausted). In contrast to that, in stan-
dard GA/GP approaches the fitness of an individual
can immediately be computed by means of a known
and static objective function. Initial results have
shown that RUBAM can generate solutions that
are fundamentally (and favourably) different from
traditional GA/GP approaches. A disadvantage of
the proposed approach, as with most evolution-
ary approaches, is that it is computationally inten-
sive. The possibility of implementing RUBAM in
multiprocessor computer environments is currently
being investigated.

Concluding remarks

The availability of fast computers, large-scale
distributed computational resources and other
emerging computational tools now allows in
silico investigations of complex simulations of the
evolvability of biological individuals and ecologies.
Within this short article, we have discussed
two complementary individual-based bacterial
modelling systems, which enable questions about
microbial evolvability to be investigated, and
the evolved knowledge used to help solve real-
world problems. Behavioural rules emerging from
COSMIC can be tested on the coarser-grained
RUBAM system, and questions arising from
COSMIC about larger-scale ecological issues
can be transferred to RUBAM for further
investigations. Initial results have shown that
the RUBAM system is capable of evolving
optimization algorithms that can be generalized to
n-dimensional search spaces, and are applicable
to real-world optimization problems. It is hoped

that further advances in computer technology,
particularly in terms of code execution speed and
scalability, will result in a wealth of interesting
results that can help answer important questions
and improve our understanding of the mechanisms
of evolution.
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