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Abstract

The polymorphic genus Petaurista includes a group of diverse species and subspecies that are adapted for gliding and
arboreal life. This morphological diversity has resulted in taxonomic discrepancies, and molecular phylogenetic studies have
been limited by taxon sampling. To clarify this controversial taxonomy, we used the cytochrome b gene to reconstruct the
phylogeny to obtain a more accurate picture of the evolutionary relationships, species differentiation and divergence
pattern of Petaurista. The results revealed a significant inconsistency between taxonomic designations, phylogeny and
genetic distances. When 6 recognized species were included, species delimitation revealed 15 putative species, a finding
that warrants a comprehensive morphological diagnosis and a re-assessment of the species status. The validity of P.
caniceps and P. marica was discussed. An estimation of the molecular divergence time demonstrated that the diversification
and speciation of Petaurista began during the later Miocene and may have been affected by the uplifting of the Qinghai-
Tibet plateau and subsequent climate change.
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Introduction

The giant flying squirrels, Petaurista Link, 1795, belong to the

subfamily Sciurinae and are distributed from Pakistan and Nepal

to East Asia, North Indochina and Southeast Asia [1–10]. This

polymorphic genus includes a group of diverse species/subspecies

that are adapted for gliding and arboreal life. The head and body

lengths of these animals range widely from 305 mm to 585 mm,

and the dorsal pelage exhibits a great variety of colors including

yellowish gray, buffy gray, bright brown, chestnut and black

[1,10].

Within Petaurista, highly variable external morphology presents

taxonomic difficulties, particularly for the trans-Himalayan taxa.

At least 8 contradictory taxonomic hypotheses have been proposed

based on dental and cranial characteristics and external morphol-

ogy since 1940 (Table 1). In the latest taxonomic revision, 8 species

were recognized [6]. Nonetheless, the number of recognized

species has continuously changed from 5 to 31, and long-standing

controversies remain regarding the taxonomic status of P. albiventer,

P. caniceps, P. hainana, P. marica, P. marica sybilla and P. yunanensis

(Table 1). For example, P. caniceps, P. marica and P. sybilla have

been recognized as species, subspecies or synonyms in different

revisions [2–10]. Notably, these taxonomic revisions were based

on preliminary morphological comparison, and comprehensive

morphological or morphometric analyses have not yet been

performed.

Only recently have molecular phylogenies of Petaurista been

proposed, all of which are based on cytochrome b (cyt b) [11–16].

However, due to the disparate sampling of taxa, no broad picture

of the phylogeny is available (Figure 1). In addition, no genetic

information has been published for P. caniceps, P. marica and P.

sybilla.

In this study, to better understand the phylogeny and

evolutionary history of Petaurista, we obtained the cyt b sequences

of P. caniceps, P. philippensis, P. yunanensis, P. marica and P. sybilla.

With additional sequences from GenBank, 6 of 8 species

recognized by Thorington et al. (2005) were sampled, enabling

us to develop a broad picture of Petaurista evolution and to

investigate the validity of some debatable Petaurista species, such as

P. sybilla and P. caniceps. Furthermore, we used Bayesian relaxed
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molecular clock approaches and fossil data to analyze the

correlation between the evolutionary history of Petaurista and

climate change.

Materials and Methods

Ethics Statement
All samples used in this study were obtained from specimens

deposited in the Kunming Natural History Museum of Zoology

(KNHMZ) at the Kunming Institute of Zoology (KIZ) of the

Chinese Academy of Sciences (CAS). Our sampling did not violate

any law, rule or regulation in China and thus required no ethical

or institutional approval. Additionally, we obtained permission

from the KNHMZ and the KIZ of the CAS to use the samples in

our study (no permit number).

Sampling
In total, 10 specimens of Petaurista were collected and deposited

in KNHMZ, KIZ. Additionally, 25 cyt b sequences of Belomys,

Petaurista and Pteromys were obtained from GenBank. Thus, our

sampling included 6 Petaurista species recognized by Thorington

and Hoffmann [6] (Table 2).

DNA Preparation and Sequencing
The samples used in this study were muscle tissues preserved

in 95% ethanol or pedal skin specimens. Before DNA

extraction, pedal skins were treated in a series of 48-hour

washes in 90, 70, 50, 30 and 10% ethanol, followed by

successive 24-hour immersions in phosphate-buffered saline

(PBS). Total DNA was extracted using a Tissue DNA Kit

(BioTeke Corporation, Beijing, China), according to the

manufacturer’s protocols. Cyt b sequences were amplified using

a set of primer pairs, including L14724, L14979, H15149,

H15915 [17,18], L15306, H15347, and H15603 [12], as well as

2 other primers that were designed in this study: L15460 (59-

CTC ATA ATC CTA GTC CTA T T-39) and L15550 (59-

ACA TTA AAC CAG AAT GAT ACT TCC TAT-39). The

50-ml polymerase chain reaction (PCR) mixture contained 25 ml

of 26Power Taq PCR MasterMix (BioTeke Corp.), 2 ml (10 ng)

of genomic DNA and 2 ml of each primer (10 pmol). PCR

amplification was performed using the following program: 5 min

at 94uC, followed by 35 cycles of 1 min at 94uC, 1 min and

10 s at 48–54uC, then 1 min at 72uC and a post-extension step

for 10 min at 72uC. The PCR products were purified and

sequenced using the BigDye Terminator Cycle kit 3.1 on an

Table 1. Taxonomic hypotheses of Petaurista.

Allen, 1940
Ellerman,
1940a

Ellerman &
Morrison-
Scott, 1950

Corbet &
Hill, 1992

Zhang et al.,
1997 Nowak, 1999 Wang, 2003

Hoffman
(1993);
Thorington
et al., 2005

P. petaurista P. petaurista P. petaurista P. petaurista P. petaurista P. petaurista P. petaurista P. petaurista

P. alborufus P. alborufus P. alborufus P. alborufus P. alborufus P. alborufus P. alborufus P. alborufus

P. yunanensis P. yunnanensis P. yunanensis

P. hainanus P. hainana P. hainana

P. philippensis P. philippensis P. philippensis P. philippensis P. philippensis P. philippensis

P. albiventer P. albiventer

P. xanthotis P. xanthotis P. xanthotis P. xanthotis P. xanthotis P. xanthotis P. xanthotis

P. leucogenys P. leucogenys P. leucogenys P. leucogenys

P. magnificus P. magnificus P. magnificus P. magnificus P. magnificus P. magnificus P. magnificus

P. nobilis P. nobilis P. nobilis

P. grandis

P. lena

P. elegans P. elegans P. elegans P. elegans P. elegans P. elegans P. elegans

P. marica

P. caniceps P. caniceps P. caniceps P. caniceps

P. sybilla P. sybilla P. sybilla

P. pectoralis P. pectoralis

P. watasei P. watasei

P. punctatus P. punctatus

P. calrkei P. clarkei

aEllerman (1940) recognized 31 species, 14 of which (P. cineraceus, P. lylei, P. mergulus, P. annamensis, P. candidulus, P. taylori, P. fulvinus, P. inornatus, P. birrelli, P.
gorkhali, P. melanopterus, P. sulcatus, P. rubicundus and P. filchnerinae) have not been recognized as valid Petaurista species by any other researcher.
doi:10.1371/journal.pone.0070461.t001

Phylogenies of Petaurista
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ABI 3730xl sequencer. All experiments were performed in a

biological safety cabinet (Air Tech SW-CJ-1FD, Suzhou Antai

Air Tech Co. Ltd.). Negative controls were used in all DNA

extraction and PCR amplifications to control for potential

contamination.

Figure 1. Phylogenies of Petaurista species based on cyt b (Oshida et al., 2000a, 2000b, 2004; Yu et al., 2006).
doi:10.1371/journal.pone.0070461.g001
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Sequence Alignment
Nucleotide sequences were proofread using SeqMan (DNAs-

tar Inc., Madison, WI) and were aligned using Clustal W [19].

Quantitative pairwise comparisons between Petaurista putative

species were performed, and the average genetic distances

between phylogenetic clades were calculated using Kimura’s

(1980) 2-parameter (K2P) method in MEGA 5.0 [20]. To test

the homogeneity of base frequencies across taxa, PAUP* 4.0b10

[21] was used to conduct a chi-squared test.

Phylogenetic Analysis
To elucidate the phylogenetic relationships among the Petaurista

species, phylogenetic analyses were performed to assess maximum

likelihood (ML) with GARLI v2.0 [22] and Bayesian inference (BI)

using MrBayes v3.2.1 [23]. The cyt b data used in this study were

partitioned according to the codon position for both ML and BI

analyses. The best-fit evolutionary model of each codon position

was calculated using jModeltest v2.1 [24] and determined using

the Bayesian information criterion (BIC) because of its high

accuracy and precision [25]. The models used for the 1st, 2nd and

3rd codon positions were SYM+G, HYK+G and GTR+G,

respectively.

ML tree calculation was performed using a random starting

tree, 5 replicate searches and 5 million generations for each

replicate, and were sampled every 1,000 generations to estimate

the best tree. The bootstrap support (BS) was assessed based on

1,000 bootstrap replicates. PAUP* 4.0b10 [21] was used to

generate the strict consensus tree.

Partitioned Bayesian analyses were executed using a random

starting tree and the program’s default distributions for model

parameters. The analyses were repeated twice, and each analysis

included 30 million generations. The results were sampled every

3,000 generations. Convergences were assessed by calculating the

effective sample sizes (ESSs) using Tracer v1.5 [26]. Conserva-

tively, the first 25% of the sampled trees were discarded as ‘‘burn

in’’, and the remaining 75% of the sampled trees were used to

calculate the Bayesian posterior probabilities (PP). Nineteen

alternative phylogenetic hypotheses were also tested using

CONSEL v0.2 [27] and PAUP4.0b10 by calculating the p-value

in the approximately unbiased (AU) [28], Kishino–Hasegawa

(KH) [29] and Shimodaira–Hasegawa (SH) [30] tests. Selection

bias results from comparing many trees; in this case, the AU test is

less biased regarding tree selection [28].

Divergence Time Estimation and Species Delimitation
The divergence times were estimated using the uncorrelated

relaxed molecular clock approach [31] implemented in BEAST

v1.7.4 [32]. Fourteen additional Sciurid taxa (the GenBank

accession numbers are shown in the tree) were included as

outgroups. Two calibration ages were treated as lognormal

distributions with soft boundaries [33] and were defined based

on fossil records in the Paleobiology Database (http://paleodb.

org) and the NOW (New and Old Worlds) database of fossil

mammals [34]. The oldest fossil squirrel (Douglassciurus jeffersoni) is

known from the late Eocene (37.2–33.9 million years ago [Ma]). A

previous study demonstrated that this calibration should be

applied to a crown group of squirrels [35]. Thus, we used this

fossil to calibrate the most recent common ancestor (MRCA) of

living squirrels. The fossil sites were dated to 37.86–35.75 Ma, and

changing the calibration date to between 37.8 and 35 Ma has an

insignificant effect (see [35] and references therein). We used a

lognormal distribution such that the earliest possible sample age

was 33.9 Ma and the older 95% credible interval (CI) included

37.2 Ma (offset = 33.9, mean = 1.05, and standard devia-

tion = 1.0). Note that we used a younger lower boundary because

the cyt b sequences of Ratufa and Sciurillus, which represent the

basal taxa of squirrels, were not included (or available) [35]. The

Table 2. Taxon and sequences used in this study.

Taxon Accession No. Sample Locality

Pteromys volans AB097683 Japan

Belomys pearsonii AB126245 Taiwan, China

Petaurista leucogenys# AB092616 Fukuoka, Japan

AB092617 Ehime, Japan

AB092618 Wakayama, Japan

AB092619 Nagano, Japan

Petaurista xanthotis# DQ072111 Gansu, China*

Petaurista caniceps JQ928705* Mile, Yunnan, China

JQ928704* Jingdong, Yunnan, China

JQ928703* Gongshang, Yunnan, China

Petaurista petaurista# AB092608 Laos

AB092609 South China

AB023909 South China

AB023908 Laos

Petaurista grandis AB092611 Nantou, Taiwan, China

AB023907 Nantou, Taiwan, China

Petaurista philippensis# DQ072107 Yunnan, China

JQ928697* Shiping, Yunnan, China

Petaurista alborufus# AB092613 South China

AB092614 South China

Petaurista lena AB023901 Nantou, Taiwan, China

AB023902 Hualien, Taiwan, China

AB092615 Nantou, Taiwan, China

Petaurista hainana DQ072108 Hainan, China

Petaurista albiventer DQ072109 Pakistan

AB092612 Ayubia National Park, Pakistan

Petaurista yunanensis JQ928701* Yunlong, Yunnan, China

JQ928702* Gongshan, Yunnan, China

DQ072110 Yunnan, China

Petaurista elegans# AB092610 Jambi, Indonesia

AB047380 -

Petaurista marica JQ928700* Lvchun, Yunnan, China

JQ928696* Jinping, Yunnan, China

Petaurista sybilla JQ928699* Gongshan, Yunnan, China

JQ928698* Gongshan, Yunnan, China

*Novel data collected in this study.
#Species recognized by Thorington and Hoffmann (2005).
doi:10.1371/journal.pone.0070461.t002
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fossil records of P. petaurista appeared in the strata of the middle to

late Pleistocene (1.3–0.6 Ma [34,36]). Thus, we set the earliest

possible age to 1.3 Ma and the older 95% CI to 2.4 Ma at the

Pliocene/Pleistocene boundary, when the climate shifted toward

cooler and drier conditions (offset = 1.3, mean = 0.35, and

standard deviation = 1.0) [37]. The substitution models used for

each codon position were the same as those used in the MrBayes

analyses. Each BEAST analysis included a randomly generated

starting tree, an uncorrelated lognormal relaxed molecular clock, a

birth-death model for the tree, and 10 million generations that

were sampled every 1,000 generations. Tracer 1.5 [26] was used to

confirm that each independent analysis had reached stationary

states (i.e., ESSs .200).

Based on the time-calibrated tree calculated using BEAST, the

number of putative species was identified using the single threshold

GMYC model [38]. This method used maximum-likelihood

statistics and divergence times in a tree to identify the split point

from the species to the population level. In some cases, this method

performed very well (errors less than 25%) [39], and the temporal

pattern of diversification was visualized using lineages-through-

time (LTT) plots. We calculated Pybus and Harvey’s c to

determine whether diversification occurred earlier (c,0) or later

(c.0) [40]. These analyses were implemented using the APE v3.0,

Laser v2.3 and SPLITS v2.1 packages for the R statistical

environment [41,42].

Results

Gene Sequences
We analyzed 35 cyt b sequences (1068–1140 bp), including 6 of

8 Petaurista species recognized by Thorington and Hoffmann [6]

(Table 2). The sequences of P. caniceps, P. marica and P. marica are

novel data (Table 2). The average nucleotide composition of the

cyt b genes was 28.1% A, 29.2% T, 12.8% G and 29.9% C. The

sequence alignment included 449 variable sites along with 386

parsimony informative sites (33.9% of the entire sequence).

Analysis of the base composition (P = 1.0, df = 96, Chi-

Squared = 48.77) indicated homogeneity among the taxa. The

K2P distances between pairs of species are listed in Table 3. The

pairwise distance values among P. caniceps, P. elegans, P. marica and

P. sybilla were between 4.80 and 16.47% (Table 3).

Phylogenetic Relationships among Petaurista
Phylogenetic reconstructions using ML and BI generated the

same tree topology, with overall strong supports (i.e., PP.95%

and BS .70%; [43,44]) for most but not all relationships

(Figure 2). With Belomys pearsonii and Pteromys volans as outgroup

taxa, Petaurista was consistently supported as a monophyletic clade

(PP = 100% and BS = 97%), in which 4 major phylogroups were

recovered (clades I, II, III and IV). Clade I, which is represented

by a single species, P. leucogenys, occupied a basal position within

the genus (PP = 100% and BS = 72%). Clade II (represented by P.

xanthotis) and clades III+IV are sister groups, but the sister

relationship between clades III and IV was not supported by

bootstrap replicates or Bayesian probabilities (PP = 92% and

BS = 40%), indicating that the relationship was not stable. Further

AU, KH and SH tests found that 11 alternative phylogenetic

scenarios could not be rejected by at least 1 test, and 4 could not

be rejected by all 3 tests (P.0.05; Table 4). Thus, the relationships

among the 4 clades remained ambiguous. Even so, P. caniceps

represented a distinct lineage, which is the sister group of P.

petaurista+P. grandis (PP = 100% and BS = 97%). P. marica and P.

sybilla were supported as sister taxa (PP = 100% and BS = 99%),

and the K2P distance between them was 4.80%.

Table 3. Genetic differences of Petaurista taxa based on pairwise comparisons of complete cytochrome b gene sequences
(1,140 bp).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P. elegans 2.45 2.45 8.92 8.25 7.92 7.59 6.14 7.43 5.66 7.48 7.26 5.82 6.94

2 P. marica 10.49 1.43 9.09 7.76 8.08 8.42 6.30 7.59 5.82 8.08 7.43 6.30 7.10

3 P. sybilla 11.53 4.80 9.09 7.76 8.08 8.42 6.30 7.59 5.82 8.08 7.43 6.30 7.10

4 P. caniceps 16.47 15.18 15.16 5.98 4.42 2.11 5.19 1.96 5.98 3.40 6.94 6.46 6.62

5 P. leucogenys 17.09 15.65 16.19 15.00 5.03 5.98 4.57 5.82 5.35 5.03 6.94 6.30 6.14

6 P. xanthotis 15.47 14.66 15.65 14.29 11.79 4.41 4.26 6.26 5.03 4.11 6.62 4.88 5.66

7 P. petaurista 15.58 14.65 14.84 10.21 14.64 12.15 5.19 1.00 5.98 3.20 6.30 6.14 6.62

8 P. philippensis 16.85 15.64 16.71 14.29 13.99 15.47 13.96 5.03 1.00 4.26 2.45 2.60 2.75

9 P. grandis 15.04 13.64 14.15 10.72 14.67 12.02 3.99 13.58 5.19 3.05 6.14 6.30 6.46

10 P. alborufus 16.82 15.73 17.66 15.91 14.34 15.26 14.00 6.59 13.83 5.03 2.60 2.75 2.90

11 P. lena 16.57 14.71 16.14 12.99 14.95 14.21 12.19 15.58 13.35 16.87 6.62 5.50 5.66

12 P. hainana 16.24 15.66 16.93 15.04 13.17 13.43 12.73 6.09 13.19 7.69 15.55 4.26 4.41

13 P. albiventer 16.89 14.36 16.23 15.65 16.09 14.35 14.62 10.69 14.41 11.51 16.02 10.88 1.57

14 P. yunanensis 16.39 15.11 16.70 15.17 16.37 15.98 14.44 9.94 14.53 11.19 15.93 10.35 6.83

Data above the diagonal represent the transversional percentage differences of the 3rd codon position of sequences among taxa. Data below the diagonal are the
percentage differences of sequences among taxa.
doi:10.1371/journal.pone.0070461.t003

Phylogenies of Petaurista
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Molecular Divergence Dating, Species Delimitation and
Species Diversification

BEAST analyses recovered the same topology as GARLI and

MrBayes analyses (Figure 2). The MRCA of the genus existed at

approximately 12.51 Ma (95% CI = 16.16–9.04) (Figure 3). The

divergences among clades II - IV occurred approximately between

10.94 and 10.30 Ma (95%CI = 14.03–7.75). Note that because the

relationships among the 4 clades are not stable, the divergence

times and the results of the LTT plots and the Pybus and Harvey’s

tests should be treated with caution. The early splits within clades

III and IV occurred at 8.80 and 7.49 Ma, respectively

(95%CI = 11.45–5.17). The results also revealed that the diver-

gence of P. caniceps and P. grandis+petaurista, P. elegans and P.

sybilla+marica as well as P. albiventer+petaurista+yunanensis and P.

alborufus+hainana+philippensis occurred almost simultaneously at

Figure 2. Phylogenetic relationships of Petaurista constructed based on 1,068–1,140 bp of the cyt b gene using the ML method and
BI. Numbers above the branches are Bayesian posterior probabilities/likelihood bootstrap values.
doi:10.1371/journal.pone.0070461.g002

Phylogenies of Petaurista
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approximately 5.10–4.47 Ma (95%CI = 6.95–2.78). P. marica and

P. sybilla split at approximately 1.87 Ma (95%CI = 3.12–0.97)

(Figure 3). The LTT analysis demonstrated high rates of lineage

accumulation at the early Pliocene (approximately 5–4 Ma) and

late Pleistocene (approximately since 0.8 Ma) (Figure 4). Species

delimitation analyses revealed 15 lineages as putative species;

lineages that diverged older than 0.79 Ma were identified as

potential species (Figure 3). Thus, despite the 6 species recognized

by Thorington et al., 2005, P. albiventer, P. hainana, P. lena, P. marica,

P. sybilla and P. yunnanensis were also recognized as potential

species, and P. caniceps was recognized as 2 potential species. The

Pybus and Harvey’s c-value from our tree was 21.02 (P = 0.15).

Thus, the pure-birth model was not significantly rejected, and does

not support early-burst or late-burst/high early extinction.

Discussion

Phylogenetic Relationships among Petaurista
Although more sequences and species were included in our

phylogenetic analyses, the topology is largely congruent with all

previous hypotheses; that is, no conflicting relationship with high

BS or PP was observed. Unfortunately, alternative phylogenetic

scenarios could not be rejected statistically (Table 4); therefore, the

relationships among the 4 major lineages, including the basal

position of the genus, remain obscure. Indeed, the values of the

log-likelihood (-lnL) of several alternative phylogenies are very

close to that of the ML/BI topology (Table 4). The unresolved

nature of the phylogeny might be attributed to insufficient

phylogenetic information in the cyt b sequences. Other potential

reasons include a rapid radiation. In the time-calibrated tree, the

branches representing the 4 clades are short, and the divergences

may have occurred within 2 million years (Figure 3). Regardless of

the reason, more robust data, such as multiple unlinked nuclear

genes, are required to fully resolve the relationships.

Taxonomic Implications
Although we were not able to fully resolve the relationships, the

4 major clades and 15 putative species recognized in our analyses

enable us to discuss the taxonomy of Petaurista at a preliminary

level. We note that our species delimitation analysis was based on a

single gene and a very simple hypothesis and relied on a genetic

species concept [45,46]. Therefore, these putative species repre-

sent only a crude estimate rather than a fully described model. To

better understand the taxonomic status of these putative species,

further investigation using multiple unlinked genes, comprehensive

morphological and/or morphometric analyses, karyotypic studies

and ecological and reproductive studies are warranted. Even so,

the putative species recognized appear to be congruent with the

previous taxonomic hypotheses (Table 1) and have been implied in

phylogenetic studies [11,12,13]. The species status of P. albiventer,

P. grandis, P. hainana, P. lena and P. yunanensis have been discussed

by Oshida et al. [11,12] and Yu et al. [13], and we will focus on

the taxonomic status of P. marica, P. caniceps and P. sybilla herein.

P. caniceps was first recognized as Sciuropterus caniceps in 1842 [47].

The following taxonomic rearrangements appear to be author-

dependent [2–6,8]. In the present study, the distinct phylogenetic

position and strikingly large genetic distances indicate that this

species should be considered valid. In addition, P. caniceps is

morphologically distinguishable from all other Petaurista by the

absence of any unique white speckling over the back and a grey

forehead. P. caniceps is sympatrically distributed with P. marica in

southwestern China [5]. It is noteworthy that the species from

western and middle Yunnan, China are also genetically distin-

guishable and were identified as 2 putative species in species

delimitation analyses. Examination of the morphological differ-

ences among populations is warranted.

P. marica was first described by Thomas (1912) based on

specimens from Yunnan (most likely near Mong-tze), China [48],

and P. sybilla was named by Thomas and Wroughton in 1916 [49].

Since then, the taxonomic status of these species has been author

dependent [2–6,8]. In this study, P. marica is represented by 2

specimens from locations in Lvchun and Jinpin (Table 2) that are

very close to its type locality (Figure 5); P. sybilla is represented by 2

samples from western Yunnan. The results suggest that P. marica

and P. sybilla may have diverged from P. elegans 4.47 Ma

(95%CI = 6.46–2.78) and that the former 2 taxa split during the

early to middle Pleistocene (3.12–0.97 Ma). The results justify a

re-assessment of these 2 taxa and call for comprehensive

morphological diagnoses.

Correlation between Petaurista Evolution and Climate
Change

The higher-level phylogenetic relationships of Petaurista were not

fully resolved and characterized by relatively short branches.

Therefore, we assumed the diversification among the 4 major

lineages to have occurred at approximately 12.51–7.49 Ma

(95%CI = 16.16–5.17) and may be associated with episodes of

Table 4. AU, KH and SH tests.

Scenarios Tree length Dl nL AU KH SH

ML&BI topology 1290 - 0.811 0.683 0.967

(I,(II,III,IV)) 1300 10.28 0.002 0.04 0.476

(I,II,(III,IV)) 1308 23.23 ,0.001 0.005 0.079

(I,(III,(II,IV))) 1292 3.75 0.511 0.317 0.783

(I,(IV,(II,III))) 1294 7.28 0.176 0.141 0.607

(II,(I, III,IV)) 1311 33.73 0.001 0.001 0.003

(II,(I,(III,IV))) 1301 21.75 0.004 0.011 0.11

(II,(III,(I,IV))) 1304 28.88 0.003 0.01 0.025

(II,(IV,(I,III))) 1304 28.88 0.003 0.01 0.025

(III,(I,II,IV)) 1309 25.21 ,0.001 0.029 0.050

(III,(I,(II,IV))) 1293 12.54 0.232 0.18 0.398

(III,(II,(I,IV))) 1300 21.09 0.048 0.069 0.125

(III,(IV,(I,II))) 1297 11.10 0.307 0.19 0.443

(IV,(I,II,III)) 1316 36.51 0.004 0.001 0.001

(IV,(I,(II,III))) 1308 31.50 ,0.001 0.004 0.009

(IV,(II,(I,III))) 1310 32.92 ,0.001 0.003 0.006

(IV,(III,(I,II))) 1301 17.46 0.015 0.071 0.221

((I,II),(III,IV)) 1299 15.49 0.048 0.078 0.283

((I,III),(II,IV)) 1298 18.62 0.018 0.072 0.185

((I,IV),(II,III)) 1305 28.64 0.012 0.011 0.027

Clade numbers are represented in Figures 2 and 3.
doi:10.1371/journal.pone.0070461.t004
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global cooling since the middle Miocene (from 15 Ma) as well as

the accelerated uplift of the Qinghai-Tibet Plateau (at approxi-

mately 10–8 Ma) [50–52]. The uplift of the plateau also

strengthened the East Asia monsoon and increased the aridity of

the dry seasons [51]. The climate change and consequent habitat

turnover could have led to fragmentation of the Petaurista

distribution. This suggestion is based on the observed short

branches but is not supported by the Pybus and Harvey’s test

results. Nonetheless, rapid diversification was also observed at

approximately 12–10 Ma among tree squirrel genera on the

Sunda Shelf islands and has been connected to climate change and

the subsequent drop in sea levels [35]. Most of the diversification

Figure 3. Chronogram of Petaurista from the partitioned Bayesian analysis using a relaxed molecular clock. Branch lengths represent
time. Black dots represent nodes; the age of these nodes was calibrated based on fossil records.
doi:10.1371/journal.pone.0070461.g003
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among species occurred from the early Pliocene to the early

Pleistocene (5–2 Ma), a finding that may be related to global

cooling and desiccation, particularly around the Miocene/

Pliocene boundary and during Pleistocene climate fluctuations

[53–56]. However, these correlations require stronger evidence

and should be tested in other East Asian taxa.
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