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Abstract: Blood pressure is one of the most basic health screenings and it has a complex relationship
with chronic kidney disease (CKD). Controlling blood pressure for CKD patients is crucial for curbing
kidney function decline and reducing the risk of cardiovascular disease. Two independent CKD
cohorts, including matched controls (discovery n = 824; validation n = 552), were recruited. High-
throughput metabolomics was conducted with the patients’ serum samples using mass spectrometry.
After controlling for CKD severity and other clinical hypertension risk factors, we identified ten
metabolites that have significant associations with blood pressure. The quantitative importance of
these metabolites was verified in a fully connected neural network model. Of the ten metabolites,
seven have not previously been associated with blood pressure. The metabolites that had the strongest
positive association with blood pressure were aspartylglycosamine (p = 4.58 × 10−5), fructose-1,6-
diphosphate (p = 1.19 × 10−4) and N-Acetylserine (p = 3.27 × 10−4). Three metabolites that were
negatively associated with blood pressure (phosphocreatine, p = 6.39 × 10−3; dodecanedioic acid,
p = 0.01; phosphate, p = 0.04) have been reported previously to have beneficial effects on hypertension.
These results suggest that intake of metabolites as supplements may help to control blood pressure in
CKD patients.

Keywords: chronic kidney disease; blood pressure; hypertension

1. Introduction

Hypertension is the leading risk factor for many diseases, including cardiovascular
disease, stroke, kidney disease, etc. [1] One of the diseases studied frequently with hyperten-
sion is chronic kidney disease (CKD) [2]. CKD is a major global health concern and carries
a heavy economic burden [3]. Hypertension is one of the most common CKD-associated
comorbidities. According to statistics from kidney.org, around 50% of CKD patients also
suffer from hypertension. Both hypertension and CKD share many common risk factors,
such as BMI, age, diabetes, etc. With decline in kidney function, blood pressure is generally
increased [4]. The causality between kidney failure and hypertension is not clear and
difficult to determine. It is believed that the relationship could be bi-directional, includ-
ing primary hypertension-induced kidney disease and renal hypertension [5]. Managing
hypertension for CKD patients is crucial for reducing cardiovascular disease and related
mortality [6].

Metabolites are organic compounds, produced intermediately during metabolism.
They are used for chemical reactions in cells. Metabolites have been thoroughly studied
in CKD. It has been suggested that metabolites have strong clinical value for CKD [7].
Studies have found strong associations between tryptophan metabolites abundance and
kidney function decline [8,9], and treatment with 5-methoxytryptophan can ameliorate
renal interstitial fibrosis in mouse models [8]. Additionally, some metabolites have also been
found to regulate blood pressure. For example, a study found that gut microbial metabolites
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can regulate blood pressure [10]. Urinary metabolites were found to be associated with
blood pressure dependent on a sodium diet in a randomized controlled trial [11]. Another
study found that plasma metabolites mediate the association of coarse grain intake with
blood pressure in hypertension-free adults [12].

Metabolites have been studied closely with CKD and blood pressure independently,
but never in conjunction. In this study, using an approach combining traditional statistical
methods and deep learning methods, we show that, within the confinement of CKD, certain
metabolites are directly associated with blood pressure after adjusting for CKD severity.

2. Results

Two cohorts with 1376 subjects (discovery: 824; validation: 552) were used for this
study. The basic clinical characteristics are summarized in Table 1. The discovery cohort
and validation cohort were independently recruited from different hospitals at different
time points. We first conducted traditional regression analysis to determine the relationship
between basic clinical characteristics and blood pressure (Table 2). CKD stage was found
to be marginally associated with blood pressure in the discovery cohort (p = 0.06) and
the combined dataset (p = 0.07), but not in the validation cohort (p = 0.6). Sex was not
associated with blood pressure. Age, weight, BMI and eGFR were found to be significantly
associated with blood pressure in the discovery, validation and combined cohorts. In
the combined cohort, weight and BMI had the largest effects on blood pressure (weight,
p = 1.36 × 10−7; BMI, p = 5.49 × 10−7). These results indicate that increases in age,
weight and BMI and decline in kidney function are associated with increase in blood
pressure, which is consistent with previous findings. Based on regression results, in the
combined cohort, the clinical characteristics together explained 20% variance in blood
pressure (adjusted R2 = 0.20).

All the subjects’ serum samples went through mass spectrometry to identify metabo-
lites. A total of 25,107 features were identified. To remove collinearity within the features
and reduce the dimensionality of the analysis, we performed feature reduction using the
correlation clustering algorithm [13], after which 1755 features remained. These features
have strong correlations with multiple other features and usually appear as the hub feature
in the clusters. Examples of four selected features and their respective clusters can be seen
in Supplementary Figure S1.

The relationships between these 1755 selected features and blood pressure were evalu-
ated using a linear regression model while adjusting for CKD stage in the discovery cohort,
then in the validation cohort. In both cohorts, 31 features were found to be significantly
associated with blood pressure, and the exact metabolites for these 31 features were iden-
tified. Final regression models were carried out by combining data from both cohorts
(Table 3). In the final regression models, we also adjusted for other clinical characteristics
that are associated with blood pressure, including age, weight, BMI and eGFR. Ten (six
positive, four negative) metabolites remained significantly associated with blood pressure.
They were aspartylglycosamine, fructose-1,6-diphosphate, L-glutamic acid, niacinamide,
3-dehydrocarnitine, phosphocreatine, dodecanedioic acid, 2-hydroxyestrone sulfate, xan-
thine and phosphate. All ten metabolites’ abundances showed substantial trends with
blood pressure (Figure 1A). ROC curves showed that all ten metabolites had reasonable
areas under the curve when dichotomizing blood pressure into normal and high groups
(Figure 1B).
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Table 1. Sample descriptions and basic clinical measurements.

Dataset Clinical
Characteristics Normal CKD1 CKD2 CKD3 CKD4 CKD5

Discovery

Sample Size 144 125 133 131 150 141
Men (%) 62.50% 45.60% 57.10% 58.80% 54.70% 48.90%

Age (years) 57.28 ± 17.66 54.65 ± 8.54 56.41 ± 10.2 55.36 ± 15.44 59.51 ± 14.27 59.86 ± 16.41
eGFR 107.03 ± 15.73 109.75 ± 16.48 78.95 ± 12.32 44.53 ± 11.75 21.7 ± 4.95 8.18 ± 3.07

Weight 70.36 ± 11.9 69.18 ± 12.83 73.13 ± 11.13 74.08 ± 12.08 73.07 ± 13.29 72.41 ± 13.1
BMI 24.34 ± 3.36 24.39 ± 3.49 23.78 ± 3.08 24.09 ± 3.39 24.68 ± 3.11 25.58 ± 3.28

Systolic pressure 124.93 ± 17.65 127.19 ± 19.86 127.99 ± 15.44 146.52 ± 25.25 142.75 ± 20.42 146.48 ± 20.77
Diastolic pressure 77.6 ± 11.67 79.18 ± 12.64 80.63 ± 11.87 89 ± 16.9 77.97 ± 13.78 81.56 ± 15.62

Validation

Sample Size 96 97 76 94 93 96
Men (%) 61.50% 52.60% 56.60% 61.70% 54.80% 52.10%

Age (years) 57.74 ± 15.69 55.94 ± 7.79 52.78 ± 9.18 57.62 ± 14.64 59.05 ± 14.45 58.56 ± 14.5
eGFR 106.06 ± 11.64 106.39 ± 11.53 78.54 ± 10.72 44.48 ± 13.26 21.55 ± 4.54 8.77 ± 3

Weight 69.79 ± 11.41 71.21 ± 13.14 73.53 ± 11.95 71.9 ± 12.76 72.48 ± 11.56 72.54 ± 12.61
BMI 24.18 ± 3.19 24.68 ± 3.25 23.6 ± 3.11 24.8 ± 3.5 25.27 ± 3.63 25.76 ± 3.47

Systolic pressure 125.12 ± 19.72 127.1 ± 17.99 127.76 ± 16.73 145.18 ± 27.47 140.94 ± 21.44 149.59 ± 20.78
Diastolic pressure 78.26 ± 13.11 78.33 ± 12.16 80.51 ± 12.83 85.4 ± 15.49 76.44 ± 11.37 83.64 ± 14.71

Table 2. Associations between clinical characteristics and blood pressure.

Cohort Clinical Characteristics Estimate 1 Stderr 2 p 3

Discovery (n = 824)

(Intercept) 1.5874 0.3458 5.11 × 10−6

CKD 0.0819 0.0443 6.49 × 10−2

eGFR −0.0042 0.0019 2.56 × 10−2

Sex 0.0667 0.0530 2.09 × 10−1

Age 0.0037 0.0019 4.88 × 10−2

Weight 0.0095 0.0022 1.32 × 10−5

BMI 0.0337 0.0082 4.42 × 10−5

Validation (n = 552)

(Intercept) 1.8901 0.4203 8.44 × 10−6

CKD 0.0284 0.0601 6.37 × 10−1

eGFR −0.0062 0.0026 1.62 × 10−2

Sex 0.0624 0.0657 3.43 × 10−1

Age 0.0061 0.0025 1.44 × 10−2

Weight 0.0082 0.0028 3.17 × 10−3

BMI 0.0300 0.0100 2.81 × 10−3
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Table 2. Cont.

Cohort Clinical Characteristics Estimate 1 Stderr 2 p 3

Combined (n = 1376)

(Intercept) 1.7042 0.2657 1.94 × 10−10

CKD 0.0631 0.0355 7.55 × 10−2

eGFR −0.0049 0.0015 1.27 × 10−3

Sex 0.0660 0.0411 1.09 × 10−1

Age 0.0045 0.0015 2.44 × 10−3

Weight 0.0090 0.0017 1.36 × 10−7

BMI 0.0320 0.0063 4.59 × 10−7

1 Estimate (effect size) from linear regression with blood pressure as outcome. A positive estimate indicates a positive association; a negative estimate indicates a negative
association.2 Standard error from the linear regression model. 3 p-value from the linear regression model.

Table 3. Linear regression results showing associations between metabolites and blood pressure.

Discovery Validation Combined

Metabolites Identification
Confidence a MS Retention

Time Estimate b p c Estimate b p c Estimate b p c Adjusted p d

Aspartylglycosamine EC, MS, MSE,
database

412.0567 4.53 0.0015 1.44 × 10−2 0.002 5.63 × 10−3 0.0007 4.58 × 10−5 1.42 × 10−3

Fructose-1,6-diphosphate EC, MS, MSE,
database

447.9958 2.89 0.0008 3.61 × 10−2 0.001 4.48 × 10−2 0.0004 1.19 × 10−4 1.84 × 10−3

L-Glutamic acid Reference
standard 226.074 0.98 0.0004 1.36 × 10−3 0.0003 4.27 × 10−2 0.0001 3.27 × 10−4 3.38 × 10−3

Niacinamide EC, MS, MSE,
database

283.0602 3.44 0.0028 1.32 × 10−2 0.0077 1.09 × 10−4 0.0017 5.30 × 10−4 4.11 × 10−3

3-Dehydrocarnitine EC, MS, MSE,
database

236.0078 3.57 0.0011 2.17 × 10−2 0.0014 1.84 × 10−2 0.0004 1.27 × 10−3 7.87 × 10−3

Phosphocreatine Reference
standard 294.0924 5.14 −0.0012 4.44 × 10−2 −0.0015 1.24 × 10−2 −0.0006 6.39 × 10−3 3.30 × 10−2

Dodecanedioic acid Reference
standard 269.1144 3.47 −0.0035 1.79 × 10−2 −0.0046 2.64 × 10−2 −0.0011 1.38 × 10−2 6.11 × 10−2

2-Hydroxyestrone sulfate EC, MS, MSE,
database

408.1494 3.01 −0.0006 4.72 × 10−2 −0.001 2.20 × 10−2 −0.0003 2.07 × 10−2 8.02 × 10−2
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Table 3. Cont.

Discovery Validation Combined

Metabolites Identification
Confidence a MS Retention

Time Estimate b p c Estimate b p c Estimate b p c Adjusted p d

Xanthine Reference
standard 368.0554 3.86 0.0013 2.51 × 10−2 0.0016 3.19 × 10−2 0.0003 4.01 × 10−2 1.38 × 10−1

Phosphate EC, MS, MSE,
database

181.0374 0.87 −0.0003 1.03 × 10−2 −0.0003 4.94 × 10−2 −0.0001 4.56 × 10−2 1.41 × 10−1

NADP+ EC, MS, MSE,
database

391.0605 4.09 0.0004 5.68 × 10−3 0.0003 2.39 × 10−2 0 8.34 × 10−2 2.24 × 10−1

Coenzyme A Reference
standard 393.0802 4.33 0.0002 2.99 × 10−2 0.0002 7.57 × 10−3 0 8.69 × 10−2 2.24 × 10−1

Nicotine glucuronide EC, MS, MSE,
database

415.0683 0.87 0.0005 1.40 × 10−2 −0.0005 2.10 × 10−2 −0.0001 1.12 × 10−1 2.55 × 10−1

Dihydroasparagusic acid EC, MS, MSE,
database

305.0033 1.34 0.0029 2.08 × 10−4 0.0036 1.67 × 10−4 0.0003 1.15 × 10−1 2.55 × 10−1

N2-Methylguanine EC, MS, MSE,
database

210.0359 5.48 0.0061 1.78 × 10−4 0.0048 1.29 × 10−2 0.0003 1.25 × 10−1 2.58 × 10−1

Butyl acetate Reference
standard 81.0702 4.96 0.0131 3.78 × 10−2 −0.0088 4.61 × 10−2 −0.0026 1.51 × 10−1 2.93 × 10−1

Kynuramine Reference
standard 392.2132 3.8 −0.0004 3.72 × 10−2 −0.0005 3.93 × 10−2 −0.0001 1.75 × 10−1 3.19 × 10 −1

N-Myristoyl Alanine EC, MS, MSE,
database

306.2628 4.67 0.007 4.45 × 10−2 0.0091 2.23 × 10−2 −0.0002 2.09 × 10−1 3.60 × 10−1

N-Acetylputrescine Reference
standard 207.0297 0.85 0.0047 2.64 × 10−3 0.0052 1.26 × 10−2 0.0003 2.65 × 10−1 4.32 × 10−1

Undecanedioic acid EC, MS, MSE,
database

199.136 4.75 0.0028 8.12 × 10−3 0.0034 2.63 × 10−2 0.0004 3.28 × 10−1 5.00 × 10−1

dUDP EC, MS, MSE,
database

206.0009 4.65 0.0029 3.64 × 10−2 −0.0045 1.98 × 10−2 0.0005 3.39 × 10−1 5.00 × 10−1

5-Hydroxytryptamine Reference
standard 177.1022 3.18 0 1.63 × 10−2 0 1.76 × 10−2 0 4.39 × 10−1 6.00 × 10−1

Methionine sulfoxide EC, MS, MSE,
database

244.065 2.42 0.0103 2.80 × 10−3 0.0131 1.04 × 10−3 0 4.45 × 10−1 6.00 × 10−1

Selenocysteine EC, MS, MSE,
database

355.9162 2.93 −0.0018 2.56 × 10−2 −0.0028 1.38 × 10−2 −0.0002 5.33 × 10−1 6.88 × 10−1
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Table 3. Cont.

Discovery Validation Combined

Metabolites Identification
Confidence a MS Retention

Time Estimate b p c Estimate b p c Estimate b p c Adjusted p d

N-Acetylneuraminic acid Reference
standard 332.0959 0.98 −0.0285 4.95 × 10−2 −0.0483 4.48 × 10−2 0 5.90 × 10−1 7.00 × 10−1

N-Acetylgalactosamine
6-sulfate

EC, MS, MSE,
database

365.0669 2.73 0.0085 1.47 × 10−2 0.0088 3.97 × 10−2 0.0001 6.04 × 10−1 7.00 × 10−1

3-Methyladenine Reference
standard 172.0588 2.89 0.0016 9.56 × 10−3 0.0018 2.67 × 10−2 0 6.10 × 10−1 7.00 × 10−1

N-Acetylaspartylglutamic
acid

EC, MS, MSE,
database

322.1209 4.21 −0.0004 1.90x10−2 0.0005 4.01 × 10−2 0 7.17 × 10−1 7.71 × 10−1

Sphingosine-1-phosphate EC, MS, MSE,
database

356.1989 5.44 −0.0015 3.84 × 10−2 0.0019 2.80 × 10−2 0.0001 7.21 × 10−1 7.71 × 10−1

Oxodecanoylcarnitine EC, MS, MSE,
database

271.1503 4.52 0.0004 3.69 × 10−2 −0.0006 4.41 × 10−2 0 8.79 × 10−1 8.88 × 10 −1

2-Methylguanosine EC, MS, MSE,
database

342.0801 3.26 −0.0004 2.41 × 10−2 0.0002 4.79 × 10−2 0 8.88 × 10−1 8.88 × 10−1

a Metabolites were identified and their identities confirmed by a pure substance. Other metabolites were annotated based on elemental composition, MS, MSE and by comparison with
reference libraries. EC, elemental composition. b Estimate (effect size) from linear regression with blood pressure as outcome. A positive estimate indicates a positive association; a
negative estimate indicates a negative association. c p-values from linear regression models. d Adjusted p-value according to the Benjamini–Hochberg method.
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Figure 1. The final ten metabolites that were associated with blood pressure. (A). The box plots of the
final ten metabolites’ abundances by blood pressure stages (1–4): 1 indicates normal blood pressure,
2 indicates prehypertension, 3 indicates hypertension, 4 indicates crisis. (B). The ROC curves of the
ten metabolites when treating blood pressure as binary (normal vs. high).

Together, these ten metabolites explained 13.42% variation in blood pressure (adjusted
R2 = 0.1342). By combining clinical characteristics, the total explainable variance of blood
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pressure increased to 23.29% (Figure 2A). In addition to adjusted R2, we also quantitatively
measured the importance of these ten metabolites using deep learning models. A baseline
deep learning model was constructed using fully connected neural networks with tradi-
tional hypertension risk factors (age, weight, BMI, eGFR). This model had a prediction
accuracy of 46%, which was better than random chance (20%, as there are four blood
pressure stages) but far from being suitable for application in a clinical setting. By adding
the additional ten metabolites, the model’s accuracy increased to 52% (Figure 2A). Note
that the goal of constructing this model was not to predict blood pressure based on clinical
factors or metabolites; it was, rather, to provide an alternative quantitative measurement of
the added importance of the metabolites.

Figure 2. Additional validation of the importance of the final ten metabolites. (A) R2 and deep
learning model’s accuracy increased as more metabolite was added. (B) The fully connected neural
network model architecture.

3. Discussion

It is estimated that around 20% of the world’s adults have hypertension. Hyperten-
sion is closely intertwined with many diseases, including CKD, which has an estimated
global burden of 10% (www.kidney.org, accessed on 16 January 2022). Hypertension
is both a cause and a consequence of CKD, making controlling blood pressure a vital
strategy to slow down CKD progression [14] and thus reduce the risk of cardiovascular

www.kidney.org
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diseases [15]. Recently, it has been argued that metabolic dysfunction underlies essential
hypertension [16]. The associations between metabolites and blood pressure have been
demonstrated strongly [17,18].

We designed a study to examine the relationship between metabolites and blood
pressure within the context of CKD. Two large cohorts (discovery and validation) of
1376 subjects were recruited. Metabolites were detected in the patients’ serum samples
using mass spectrometry. Through a series of statistical analyses, we identified ten metabo-
lites associated with blood pressure after adjusting for CKD severity. The importance of
these ten metabolites was further validated through statistical analysis of R2 and accuracy
analysis from the fully connected neural network model. Of the ten identified metabolites,
many were novel and have not been found to affect blood pressure. For example, the
metabolite that had the most significant association with blood pressure was aspartylgly-
cosamine (combined cohort, p = 4.58 × 10−5). Aspartylglycosamine was firstly identified as
a biomarker of hypertension under CKD and also as a biomarker of a congenital disorder
of deglycosylation [19,20]. There was evidence that several identified metabolites had
connections with blood pressure. We found that fructose 1,6-diphosphate was negatively
associated with blood pressure (combined cohort, p = 1.19 × 10−4). As a glycolytic interme-
diate, fructose 1,6-diphosphate treatment mitigated ischemic acute renal failure [21] and
prevented alcoholic liver disease [22]. Even though no direct evidence indicated the inter-
action between fructose 1,6-diphosphate and blood pressure, fructose 1,6-diphosphate is
involved in pulmonary artery pressure [23] and has protective effect against cardiovascular
diseases [24], which may explain the negative association with blood pressure.

Phosphocreatine was negatively associated with blood pressure (combined cohort,
p = 6.39 × 10−3), which had similar trends with a previous study in cardiovascular dis-
ease [25]. Treatment with phosphocreatine prevented cardiovascular disease through mod-
ulating the creatine kinase/phosphocreatine energy buffer and transport system [26,27] and
inhibited kidney injury via the regulation of the ERK/Nrf2/HO-1 signaling pathway [28].
Dodecanedioic acid is a dicarboxylic acid and is involved in a metabolic pathway interme-
diate between those of lipids and carbohydrates. Our results show that it was negatively
associated with blood pressure (combined cohort, p = 0.01). Although no direct association
with blood pressure has been found, dodecanedioic acid was found to help maintain blood
sugar levels [29] and reduce muscle fatigue [30] in diabetic patients.

Some identified metabolites were closely related to hypertension or blood pressure
regulation. Notably, the tryptophan metabolic pathway was deeply involved in hyperten-
sion, including kynuramine and 5-hydroxytryptamine, identified in this study. Our results
indicated a negative association between kynuramine and hypertension and a positive
association between 5-hydroxytryptamine and hypertension. A previous study proved
that treatment with 5-hydroxytryptamine lowered blood pressure in normotensive and
hypertensive subjects through the 5-hydroxytryptamine 7 receptor [31,32].

Additionally, in the present study, we identified that a backbone of mammalian cell
membranes, sphingosine phosphate, was negatively associated with blood pressure. A
number of studies have confirmed the protective effects of sphingosine phosphate in
hypertension and blood pressure regulation, indicating that the modulation of sphingosine
phosphate signaling is a potential therapeutic target of hypertension under CKD [33–36],
which was consistent with our results. Serum 3-methyladenine was not found to be
associated with blood pressure in the combined cohort (combined cohort, p = 0.6). A
previous study showed trends of 3-methyladenine levels consistent with our study of
hypertension. After treatment with 3-methyladenine, vascular smooth muscle cells were
sensitive to senescence that contributed to hypertension, indicating 3-methyladenine as a
potential risk factor for hypertension [37]. Here, we found that N-acetylneuraminic acid
was negatively associated with blood pressure. However, a previous study showed that
N-acetylneuraminic acid was positively associated with hypertension in patients with
cardiovascular disease, which may be a result of different pathological states [38]. Our
study excluded diabetic patients, but the negative association with blood pressure may
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be related to the previous findings. Phosphate is an anion, salt, functional group derived
from phosphoric acid. There have been some findings regarding phosphate and blood
pressure. One study found that a high intake of phosphate increased blood pressure in
young adults [39]. However, another study found that increased phosphate intake as a
supplement can serve as a preventive measure for hypertension [40]. In our study, the
average age of participants was over 55, and phosphate was negatively associated with
blood pressure (combined cohort, p = 0.04), which is more concordant with the second study.

4. Materials and Methods
4.1. Study Cohorts

Our study contained two large cohorts of CKD patients and matched controls. All
participants were ethnically Chinese, and all patients provided written informed consent.
The first cohort contained 824 subjects (control = 114, CKD1 = 125, CKD2 = 133, CKD3 = 131,
CKD4 = 150, CKD5 = 141) who were recruited between February 2011 and 2013 from the
Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine. The second cohort
contained 552 subjects (control = 96, CKD1 = 97, CKD2 = 76, CKD3 = 94, CKD4 = 93,
CKD5 = 196) who were recruited between 2013 and 2016 from Xi’an No. 4 Hospital and
Baoji Central Hospital. The four-variable equation of the Modification of Diet in Renal
Disease (MDRD) Study was used to estimate GFR (eGFR) [41]. Patients were classified
into CKD stages one to five based on CREA-based eGFR equations [42]. Subjects with
liver disease, active vasculitis, gastrointestinal pathology or acute kidney diseases were
excluded. Health controls were selected based on the following exclusion criteria: history
of kidney disease, cardiovascular disease, hypertension, diabetes. The study was approved
by the Ethical Committee. We denote the first cohort as the discovery cohort and the second
cohort as the validation cohort.

4.2. Blood Pressure

Blood pressure was classified into five groups based on conventional definition: nor-
mal (systolic < 120 and diastolic < 80), elevated (systolic: 120–129 and diastolic < 80),
high stage 1 (systolic: 130–139 and diastolic: 80–89), high stage 2 (systolic: 140–180 or
diastolic: 90–120) and hypertensive (systolic > 180 or diastolic > 120). Blood pressure was
subsequently coded numerically as 1 to 5 for further analysis.

4.3. High-Throughput Metabolomics and Assessment

Serum samples were collected from all participants. Serum samples were obtained af-
ter overnight fasting and sera were separated and stored at−80 ◦C for biochemical analysis.
Blood biochemistry was determined by the clinical laboratory. The metabolomic procedure
included sample preparation, metabolite separation and detection. Data preprocessing and
statistical analysis for metabolite identification was performed following our previously
described protocol [8]. The serum samples were analyzed using a Waters Acquity™ UPLC
system equipped with a Waters Xevo™ G2 QTof MS (Milford, MA, USA). Serum samples
were separated at 45 ◦C by an Acquity UPLC HSS T3 column (2.1 × 100 mm, 1.8 µm,
Waters, MA, USA). The mobile phases were water (A) and acetonitrile (B) with 0.1% formic
acid at the flow rate of 0.45 mL/min. The gradient program was optimized as follows:
0–0.5 min, 1% B; 0.5–12.0 min, 1–30% B; 12.0–15.0 min, 30–99% B; 15.0–16.0 min, 99% B;
16.0–20.0 min, 99.0–1.0% B. The 2 µL sample solution was injected for each run at 4 ◦C.

Mass spectrometry was performed with a Waters XevoTM G2 QTof MS. The scan
range was from 50 to 1200 m/z. For positive and negative ESI modes, the capillary and
cone voltages were set at 2.5 kV and 45 V, respectively. The desolvation gas was set at
550 ◦C with a desolvation gas rate of 900 L/h. The source temperature was set at 120 ◦C,
and the cone gas rate was set as 50 L/h. The data were obtained in centroid mode. The
LockSpray frequency was set as 10 s, and the data were averaged over 10 scans. The data
acquisition rate was set to 0.1 s with a 0.1 s interscan delay. During analysis, centroid data
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were collected with a scan time of 0.1 s and an interscan delay of 0.02 s. Leucine–enkephalin
was used as the lockmass at the level of 300 ng/mL with a flow rate of 5 µL/min.

To obtain a pooled quality control sample, 50 µL of all the samples were pooled, and
10 ions, including m/z 161.9852, 391.2812, 381.2846, 764.5300, 441.1958, 820.8169, 208.1360,
133.0861, 486.2534 and 429.2741, were extracted for assessment. The continuous analyses
of 6 replicates of quality control samples were used to measure injection precision. RSD%
of retention times and peak areas were also measured using quality control samples. The
sample preparation repeatability was calculated by 6 parallel samples, and the method
repeatability of RSD% of retention times and peak areas of 10 ions was measured from
quality control samples. The above-mentioned procedure was performed every day.

4.4. Feature Reduction

Overall, 25,107 features were identified through mass spectrometry. Each feature
was described by its retention time and molecular weight. Many of the features were
highly correlated. We conducted feature reduction using a correlation clustering algorithm
(Algorithm 1) [13]. The algorithm works as follows:

Algorithm 1 Correlation Clustering Algorithm

Require: V, E+, E−

H← ∅
while V 6= ∅ do

C← ∅
V’← ∅
Pick a random pivot i ∈ V
C← {i}
for j ∈ V and j 6= i do

if j, i ∈ E+ then
Add j to C

end if
if j, i ∈ E− then

Add j to V’
end if

end for
V← V’
Add C to H

end while
return H

V is a collection of features, E+ is a positive collinearity table and E− is a negative
collinearity table. H is a collection of found collinearity clusters. A collinearity cluster
contains multiple features that have high collinearity between each other. To summarize
Algorithm 1, a random pivot is selected from the collection of features, and a group of
features highly collinear to the pivot is stripped away from the collection and forms a new
cluster. The process repeats until the collection is exhausted. To check whether a feature
pair i, j is in E+ or E− from Algorithm 1, we used a special collinearity check procedure
(Algorithm 2) as follows:

Algorithm 2 Pearson Correlation Threshold Check

Require: i, j, t
P← pearson(i, j)
Q← |P|
return Q > t

i, j, t are the pivot feature, a feature and a threshold, respectively. The threshold t is
a scalar and is set to decide whether to accept a collinearity score. If accepted, i, j ∈ E+,
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otherwise i, j ∈ E−.The absolute values of Pearson correlation coefficients were used
during feature reduction to ignore correlation direction. Threshold t was set to be 0.45. This
algorithm will generate a collection of clusters. High collinearity between features presents
in each cluster; thus, the cluster can be replaced with one feature selected from the cluster.
A specific feature can then be selected from each cluster as needed.

4.5. Statistical Analysis

In the discovery cohort, linear regression was carried out to evaluate the relationship
between blood pressure and metabolites. To account for the potential correlation between
metabolites and CKD stages, an interaction term between feature and CKD stage was
added to the regression model. Statistically significant features recurrent in the model of
the validation cohort were retained. A final regression model was conducted combining
samples from both cohorts. The Benjamini–Hochberg method was used as the multiple test
correction method.

4.6. Deep Learning Analysis

A feature importance algorithm [43] was used to evaluate the additive importance
of the features selected from the algorithm. Firstly, the selected features and data were
standardized, and the categorical blood pressure data were further encoded using one-
hot encoding (with scikit-learn packages). Secondly, a model was constructed based on
fully connected neural networks [44] (with the Keras package in Python) using the blood
pressure associated features. Then, each feature was removed from the model and change of
model performance was recorded. A decrease in accuracy indicated positive importance; an
increase in accuracy indicated negative importance. The magnitude of accuracy alternation
served as a quantitative measurement of feature importance.

4.7. Metabolites Identification

The final list of blood pressure-associated metabolites was identified and annotated
using exact molecular weights, m/z element composition using MassLynx i-FIT software
(Waters Corporation, Milford, MA, USA), MS, MSE fragment, literature comparisons and
database searches, including the Human Metabolome Database (http://www.hmdb.ca,
5 October 2021), KEGG (http://www.kegg.com, 5 October 2021), METLIN (https://metlin.
scripps.edu, 5 October 2022), MassBank (https://massbank.eu/MassBank/, 5 October 2021)
and Chemspider (http://www.chemspider.com/, 5 October 2021). Additionally, some
metabolites were confirmed by comparison with available reference standards under the
same UPLC–HDMS condition.

4.8. Study Approval

This study was approved by the Ethical Committee of Shaanxi Traditional Chinese
Medicine Hospital (permit number: SXSY-235610), and written informed consent was
received from all participants before inclusion in the study. The clinical investigation was
conducted according to the principles expressed in the Declaration of Helsinki.

5. Conclusions

By conducting a large-scale high-throughput metabolomics study, we identified ten
metabolites that were associated with blood pressure after adjusting for the severity of
CKD and other hypertension risk factors. With clinical characteristics and metabolites, we
explained 23.29% of the variance in blood pressure. A deep learning model that utilized
both clinical characteristics and metabolites reached an accuracy of 52%. Although better
than random chance, these results are not clinically meaningful and further demonstrate
that hypertension is a complex disease with many potential risk factors. The identified
metabolites potentially hint at alternative metabolomics-based strategies for controlling
hypertension in CKD patients.

http://www.hmdb.ca
http://www.kegg.com
https://metlin.scripps.edu
https://metlin.scripps.edu
https://massbank.eu/MassBank/
http://www.chemspider.com/
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