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Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 
pleiotropic bioactive peptide that was first isolated from an 
ovine hypothalamus in 1989. PACAP belongs to the 
secretin/glucagon/vasoactive intestinal polypeptide (VIP) 
superfamily. PACAP is widely distributed in the central and 
peripheral nervous systems and acts as a neurotransmitter, 
neuromodulator, and neurotrophic factor via three major 
receptors (PAC1, VPAC1, and VPAC2). Recent studies have 
shown a neuroprotective role of PACAP using in vitro and in 
vivo models. In this review, we briefly summarize the current 
findings on the neurotrophic and neuroprotective effects of 
PACAP in different brain injury models, such as cerebral 
ischemia, Parkinson’s disease (PD), and Alzheimer’s disease 
(AD). This review will provide information for the future 
development of therapeutic strategies in treatment of these 
neurodegenerative diseases. [BMB Reports 2014; 47(7): 
369-375]

INTRODUCTION

PACAP is a protein encoded by the ADCYAP1 gene in 
humans. PACAP was isolated from ovine hypothalamus and 
named after its ability to stimulate cAMP formation in rat ante-
rior pituitary cells (1). PACAP exists in a 27- and a 38-amino 
acid form (PACAP27 and PACAP38, respectively) processed 
from a prohormone precursor (2). Based on its amino acid 
composition, PACAP belongs to secretin/glucagon/vasoactive 
intestinal polypeptide (VIP) superfamily. The sequence homol-
ogy of PACAP from protochordates to mammals suggests the 
conservation of important biological functions during 
evolution. Three G protein coupled seven transmembrane re-

ceptors (GPCR), PAC1, VPAC1, and VPAC2, have been cloned 
and identified as major PACAP receptors. PAC1 receptor acts 
as a PACAP-selective receptor, whereas VPAC1 and VPAC2 re-
ceptors have equal affinities for PACAP and VIP. Several PAC1 
receptor isoforms are generated from alternative splicing of the 
N-terminal extracellular domain and the C-terminal cytoplas-
mic intracellular loop (ic3) (3-5). Cell-type specific expression 
of PACAP receptors determines relative ligand-binding po-
tency and distinct patterns of intracellular signaling pathways 
(6). All PACAP receptors are coupled to adenylate cyclases 
(ACs) and increase intracellular concentrations of 3',5'cyclic 
adenosine monophosphate (cAMP). The PAC1 receptor iso-
form can also be coupled to phospholipase Cβ (PLCβ) and pro-
duce inositol phosphate by activating IP3 receptor-mediated 
Ca2+ mobilization (7).

NEUROTROPHIC AND NEUROPROTECTIVE ACTIVITIES 
OF PACAP

PACAP is expressed throughout the central nervous system 
(CNS), such as in the hypothalamus, hippocampus, cer-
ebellum, and substantia nigra (8, 9). In the peripheral nervous 
system (PNS), PACAP is expressed in sensory neurons, sym-
pathetic preganglionic neurons, and parasympathetic gan-
glionic neurons (10). The widespread distribution of PACAP 
indicates that the peptide has pleiotropic functions in the nerv-
ous system. PACAP has been shown to function as a neuro-
hormone, a neurotransmitter, and a neurotrophic factor. In the 
developing CNS, PACAP acts as a neurotrophic factor, promot-
ing cell survival and differentiation in various cells, including 
cerebellar granule cells, dorsal root ganglion cells, and cortical 
neuroblast (11-13). The neurotrophic effects of PACAP can be 
modulated according to splice variants of the PAC1 receptor 
expressed in development. In mature brain, PACAP also in-
hibits apoptotic cell death and promotes survival and re-
generation under various pathological conditions. In cultured 
cells, PACAP is known to promote the survival of rat cortical 
neurons against glutamate-induced toxicity (14). PACAP in-
creases the survival of dopaminergic neurons against 6-hydrox-
ydopamine-induced neurotoxicity (15). In differentiated PC12 
cells and primary sympathetic neurons, PACAP also prevents 
serum and NGF withdrawal-induced cell death (16-19). The 
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Fig. 1. Schematic representation summarizing the mechanism con-
cerning neuroprotective actions of PACAP in neurodegenerative 
diseases. PACAP binding with PAC1 receptors activates adenylate 
cyclase (AC)-linked signal transduction pathway. PACAP triggers 
the anti-apoptotic transcriptional target gene expression. PACAP al-
so inhibits apoptotic signaling responses, including ROS gen-
eration, mitochondrial Bax and cytochrome C release, and sub-
sequence caspase-3 activation.

neurotrophic and neuroprotective effects of PACAP are medi-
ated by direct or indirect mechanisms (20). In most studies, the 
neurotrophic and neuroprotective actions of PACAP occur 
through the activation of the cAMP-protein kinase A (PKA) 
pathway (16, 21). Additionally, PACAP can influence the mi-
togen activated protein kinase (MAPK) pathway (22, 23). A di-
rect protective effect of PACAP on neurons is often accom-
panied by the inhibition of caspase-3, a key apoptotic enzyme 
(24). Induction of transcriptional target gene expression, such 
as BDNF, mediates the neuroprotective action of PACAP in rat 
cortical neurons (25). In some cases, PACAP inhibits the ex-
pression of proapoptotic factors, such as Bcl-2-associated X 
protein (Bax), and activates the phosphatidylinositol 3'-OH 
kinase (PI3K) pathway (26, 27) (Fig. 1). Indirectly, PACAP me-
diates neuroprotective actions by modulating glial cells to pro-
vide neurotrophic support and control of inflammatory re-
sponses (28). PACAP induces astroglial cells, which have large 
numbers of PACAP receptors, to release interleukin-6 (IL-6) in 
ischemia in vivo to protect neurons (29, 30).

PACAP AND NEUROPATHOLOGY

Cerebral ischemia
Decreased blood flow to the brain causes decreases in oxygen 
and glucose, resulting in cerebral ischemia or stroke. Total loss 

of blood flow to the brain causes global ischemia while local 
interruption due to cerebral artery occlusion causes focal cere-
bral ischemia (31). PACAP has significant neurotrophic and 
neuroprotective effects after stroke. PACAP can cross the 
blood-brain barrier (BBB) and injection of PACAP prevent is-
chemic neuronal damage in transient global and focal cerebral 
ischemia (32). Application of PACAP intracerebroventricularly 
or intravenously in a model of transient global ischemia pre-
vented the ischemic death of rat CA1 neurons, even if admin-
istration was delayed until 1 day after the ischemic event (33). 
Systemic administration of PACAP also effectively decreased in-
farct volume in a rat model of focal ischemia and ameliorated 
neurological defects when administration began 4 h after mid-
dle cerebral artery occlusion (MCAO), a mouse model of stroke 
(34). Additionally, PACAP-deficient mice show more vulner-
ability following MCAO (15). The infarct volumes and neuro-
logical deficits were greater in PACAP-deficient mice than in 
the wild-type mice. Studies comparing transcriptome alterations 
during ischemic insult in wild type and PACAP deficient mice 
suggest the possible involvement of Ier3, met enkephalin, sub-
stance P, and neurotensin expression in its neuroprotective ef-
fects (15). PACAP-deficient mice exhibit higher cytoplasmic cy-
tochrome c levels and lower Bcl-2 expression than wild-type 
mice, indicating that the PACAP acts on the mitochondrial 
apoptotic pathway to inhibit caspase-9 and subsequent cas-
pase-3 activation (30). PACAP also activates the DNA repair 
function of apurinic/apyrimidinic endonuclease 1 (APE1) (35). 
Stroke is categorized as acute, subacute, and chronic depend-
ing on the period. During the acute period (variable from a few 
minutes to hours), impaired adenosine triphosphate (ATP) pro-
duction, loss of Na+-K+ pump activity, glutamate bursts, and in-
creases in intracellular Ca2+ concentration occur, leading to ex-
citotoxicity in neurons. In the subacute periods (a few hours to 
a few days), neurons and microglial cells are activated and pro-
duce reactive oxygen species (ROS) and inflammatory 
cytokines. In the chronic period (a few days after), neurons die 
apoptotically and mitochondria are the structures in this 
process. PACAP may act on several of these processes for 
neuroprotection. For example, PACAP can protect against glu-
tamate-induced cytotoxicity and excitotoxic concentrations of 
glutamate stimulate PACAP expression (14, 36). PACAP inhibits 
ROS-induced cell death in several cell types (37, 38). 
Furthermore, PACAP decreases the neuroinflammatory re-
sponse and attenuates microglial activation (39, 40).

Traumatic brain injury
Traumatic brain injury (TBI), physical damage to the brain, is a 
major factor leading to death and chronic disability in in-
dividuals under the age of 45 years worldwide (41, 42). 
Pathological evidence suggest that TBI involves a complex 
neurodegenerative process, which includes many pathways 
(43). Studies have shown neuroprotective effects of PACAP in 
different models of TBI. Moderate TBI in rat brain induces 
changes in the mRNA expression of PACAP and the PAC1 re-
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ceptor in the cortex and hippocampus (44). The upregulation 
of endogenous PACAP and its receptors and the protective ef-
fect of exogenous PACAP after different central and peripheral 
nerve injuries show the important function of PACAP in the 
neuronal regeneration (45). In a rat model of TBI induced by 
central fluid percussion, PACAP treatment significantly re-
duced the diffusion of axonal injury and protected the cortoco-
spinal tract (46). PACAP promotes neural restoration through 
enhanced neurogenesis, angiogenesis, and neuroprotective ef-
fects in TBI (47). In a weight-drop model of TBI, microinjection 
cerebroventricularly before TBI significantly improved motor 
and cognitive dysfunction, attenuated apoptosis, and de-
creased brain edema (48). 
　The inflammatory response is a common pathological re-
action to brain trauma like other neuronal diseases (49). The 
cerebral inflammatory response to TBI activates macrophages/ 
microglia, neurons, and astrocytes, and increases the release of 
inflammatory mediators, such as interleukin-1β (IL1β) and tu-
mor necrosis factor-α (TNF-α) (50). PACAP has immunomo-
dulatory properties and can inhibit production of TNF-α from 
microglia activated by lipopolysaccharide (LPS) in vitro (51, 
52). Exogenous administration of PACAP alleviates TBI in rats 
through a mechanism involving the TLR4/MyD88/NF-κB path-
way (48). Thus, PACAP exerts a neuroprotective effect by in-
hibiting a secondary inflammatory response in microglia and 
neurons (48). TBI induces T cell-mediated immune sup-
pression in both animal and clinical studies (53). PACAP in-
hibits the expression of IL-12, thereby suppressing T cell pro-
liferation (53). Although cerebral ischemia and TBI have differ-
ing pathogenesis, they may also share some common path-
ways, including excitotoxicity, ROS generation, nitric oxide 
production, elevated Ca2+ levels, and apoptosis (54, 55). 

Parkinson’s disease
Parkinson’s disease (PD) is characterized by motor movement 
disorders due to damage to or destruction of dopaminergic 
neurons in the substantia nigra (SN) (56). In addition to the 
motor impairment, cognitive and behavioral disturbances may 
also arise in the disease. Several animal models have been de-
veloped to study the pathogenesis of PD. In particular, 
1methyl-4-phenyl-1,2,3,6-etrahydropyridine (MPTP) is a wide-
ly used neurotoxin to produce experimental models of PD. 
MPTP inhibits the mitochondrial respiratory chain, causing en-
ergy depletion and dopaminergic neuronal loss in the SN (57, 
58). In this model, the pretreatment of MPTP-intoxicated mice 
with PACAP improved memory impairment in the test session 
of the spatial reference version of the water maze (59). 
　Unilateral lesion of the dopaminergic cells with the 6-hy-
droxydopamine (6-OHDA) is also commonly used for the gen-
eration of PD rodent models (60). Injection of PACAP into 
6OHDA-induced lesions in the SN can effectively reduce dop-
aminergic neurodegeration in the SN and ventral tegmental 
area and improve behavioral symptoms (61, 62). PACAP effec-
tively protects dopaminergic nigrostriatal neurons from apop-

tosis (61). Moreover, PACAP-treated animals show less severe 
acute neurological symptoms and a more rapid amelioration of 
behavioral deficits than wild-type animals (61). PACAP also 
protects PC12 cells from apoptosis induced by rotenone, 
which is thought to provoke PD by interrupting mitochondrial 
complex I activity (63). PACAP protects dopaminergic neurons 
against rotenone-, 6-OHDA-, and MPP+-induced toxicity in 
cell culture (64, 65). PACAP protects SH-SY5Y dopaminergic 
cells in salsolinol (SALS)-induced PD models (66). 
　Recent advances in PD pathology suggest that diverse cel-
lular and molecular events, including oxidative stress, micro-
glia-mediated inflammation, as well as apoptotic mechanisms, 
are likely to be involved in the neurodegenerative process 
(67). The neuroprotective effect of PACAP is mediated by in-
hibition of ROS production by microglial cells (68). In mesen-
cephalic cultures, pretreatment with PACAP protects dop-
aminergic neurons against 6-OHDA-induced neurotoxicity 
(64). Moreover, PACAP increases the number of tyrosine hy-
droxylase (TH) immunoreactive neurons, and enhances dop-
amine uptake. Because PACAP also acts as a neuromodulator, 
regulating synaptic transmission, the neuroprotective actions 
of PACAP in PD may occur through the regulation of dop-
amine release. Consistent with this, PACAP induces catechol-
amine release from adrenal chromaffin cells, sympathetic neu-
rons, and neurosecretory cells by elevating intracellular Ca2+ 
concentrations (69-71). Neuroprotective effects of PACAP in 
MPTP-induced PD mouse models involve the modulation of 
K(ATP) subunits and D2 receptors in the striatum (72). The 
neuroprotective effects of PACAP affect not only dopaminergic 
neurotransmission but also cholinergic neurotransmission, bal-
ancing the dopamine-acetylcholine systems in the basal gan-
glia neuronal pathway (72). PACAP can also act on the 
MPTP-altered expression of proteins, such as the mTOR an-
ti-apoptotic and RNA-dependent protein kinase (PKR) apop-
totic pathways of translational control (TC) (73, 74).

Alzheimer’s disease 
Deposition of amyloid β peptide (Aβ) is a central process lead-
ing to the development of Alzheimer’s disease (AD) (75). Aβ is 
produced by the proteolytic cleavage of the amyloid precursor 
protein (APP) with sequential cleavages by a group of enzymes 
termed α-, β-, and γ-secretases. ADAM family (a disintegrin- 
and metalloproteinase-family enzyme) acts an α-secretase and 
β-site APP-cleaving enzyme 1 (BACE1) acts as a β-secretase. 
The γ-secretase is a complex of enzymes, composed of pre-
senilin 1 or 2 (PS1 or PS2), nicastrin, and anterior pharynx de-
fective and presenilin enhancer 2 (76). Proteolytic cleavage of 
APP by α-secretase precludes formation of amyloidogenic pep-
tides and leads to the release of soluble N-terminal APP frag-
ments (sAPPα) with neurotrophic and neuroprotective 
properties. Several reports suggest the neuroprotective action 
of PACAP is mediated by stimulating α-secretase activity (77). 
In the brain of the APP[V717I] AD transgenic mouse model, 
PACAP treatment results in an enhancement of the non-amy-
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loidogenic pathway of APP processing and in improved cogni-
tive function (78). Treatment of SK-N-MC neuroblastoma cells, 
which express endogenous PAC1 receptors, with PACAP 
shows enhanced secretion of sAPPα versus untreated cells 
(77). The activation of the α-secretase activity in cells endoge-
nously expressing PAC1 receptor indicates that physiological 
receptor levels are sufficient to mediate this response (77). 
Moreover, stably overexpressing functional PAC1 receptors in 
HEK cells strongly stimulates α-secretase cleavage of APP (77). 
A comparative analysis of cortical gene expression profiles 
showed that PACAP was significantly downregulated in sev-
eral AD mice models and in the human AD temporal cortex, 
supporting the physiological relevance of PACAP in AD (79). 
PACAP is neuroprotective, but brain uptake is limited by an ef-
flux component, such as peptide transport system-6 (PTS-6) 
(80). In the SAMP8 AD mouse model, PACAP with anti-
sense-PTS shows improved cognition by inhibiting the peptide 
efflux pump (80). There is increasing evidence for the involve-
ment of a key lipid carrier, apolipoprotein (ApoE) in AD (81). 
A mouse deficient in ApoE serves as a useful in vivo model to 
study development and degeneration (82). VIP, a PACAP fam-
ily member, shows protection from developmental retardation 
and memory deficits in ApoE-deficient mice (83). In rat PC12 
cell cultures, PACAP also shows a potent neuroprotective ef-
fect over a long period at a very low concentration from Aβ-in-
duced cytotoxicity (84). The enzyme caspase-3 is involved in 
the signaling pathways for this neurotrophic effect of PACAP. 

CONCLUSIONS 

PACAP shows significant neuroprotective potential resulting 
from its neurotrophic and anti-apoptotic effect in various in 
vivo and in vitro models. In vivo, PACAP is a peptide and is 
metabolized mainly by dipeptidyl peptidase IV (DPP IV), a 
ubiquitous amino-terminal dipeptidase (85). Thus, metabol-
ically stable PACAP analogs or derivatives may represent 
promising drug candidates. In support of this, a metabolically 
stable PACAP derivative, acetyl-[Ala15, Ala20]PACAP38-propy-
lamide, which behaves as a super-agonist of the PAC1 re-
ceptor, is being developed (86). To avoid side effect such as 
migraine, it will be necessary to determine the lowest dose of 
PACAP needed in animal models. Moreover, strategies to tar-
get the delivery of the PACAP to the tissues of interest may al-
so need to be developed (87). Based on published data, 
PACAP may become useful a therapeutic agent in many neu-
rological disorders characterized by neurodegeneration, such 
as cerebral ischemia, TBI, PD, and AD.
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