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Abstract: Background: Promising cancer chemotherapy requires the development of suitable drug
delivery systems (DDSs). Previous research has indicated that a hydrogel is a powerful DDS for tumor
therapy and holds great potential to offer a feasible method for cancer management. Methods: In
this study, glutathione-gellan gum conjugate (GSH-GG) was synthesized through chemical reaction.
Doxorubicin hydrochloride (DOX) was loaded into GSH-GG to accomplish DOX-loaded GSH-GG.
The properties, injectability, drug release, and in vitro and in vivo anticancer effects of DOX-loaded
GSH-GG were tested. Results: DOX-loaded GSH-GG showed a temperature-ion dual responsive
gelling property with good viscosity, strength, and injectability at an optimized gel concentration
of 1.5%. In addition, lower drug release was found under acidic conditions, offering beneficial
long-acting drug release in the tumor microenvironment. DOX-loaded GSH-GG presented selective
action by exerting substantially higher cytotoxicity on cancer cells (4T1) than on normal epithelial
cells (L929), signifying the potential of complete inhibition of tumor progression, without affecting
the health quality of the subjects. Conclusions: GSH-GG can be applied as a responsive gelling
material for delivering DOX for promising cancer therapy.

Keywords: hydrogel; responsive; gellan gum; doxorubicin; cancer

1. Introduction

Cancer is a lethal disease, causing substantial mortality worldwide [1,2]. Over
1.9 million new cases and 0.6 million cancer-related deaths were estimated in the United
States alone for 2022 [3]. This severe health burden desperately calls for the develop-
ment of effective anticancer approaches. Chemotherapy remains one of the most widely
adopted treatment options in current cancer management [4,5]. However, the application of
chemotherapeutic drugs still faces significant challenges, including low bioavailability [6],
intense pain, and severe side effects [7]. To overcome these problems, pharmaceutical
researchers actively seek to formulate efficient strategies.

So far, it has been generally recognized that drug delivery systems (DDSs) that can
realize controlled drug release are suitable for efficacious cancer therapy [8,9]. Therefore,
various types of DDSs, such as micelles [10], liposomes [11], and hydrogels [12,13], have
been successfully devised using synthetic and/or natural materials. Among them, hydro-
gels are emerging as promising DDS for cancer chemotherapy, owing to their structures that
are capable of retaining a high water content and maintaining a three-dimensional network,
which allows encapsulation of different drugs. For example, Amano et al. developed a
nano-sized hyaluronic acid (HA)-based cisplatin-loaded hydrogel, which showed a signifi-
cant therapeutic effect in both the xenograft and allograft models [14]. Wang et al. proposed
a locally injectable endostatin-loaded hydrogel to remodel the tumor microenvironment
through anti-angiogenic effects [15]. These studies underline the potential and feasibility of
hydrogels in cancer treatment.
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Since hydrogels show high gelling temperature, their local injections require additional
heating prior to administration [16,17]. Moreover, they also need the aid of other cross-
linking agents to initiate the gelation process [18,19]. These characteristics make applying
these hydrogels complicated and unfavorable for in vivo anticancer activity. Gellan gum
(GG) is a naturally originated anionic exopolysaccharide that is widely used as a drug
carrier, due to its non-toxicity and biodegradability [20,21]. In particular, GG showed an
ion-responsive gelation property upon contacting common metal ions (such as K+, Ca2+,
and Mg2+) in physiological environments [22]. However, the hydrogel formed by GG
often exhibits weak mechanical strength and high gelation temperature, severely hindering
its further application [23,24]. Therefore, proper modification of GG could reduce its
gelling temperature to be appropriate for the human body in vivo, while maintaining its
ion-responsive nature. Such an alteration is essential to improve the application of GG in
cancer therapy.

In our study, we firstly presented a new method of modifying GG with glutathione
(GSH) to accomplish glutathione conjugated-GG (GSH-GG), which could form in situ hy-
drogels. Doxorubicin hydrochloride (DOX)-loaded GSH-GG showed a substantial decrease
in gelation temperature, intact ion-responsive nature, and slow drug release in an acidic
environment. We demonstrated the applicability of GSH-GG as a DOX-loading and in situ
gelling material in vitro for selective 4T1 cancer cytotoxicity. Moreover, the in vivo r effect
of the DOX-loaded GSH-GG gel on 4T1 tumor inhibition was also tested.

2. Results and Discussion
2.1. Characterization of GSH-GG

A GSH-GG conjugate was synthesized through the condensation reaction between the
carboxyl group of GG and the amino group of GSH. The average yield of GG-mercaptoacetic
acid coupling was 71%. The results showed that the unreacted GSH in the product could be
removed by dialysis under the conditions of low temperature (4 ◦C), no oxygen (bubbling
by N2), and an acidic medium (pH = 3). Following freeze-drying, a water-insoluble white
product was obtained, which dissolved at a temperature above 80 ◦C and pH > 6, and
formed a transparent hydrogel after cooling. The feasibility of this modification method
and the correctness of the final product have been proven by 1HNMR, FT-IR, SEM, and
rheological studies in our previous study [24]. The DOX can be readily loaded into the
GSH-GG to obtain DOX-loaded GSH-GG by simply using the DOX solution as the solvent.

The physical and chemical properties play an important role in the properties of in
situ gels [25]. First, we studied the viscosity changes in some series of concentrations
of DOX-loaded GSH-GG in a normal saline environment (Figure 1A). Without normal
saline, the viscosities of three kinds of DOX-loaded GSH-GG were 17, 148, and 891 mPa.s,
indicating an increase in viscosity with increasing GSH-GG concentration. With the increase
in the volume of normal saline, the gel viscosity of each concentration also showed a
gradual upward trend, and the higher the concentration of GSH-GG, the faster the viscosity
increased. After adding 16 mL of saline, the viscosity of 1.5% DOX-loaded GSH-GG
reached 5510 mPa.s, while 0.5% DOX-loaded GSH-GG only had 268 mPa.s [26]. The gel
strength plays a certain role in whether the in situ gel can maintain the solid state under
the skin [27]. The rheology of GSH-GG hydrogels prepared at different concentrations
is shown in Figure 1B. The elastic modulus (G′) and viscous modulus (G”) of GSH-GG
hydrogels with concentrations of 0.5%, 1%, and 1.5% at different frequencies were measured.
When the G′ of GSH-GG was greater than G”, it indicated that GSH-GG was a stable
cross-linked structure and could show elastic deformation under shear. The increase in
frequency decreased the G′ to less than G”. With the increase in GSH-GG concentration,
the intersection point of G′ and G” moved to the high-frequency region. It indicated a
gradual increase in the hydrogels’ cross-linking degree and upshift of both G′ and G” with
increasing GSH-GG concentration. As shown in Figure 1C, the rheology of the GSH-GG
hydrogels with a concentration of 1.5% (w/v) was tested in solutions of varying ionic
strengths. The results showed that after adding 5% NaCl solution, G” was greater than G′
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when the frequency increased to above 80 Hz. After adding 5% MgCl2 or CaCl2 solution,
G′ was always greater than G”, indicating that GSH-GG hydrogels with added MgCl2 or
CaCl2 were stronger than GSH-GG hydrogels with added NaCl.
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Figure 1. (A) Viscosity changes in DOX-containing GSH-GG with different concentrations after
adding normal saline. (B) Rheological curves of the GSH-GG hydrogels prepared at different
concentrations. (C) Rheological curves of the GSH-GG hydrogels with the concentration of 1.5% (w/v)
after adding liquid of different ionic strength.

2.2. Effect of Temperature and Cations on Gelling Behavior of GSH-GG

Figure 2 shows the phase diagram of the effect of temperature, Ca2+, Mg2+, and Na+

ions on the gelling behavior of DOX-loaded GSH-GG. The aqueous solution of DOX-loaded
GSH-GG appeared to be clear at its low concentration (1%). However, it became viscous
with declining temperature. In addition, it was also observed that when the temperature of
DOX-loaded GSH-GG was higher than 11.0 ◦C, the gel formation temperature increased
gradually with the increase in DOX-loaded GSH-GG concentration (>1.5%). As an anionic
polysaccharide, GG is gelated in the presence of cations, and GSH-GG also preserves this
property. Figure 2B–D show that the aqueous solution of DOX-loaded GSH-GG, stored
in a lower concentration of Ca2+ ions (0.01% w/v) to form a clarifying solution, acquired
viscosity with the increase in Ca2+ ion concentration. It was also noted that GSH-GG
formed a gel in the presence of Ca2+ ions with a concentration of more than 0.025% (w/w).
Similarly, Mg2+ exerted an effect on DOX-loaded GSH-GG similar to that of Ca2+. However,
the sensitivity of DOX-loaded GSH-GG to Na+ was relatively poor, which may be attributed
to the higher sensitivity of GG to divalent cations [28,29].
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2.3. Injectability Study

The injectable gel can be formed subcutaneously or locally in situ after injection, which
is very helpful in avoiding unnecessary surgery on patients receiving tumor treatment [30].
Therefore, the injectability of DOX-loaded GSH-GG gel was studied in vitro and in vivo.
The gelation time of DOX-loaded GSH-GG was evaluated in PBS, CaCl2, and normal saline
(Figure 3A–C). The results displayed a poor gelling property in PBS, possibly pertaining
to the low cation concentration in PBS. Conversely, the gel formation occurred faster in
normal saline at low pH. For example, the gelation time of 1.5% DOX-loaded GSH-GG
increased from 1.67 s at pH 5 to 57.00 s at pH 7.4. DOX-loaded GSH-GG showed the same
trend in CaCl2, but the gelation rate was faster. When pH was 5, the gelation took about
1.33 s; when the pH rose to 7.4, the gelation time was about 55.33 s. Figure 3D illustrates
filamentous gel formation following the injection of DOX-loaded GSH-GG gel into normal
saline through a syringe. Next, DOX-loaded GSH-GG was injected subcutaneously into the
back of mice, and the skin was cut and observed. The in situ gel formation was apparent at
the site of administration (Figure 3E).
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Figure 3. Injectability study of GSH-GG. The time (s) required for DOX-loaded GSH-GG to form a gel
after adding (A) PBS, (B) CaCl2 and (C) normal saline. (D) The gel formation image of DOX-loaded
GSH-GG in normal saline. (E) The DOX-loaded GSH-GG was injected subcutaneously into the mice
(left), and the in-situ gel (right) was observed after the skin was cut open.

2.4. In Vitro Release

The in vitro drug release curve of GSH-GG loaded with DOX was studied under
different pH conditions (physiological pH 7.4 and intracellular lysosomal pH 5.0) at 37 ◦C
(Figure 4). Within 48 h of incubation, DOX-loaded GSH-GG demonstrated a certain sus-
tained drug release effect compared to free DOX and a slower drug release rate under
acidic conditions. In fact, very rapid drug release leads to the fast depletion of the drug
in the body, intensifying the need for frequent dosing frequency of short time intervals
and eventually increasing the treatments’ side effects. In contrast, very slow drug release
reduces the drug effect in the target area and provides a great opportunity for the growth
and proliferation of damaged cells. Thus, drug release kinetic studies are performed to
determine the optimum drug release time at the tumor site for beneficial and effective
treatment. In this work, a temperature-ion-pH triple responsive GG was synthesized and
utilized in developing DOX-loaded GSH-GG hydrogels. To predict the release mechanism,
the obtained in vitro release data of the hydrogel were reviewed via the following four
mathematical models: zero-order describes the system where the drug release rate is inde-
pendent of its concentration, and the process of drug release is constant from the carrier,
first-order realizes that release rate is directly proportional to the drug concentration under-
going reaction (the greater the concentration, the faster the reaction), Higuchi, in which the
release according to this model occurs in the homogeneous/solid matrix carrier through
drug solubility, given that the initial drug concentration is greater than its dissolution rate,
and the Korsmeyer–Peppas model that depicts drug release via the diffusion mechanism
from polymeric carriers [31]. Various parameters, such as regression coefficients (R2) and
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rate constant factors (k), of all four models were obtained following the analysis of the
in vitro drug release data at pH = 7.4 and pH = 5.5. The drug release data were best fitted
to the Korsmeyer–Peppas model (Table 1), indicating that DOX release from the GSH-GG
carrier was controlled by the diffusion mechanism. This property can take advantage of the
tumors’ acidic environment to enable the slow release of the loaded drug, so it can reduce
the pain caused by frequent administration [32].
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Table 1. Determination of kinetic parameters and mechanism of DOX released by 1.5% (w/v) GSH-GG
(pH = 7.4 and pH = 5.5).

Conditions Mathematical Models R2 K n Release Mechanism

pH = 7.4, 1.5% GSH-GG

Zero-order 0.57611 1.29968 -
First-order 0.9254 0.50898 -

Higuchi 0.80759 10.6925 -
Korsmeyer–Peppas 0.98972 970.346 0.01249 Fickian diffusion

pH = 5.5, 1.5% GSH-GG

Zero-order 0.40511 1.30751 -
First-order 0.97956 0.59000 -

Higuchi 0.65597 11.2961 -
Korsmeyer–Peppas 0.94492 128,942 0.00011 Fickian diffusion

2.5. Cytotoxicity Assay

The in vitro anticancer effect of DOX-loaded GSH-GG was also tested, and the re-
sults are summarized in Figure 5. It is shown in Figure 5A that in the 4T1 cancer cell
line, a higher gel concentration (1.5%) of DOX-loaded GSH-GG exerted the highest cyto-
toxicity effect with an inhibition rate over 80%, whereas 0.5% and 1% gel concentrations
demonstrated analogous cytotoxicity. This was an exciting result, which suggested that
DOX-loaded GSH-GG at the optimal gel concentration might be a promising DDS for
cancer therapy. However, side effects of DDS are another critical issue to be considered
in clinical practices [33]. In this regard, we employed normal epithelial cells (L929) to test
the cytotoxicity effects of different formulations on normal cells. As shown in Figure 5B,
in contrast to cancer cells, all gel formulations showed sharply reduced cytotoxicity on
L929 cells. Although reduced cell cytotoxicity was also observed in free DOX, it could
be ascribed to the lower drug cellular uptake in normal cells [34]. The cell viability in
the gel formulation groups was all significantly higher than that in the free DOX group.
These results clearly suggested differential cytotoxicity profiles of DOX-loaded GSH-GG
on cancer cells and normal cells. This phenomenon is beneficial for the safe application of
DOX-loaded GSH-GG as a promising DDS in vivo and its underlying mechanisms deserve
further explorations.
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Figure 5. The cytotoxicity of DOX-loaded GSH-GG against 4T1 (A) and L929 (B) cells. a–d Means in
the same row with different letters differ significantly, p < 0.05.

2.6. In Vivo Anticancer Assay

The in vivo anti-tumor experiment was performed using 4T1 tumor bearing mice
as a model. As shown in Figure 6, due to the controlled release benefits of in situ gels,
both DOX-loaded GG and GSH-GG showed enhanced anticancer performance compared
to the control group. In particular, the DOX-loaded GSH-GG exhibited the strongest
potency, by showing almost complete tumor inhibition at the end of the test. These results
suggested that DOX-loaded GSH-GG can provide long-acting benefits and total inhibition
of tumor progression, which might be applied as a promising tool for potential clinical
applications. The body weight variations in mice during the whole test demonstrated no
difference among the three groups, implying the high biocompatibility of GSH-GG for
in vivo applications.
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3. Conclusions

In this study, GG was modified with GSH and employed successfully to construct a
new temperature-ion-pH triple responsive GSH-GG gel with reduced gelling temperature,
preserved ion-responsive nature, and pH-responsive sustained drug release suited for
clinical cancer therapy. Our results demonstrated that DOX could be readily loaded into the
matrix of GSH-GG, and the obtained DOX-loaded GSH-GG could exhibit good viscosity,
strength, and injectability at an optimized gel concentration of 1.5%, in both in vitro and
in vivo conditions. Moreover, DOX-loaded GSH-GG presented sustained drug release
compared to free DOX and an especially lower drug release rate under acidic conditions.
This was beneficial for its long-acting performance under acidic tumor microenvironments
for cancer therapy. In the in vitro cytotoxicity assays, DOX-loaded GSH-GG showed
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different cytotoxicity on cancer cells (4T1) and normal epithelial cells (L929), which is
beneficial for the selective killing of neoplastic cells. Most importantly, a single injection
of DOX-loaded GSH-GG caused complete inhibition of tumor progression, due to its
long-acting benefits. It also showed high biocompatibility with no significant impact on
the subjects’ body weight. In summary, GSH-GG can be applied as a responsive gelling
material for delivering DOX as promising cancer therapy.

4. Materials and Methods
4.1. Materials

GG (GelzanTM CM) was purchased from Sigma-Aldrich (Saint Louis, MO, USA).
1-ethyl-3-[3-(dimethylammino) propyl]carbodiimide (EDAC) was purchased from Adamas-
beta (Shanghai, China). 5, 5-dithio-bis(2-nitrobenzoic acid) (DTNB) was purchased from
Aladdin (Shanghai, China). GSH was purchased from Acros Organics (Waltham, MA,
USA). Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS) and DOX
were purchased from Shanghai Titan Technology Co., Ltd. (Shanghai, China).

4.2. Synthesis of the GSH-GG

Typically, 0.90 g EDAC was added to 30 mL of 1% (w/v) deacylated GG solution
and dissolved by stirring at 25 ◦C. Then, 0.90 g GSH was added and the pH of solution
was adjusted to 5.0 with NaOH (1 M). The reaction mixture was incubated for 3 h. The
resulting mixture was acidified with hydrochloric acid (pH = 3) and dialyzed with nitrogen-
saturated DI water (intercepting molecular weight: 12–14 kDa) at 4 ◦C, until the absorbance
at 412 nm of the dialysate was not detected using DTNB. The GSH-GG was obtained as a
white fibrous solid by lyophilizing.

4.3. Gel Formation Assay

The GSH-GG solid fibers were dissolved in DI water at 80 ◦C, and mixed solutions
of different concentrations (0.5%, 1%, 1.5%, w/v) were prepared. After cooling, 0.2–2 mL
normal saline was slowly added to the solutions, and gelation time was recorded. With
regard to the gelling standard, after inverting the mixture’s container, the content did not
slip off for 15 s [35].

4.4. The Preparation of DOX-Loaded GSH-GG

DOX was dissolved in DI water at 37 ◦C in advance and then mixed into a cooling
solution of dissolved GSH-GG solid fibers. The DOX-loaded GSH-GG (gel) was obtained
after standing.

4.5. Viscosity

The viscosity was determined according to the previous report with some modifica-
tions [36]. Different concentrations of DOX-loaded GSH-GG (0.5%, 1%, 1.5%, w/v) were
prepared and preheated to 37 ◦C. Subsequently, 2–16 mL of normal saline was added
dropwise to parallel samples of each concentration. The viscosity was then measured by a
rotational viscometer (NDJ-1B, Shanghai Jichang Geological Instrument Co., Ltd. Shanghai,
China) using a No. 1–4 rotator at 12–60 r/min.

4.6. Rheology of GSH-GG Hydrogel Measurements

The rheological properties of GSH-GG hydrogels with concentrations of 0.5%, 1%,
and 1.5% were characterized using a Marvin (Kinexus Pro, Britain) rotational rheometer,
equipped with a set of parallel plates with diameters of 20 mm. The scanning frequency
range was set to 0.1–100 Hz.

4.7. Injectability Studies

The injectability of the gel was determined according to the previous report with
some modifications [37]. The injectivity of the DOX-loaded GSH-GG gel was studied
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both in vitro and in vivo. First, 0.5%, 1%, and 1.5% DOX-loaded GSH-GG (0.5 mL) were
injected into PBS, CaCl2, and normal saline (pH4, pH5, and pH7.4, 3 mL) via a 1 mL syringe.
Then, DOX-loaded GSH-GG was injected subcutaneously into male mice to demonstrate
in situ gelation.

4.8. In Vitro Adhesion

The smooth glass plate was placed at an angle of 45 to the horizontal plane, and 2 mL
GSH-GG of each concentration was dropped onto the glass plate, sliding down naturally,
and the time was recorded for the glue drop to slide down 1 cm.

4.9. Effect of Temperature on Gelling Behavior of GSH-GG

The effect of temperature on the gelling behavior of GSH-GG was determined using a
previously reported protocol with some modifications [38]. DOX-loaded GSH-GG aqueous
solutions of different concentrations (1.0–3.0%, w/v) were prepared. The temperature of
the above polymer solution was controlled via a water bath, and its gel state was judged by
the inversion method.

4.10. Effect of Cations on Gelling Behavior of GSH-GG

The effect of cations on the gelling behavior of GSH-GG was determined using a
previously reported protocol with some modifications [39]. DOX-loaded GSH-GG aqueous
solutions of different concentrations (0.50–1.5%, w/v) were prepared. Calcium chloride
solutions of different concentrations were added to the polymer solutions prepared above,
and the gelation state was judged by the inversion method.

4.11. In Vitro Drug Release of DOX-Loaded GSH-GG Hydrogels

The in vitro drug release assay was performed following a previously published proto-
col [40]. Transdermal apparatus was used to evaluate the release of DOX in GSH-GG. Briefly,
free DOX solution (100 µg/mL), 1% DOX-loaded GSH-GG and 1.5% DOX-loaded GSH-
GG were put into the transdermal apparatus, and the dialysate was PBS of pH = 5.5 and
pH = 7.4, respectively. The ambient temperature of the dialysis was maintained at 37 ◦C,
with constant stirring at 100 rpm. After the diffusion, the medium was removed at different
times, and the aliquots were replenished with an equivalent volume of PBS. Then, the
concentration of DOX was determined by measuring the fluorescence intensity of the
sample using an enzyme labeling instrument at 590 nm.

4.12. Cytotoxicity

L929 and 4T1 cells were placed in a 96-well plate with a density of 1 × 104 cells/well,
and cultured overnight, respectively. Then, the cells were incubated with 120 µL DOX-
loaded GSH-GG (0.5%, 1% and 1.5% w/v) or free DOX solution for 24 h. The cells were
stained with MTT solution for 4 h, and the cell viability was assessed by measuring
absorbance at 490 nm with a microplate reader (Multiskan FC, Thermo Scientific, Waltham,
MA, USA) [41].

4.13. In Vivo Anti-Tumor Effect

The study was conducted according to the guidelines of the NIH Animal Research
Facility Orientation Course and approved by the Institutional Review Board (or Ethics
Committee) of Shandong University. Female BALB/c mice (18~22 g) were used as the
animal models. 4T1 cancer cells were used as cell lines to implant tumors, and DOX was
selected as the anti-tumor model drug. To study the anti-tumor effect of free drugs and
drug-loaded gels, experimental mice were randomly divided into three groups as shown in
Table 2. (n = 6 in each group). After the tumor grew to about 100 mm3, the experimental
mice of Group 2 and Group 3 were injected with 100 µL gel or drug-loaded gel in situ
(the content of DOX was 1 mg/mL, the grouping was shown in Table 2). In contrast,
the experimental mice of Group 1 did not receive any treatment for two weeks. During
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the administration period, the body weight of mice in each group was weighed on the
electronic scale every day, and the change curve of body weight was drawn. The longest
size (L) and widest size (W) of the subcutaneous tumors were measured with a Vernier
caliper. The tumor volume was calculated using the formula V = L ×W2/2, and the tumor
growth curve was drawn. Two weeks later, the experimental mice were killed by the
cervical dislocation method, and the tumor was stripped off and sectioned [42,43].

Table 2. Grouping of animal experimental mice.

Group Tumor Type of Administration

1 + Saline
2 + DOX-loaded GG
3 + DOX-loaded GSH-GG

4.14. Statistical Analysis

The results are expressed as mean ± SD. Statistical comparisons were performed by
one-way analysis of variance (ANOVA), followed by Duncan’s multiple range test (DMRT).
p < 0.05 was considered significant.
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