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Hypothalamic communication with the rest of the brain is critical for accomplishing a
wide variety of physiological and psychological functions, including the maintenance
of neuroendocrine circadian rhythms and the management of affective processes.
Evidence has shown that major depressive disorder (MDD) patients exhibit increased
functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Neurofibrillary tangles are
also found in the hypothalamus of Alzheimer’s disease (AD) patients, and AD patients
exhibit abnormal changes in the HPA. However, little is known of how the hypothalamus
interacts with other brain regions in AD patients with depression (D-AD). Functional
connectivity (FC) analysis explores the connectivity between brain regions that share
functional properties. Here, we used resting-state (rs) magnetic resonance imaging (MRI)
technology and the FC method to measure hypothalamic connectivity across the whole
brain in 22 D-AD patients and 21 non-depressed AD patients (nD-AD). Our results
showed that D-AD patients had reduced FC among the hypothalamus, the right middle
temporal gyrus (MTG) and the right superior temporal gyrus (STG) compared with the
FC of nD-AD patients, suggesting that the abnormal FC between the hypothalamus
and the temporal lobe may play a key role in the pathophysiology of depression in AD
patients.

Keywords: Alzheimer’s disease, depression, functional magnetic resonance imaging, functional connectivity,
hypothalamus

INTRODUCTION

Symptoms of major depression of varying severity are a common comorbidity in Alzheimer’s
disease (AD), with a prevalence of up to 63% in patients with AD (Khundakar and Thomas, 2015).
In addition, these symptoms result in more rapid functional decline and loss of independence, and
even shorter survival lengths (Lyketsos and Lee, 2004; Chi et al., 2015). Although both psychiatric
and neurological disorders recognize the occurrence of affective and psychotic symptoms
in patients with AD, the underlying mechanisms of depressive symptoms in these patients
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still remain unclear. Certain AD studies have emphasized
psychosocial factors, such as functional and cognitive disabilities,
whereas others have stressed neurobiological underpinnings.
Improved knowledge of the neurobiological basis is required
for the development of more effective treatment strategies
(Khundakar and Thomas, 2015).

The current research considers the hypothalamo-pituitary-
adrenal (HPA) axis, which mediates stress responses, one
major pathway for depressive symptomatology (Schindler
et al., 2012). HPA axis activity is governed by the secretion
of adrenocorticotropic hormone-releasing factor (CRF) and
vasopressin (AVP) from the hypothalamus, which, in turn,
activates the secretion of adrenocorticotropic hormone (ACTH)
from the pituitary, which ultimately stimulates the secretion
of glucocorticoids from the adrenal cortex (Nemeroff, 1996).
The neuropeptides, CRF and AVP, are released within the
paraventricular nucleus (PVN) of the hypothalamus and are
crucially involved in the pathogenesis of depression (Bao
et al., 2008). Studies over the last 40 years have shown HPA
axis hyperactivity as one of the most consistent biological
findings in major depressive disorder (MDD). Meanwhile, with
the development of medical imaging, numerous neuroimaging
studies have investigated the neurobiological roles of the
hypothalamus in MDD patients (Baeken et al., 2009; Gao et al.,
2013; Sudheimer et al., 2015).

Baeken et al. (2009) examined the emotional and
neurobiological effects of one session of high-frequency
repetitive transcranial magnetic stimulation (HF-rTMS) applied
to the left dorsolateral prefrontal cortex on a sample of unipolar
treatment-resistant depressed patients of the melancholic
subtype. To examine possible time delays in the HF-rTMS effects,
mood and salivary cortisol were assessed not only immediately
after the sessions but also after a period of 30 min. They found
support for the hypothesis that a single session has a significant
impact on the HPA axis, as measured by salivary cortisol.
Additionally, Gao et al. (2013) found diminished GABAergic
input to the hypothalamus upon postmortem examinations
of MDD patients. Using resting-state functional magnetic
resonance imaging (rsfMRI) and functional connectivity (FC)
analyses, Sudheimer et al. (2015) reported that MDD patients
show reduced FC between the hypothalamus and the subgenual
cortex compared with the FC of healthy participants. Further,
increased cortisol secretion and reduced connectivity were both
found to be associated with MDD severity.

It is well known that hypothalamic communication with the
rest of the brain is crucial for a wide variety of physiological and
psychological functions, e.g., managing affective processes and
maintaining neuroendocrine circadian rhythms. To accomplish
these functions, the hypothalamus maintains neural connections
within the brain and coordinates a variety of neuroendocrine
cascades that influence target tissues throughout the body.
However, little is known of how the hypothalamus interacts with
other brain regions in mild AD patients with depression (D-AD).
FC is defined as temporal correlations between spatially remote
neurophysiological events or functional interactions (Büchel and
Friston, 2000). Given that the hypothalamus may be significantly
involved in MDD, we hypothesized that fMRI FC between

the hypothalamus and emotional processing areas of the brain
would be abnormal in D-AD patients compared with that of
non-depressed AD (nD-AD) patients.

Thus, here we used the hypothalamus as a ‘‘seed’’ to
investigate FC changes in D-AD patients and assessed the
correlation between the FC changes and depressive symptom
severity.

MATERIALS AND METHODS

Patients
The sample group was composed of 21 nD-AD patients
and 22 D-AD patients, recruited from Tongde Hospital in
Zhejiang Province, China. Diagnoses were confirmed using the
National Institute on Aging-Alzheimer’s Association guidelines
(McKhann et al., 2011), with scores of 20–24 on the Mini-Mental
State Examination (MMSE) and 1 on the Clinical Dementia
Rating scale (CDR). Patients were screened to exclude those
with histories of alcoholism, smoking, neurological disorders, or
psychiatric disorders and those who were taking antidepressant
medication. Patients were also excluded if the dual-echo MRI
images showed two or more hyperintense lesions with diameters
≥5 mm or more than four hyperintense lesions with diameters
0–5 mm. All patients were right-handed, had more than 6 years
of education and were 65–80 years old. This study was carried
out in accordance with the recommendations of the Declaration
of Helsinki and the principles of good clinical practice, the
Ethics Committee of Tongde Hospital with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the the Ethics Committee of Tongde
Hospital.

The diagnoses of depression were determined by two trained
psychiatrists using the Diagnostic and Statistical Manual of
Mental Disorders, fourth edition (DSM-IV; Gmitrowicz and
Kucharska, 1994). In brief, all D-AD patients exhibited one or
more of two core criteria (depressed mood, loss of interest, or
pleasure) lasting for>2 weeks. Depression severity was evaluated
using the Hamilton Depression Rating Scale (HAMD-17;
Hamilton, 1967) and the Neuropsychiatric Inventory (NPI;
Cummings et al., 1994). The scores on the HAMD-17 range
between 7 and 17, and for the depression domain of the NPI
(D-NPI), scores ≥4 are typically considered indicative of clinical
significance (Schneider et al., 2001).

MRI Scanning
MRI scanning was performed at mid day and patients were
fasted for at least 6 h before MRI examination. Imaging data
were acquired using a 3T Siemens scanner (Siemens Magnetom
Verio; Siemens Medical Systems, Erlangen, Germany) at Tongde
Hospital. All patients were placed in a birdcage head coil,
with foam padding fitted to reduce head motion. rs fMRI
scans were obtained using a gradient echo T2∗-weighted
sequence with the following parameters: 33 axial slices,
thickness/gap = 4.8/0 mm, in-plane resolution = 64 × 64,
repetition time (TR) = 2000 ms, echo time (TE) = 30 ms,

Frontiers in Aging Neuroscience | www.frontiersin.org 2 February 2018 | Volume 10 | Article 37

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Liu et al. Abnormal Hypothalamus FC in D-AD

flip angle = 90◦ and field of view (FOV) = 200 × 200 mm2.
Each condition consisted of 200 functional volumes. During
the functional runs, patients were instructed to remain awake
with their eyes closed. Additionally, high-resolution T1-weighted
whole brain magnetization prepared rapid gradient echo images
were obtained using the following parameters: 128 sagittal slices,
slice thickness/gap = 1/0 mm, in-plane resolution = 512 × 512,
TR = 1900 ms, TE = 2.48 ms, inversion time (TI) = 900 ms, flip
angle = 9◦ and FOV = 256 × 256 mm2.

T1-weighted Images
To investigate the effects of gray matter (GM) volume on
the FC analyses, we performed voxel-based morphometry
on the T1-weighted images using the VBM8 toolbox in
SPM81. T1-weighted images were spatially normalized to the
T1-weighted space (Montreal Neurological Institute, MNI2).
Following this normalization, the resulting images were
automatically segmented into GM, white matter (WM) and
cerebrospinal fluid (CSF). Finally, the segmented images were
nonlinearly modulated to compensate for spatial normalization
effects, and individual GM volumes (GMVs) of the whole brain
were calculated. The GMVs were compared between the two
groups using two-sample two-tailed t-tests.

rsfMRI Data Processing
All rsfMRI data preprocessing was performed using SPM81 and
the Data Processing Assistant for Resting State fMRI3 software.
The preprocessing consisted of removing the first 10 volumes
of the functional images, slice timing correction and motion
correction. In regard to the motion correction, all participants
had <1.5 mm maximum displacement in the x-, y-, or z-axes,
with 1.5◦ of angular motion during the entire rsfMRI scan.
Then, we compared the mean absolute displacement of head
motion, and there was no significant difference between the
two groups in regard to mean motion. The functional images
were then coregistered to a high-resolution anatomical scan,
normalized to the MNI space, and resampled at 3 mm3. The
normalized images were smoothed using a Gaussian kernel of
6 mm3 full-width half-maximum (FWHM). Finally, temporal
filtering was used to extract the signals in the 0.01–0.08-Hz
frequency band, followed by linear regression to factor out six
head motion parameters, along with the average CSF and WM
signals.

Seed-Based FC Analysis
In each individual rsfMRI data analysis, the hypothalamic region
was defined according to a previous study (Baroncini et al., 2012).
This provided a comprehensive atlas comparing anatomical,
histological and MR images of the human hypothalamus and
transferred each identified structure to the MNI space. The
seed point was selected as (2, −1, −12) and was located in
the PVN, which releases CRH and AVP. Seed spheres were
constructed by drawing a 6-mm radius sphere around the
seed point, with a time series for the seed sphere extracted

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.bic.mni.mcgill.ca
3http://www.restfmri.net

from the preprocessed data. Seed-based rsFC analysis was
performed using the temporal correlation approach. Time
series were averaged across all voxels within each seed’s
sphere. Pearson’s correlation analysis was performed between
the seeds and the remaining voxels. The resulting values
were transformed to Z values to improve their Gaussian
distribution.

Statistical Analysis
To explore the rsFC differences between the groups in the
MNI standard space, second-level random effect two-sample
t-tests, with the GMVs as covariates, were performed on
the individual normalized FC maps in a voxel-by-voxel
manner. AlphaSim, a program based on Monte Carlo
simulations and implemented by Analysis of Functional
NeuroImages (AFNI)4, was used to correct for multiple
comparisons. Monte Carlo simulations determine the
random distribution of the cluster size for a given per voxel
threshold (Ledberg et al., 1998). According to this distribution,
the statistical threshold was set at P < 0.05 and a cluster
size >198 voxels, which corresponded to a corrected P < 0.05.
The correction was confined within the GM mask and was
determined by Monte Carlo simulations (Ledberg et al.,
1998).

Pearson’s Correlation Analysis of
Hypothalamic FC
To determine whether the rsFC of the hypothalamus showed
significant group differences that were correlated with the clinical
variables, Pearson’s correlation analyses were performed between
the Z-values from the abnormal brain regions and the clinical
parameters of the D-AD and nD-AD patients in a voxelwise
manner. The statistical threshold was set at P < 0.05 (after false
discovery rate (FDR) correction; Ellis et al., 2000).

RESULTS

Demographics and Clinical Characteristics
Overall, there were 22 AD patients in the D-AD group and 21 AD
patients in the nD-AD group. The D-AD and nD-AD groups
were well matched in terms of age (t = −1.414, P = 0.165), sex
distribution (χ2 = 0.024, P = 1.000), and years of education
(t = 0.757, P = 0.453). None of the patients were excluded
according to our exclusion criteria. There was a significant
difference in the HAMD-17 scores between the two groups
(t = 14.253, P < 0.001). Details of the demographic data and
corresponding tests are shown in Table 1.

GM Volume
We found no whole brain GMV differences between the nD-AD
patients and D-AD patients (two-tailed t-test, t = −0.5898,
P = 0.5586).

4http://afni.nimh.nih.gov
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TABLE 1 | Demographic and neuropsychological data.

D-AD nD-AD t/χ2 p

Gender, n (M/F) 22 (11/11) 21 (11/10) 0.024 1.000
Age, years 71.9 ± 4.5 73.9 ± 5.2 −1.414 0.165
Education, years 9.7 ± 2.2 9.1 ± 2.4 0.757 0.453
MMSE 20.9 ± 2.3 20.4 ± 1.7 0.787 0.436
HAMD 13.1 ± 2.4 3.8 ± 1.6 14.258 0.000
D-NPI 6.00 ± 1.6 0 – −

Data represent mean ± SD. Data were analyzed using independent sample t-tests. AD, Alzheimer’s disease; D-AD, Alzheimer’s disease patients with depressive
symptoms; nD-AD, non-depressed AD patients; M, male; F, female; MMSE, Mini-Mental State Examination. D-NPI, depression domain of the Neuropsychiatric Inventory;
HAMD, Hamilton Depression Rating Scale.

Abnormal Regional Brain Dysconnectivity
Pattern in D-AD Patients
The results of the two-sample t-tests showed significant rsFC
alterations in the related brain regions of the D-AD patients
compared with the nD-AD patients (P < 0.05, AlphaSim
corrected; Table 2). Specifically, we found that the D-AD patients
exhibited decreased FC values, with peak differences in the
right middle temporal lobe and the right superior temporal lobe
(Figure 1, Table 2). All results were shown in the MNI template.

Correlation between Hypothalamic FC and
Neuropsychological Performance
No correlation was found between the MMSE, NPI, or HAMD
scores and the hypothalamic FC in the nD-AD or the D-AD
patients.

DISCUSSION

We used rsFC to examine the FC between the hypothalamus
and the whole brain in AD patients. We found that, compared
with the nD-AD patients, the D-AD patients exhibited reduced
FC among the hypothalamus, the right middle temporal gyrus
(MTG) and the right superior temporal gyrus (STG), suggesting
that abnormal FC between the hypothalamus and the temporal
lobe plays a key role in the pathophysiology of depression in
AD patients. To the best of our knowledge, this is the first
rsfMRI report showing disrupted hypothalamic FC in D-AD
patients.

The evidence suggests that limbic-cortical-striato-pallido-
thalamic structures organize emotional expression. Dysfunction
within and between the structures in this circuit may induce
disturbances in emotional behavior and in other cognitive
aspects of the depressive syndrome in humans (Sheline,
2003; Drevets et al., 2008; Terroni et al., 2011). Lu et al.
(2016) reported that first-episode, untreated MDD patients
show significant volume reductions in the thalamus, while

probabilistic tractography found that the deformed thalamic
shape area had connections with the frontal and temporal
lobes, which were related to major depression. Because limbic
structures enable forebrain modulation of the hypothalamus and
brainstem, their dysfunction can account for disturbances in
autonomic regulation and neuroendocrine responses that are
associated with mood disorders (Maletic et al., 2007). Several
brain regions (including the temporal lobe) regulate emotional
responses as circumstances and are known as top-down cognitive
control mechanisms. Recent research suggests that reappraisal,
a top-down emotion regulation strategy, is more effective in
decreasing self-reported negative affect when emotions are
generated in a top-down, vs. bottom-up manner (Otto et al.,
2014; Morawetz et al., 2016). A few studies have shown GM
abnormalities in the temporal cortex in treatment-resistant
depression (TRD), treatment-responsive depression (TSD) and
late-life depression (LLD) patients. Further, based on FC analysis
using the right MTG as the seed, both the TRD and TSD patients
show altered connectivity, mainly in the default-mode network
(Ma et al., 2012; Harada et al., 2016). Studies of antidepressant
treatment of LLD also showed that remission status is associated
with right MTG changes (Khalaf et al., 2016; Karim et al.,
2017).

Reduced FC between the hypothalamus and the temporal
lobe has also been shown to promote the release of CRH due
to abnormal inhibitory connections. The subsequent result
is raised plasma adrenocorticotropic hormone levels, which
in turn increase the number of GM lesions in the temporal
lobe (Bennett, 2011). Based on animal experiments, Myers et al.
(2016) confirmed that the hypothalamus represents an important
stress-integration center, regulating behavioral processes and
connecting the limbic forebrain to the neuroendocrine system.
Moreover, the hypothalamus appears to be uniquely situated to
play a role in stress-related pathologies associated with limbic-
hypothalamic dysfunction. Dysfunction of the limbic-HPA
(LHPA) system results from higher ACTH levels and

TABLE 2 | Brain regions with significantly decreased functional connectivity (FC) values in the D-AD group compared with the nD-AD group.

Brain region Voxels BA MNI coordinates T value

x y z

Right middle temporal lobe 293 21 57 −36 3 −3.1523
Right superior temporal lobe 22 50 −21 8

D-AD, AD patients with depressive symptoms; nD-AD, non-depressed AD patients; BA, Brodmann’s area; MNI, Montreal Neurological Institute.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 February 2018 | Volume 10 | Article 37

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Liu et al. Abnormal Hypothalamus FC in D-AD

FIGURE 1 | Axial brain region maps showing the decreased functional connectivity (FC) values in the depressed AD patients (D-AD) group compared with the
non-depressed AD patients (nD-AD) group (P < 0.05, AlphaSim corrected). Results were viewed on the Montreal Neurological Institute (MNI) T1 template and the
T-value scale is shown on the right of the image.

contributes to disturbances in serotonergic and noradrenergic
neurotransmission (Twardowska and Rybakowski, 1996).
Coexistent dysregulation of the LHPA is predominantly
linked to glucocorticoid receptor (GR) dysfunction within the
limbic system. Along with hypercortisolemia, an imbalance
of mineralocorticoid receptors (MR) and GR results in
impaired negative feedback mechanisms in the LHPA loop.
Impaired GR function and an MR/GR imbalance alters the
negative feedback regulation within the LHPA, followed by
the dysregulation and hypercortisolemia that is associated
with decreased postsynaptic 5-HT1A receptor activity,
thereby resulting in serotoninergic dysfunction (Lesch et al.,
1990).

The MTG is located in the extended dorsal attention system
and is involved in cued attention and working memory (Corbetta
and Shulman, 2002; Fox et al., 2006). Using an optimized voxel-
based method, Peng et al. (2011) reported reduced GMV in
the bilateral MTG in a group of first-episode MDD patients.
In addition, Wu et al. (2011) reported that TRD patients show
higher regional homogeneity in the right MTG than those of
treatment non-resistant depression patients and healthy controls.
Moreover, lower amplitude low-frequency fluctuation values
in this region were found to be reduced in both TRD and
TSD patients (Guo et al., 2012). These findings suggest that
the MTG is part of a relevant functional network associated
with MDD.

The STG consists of the primary auditory cortex and the
auditory association areas (Pearlson, 1997; Kim et al., 2000;
Hou et al., 2016) and has been implicated in emotional
processing and social cognition (Allison et al., 2000; Arnsten
and Rubia, 2012). A recent meta-analysis of fMRI studies of
MDD noted that the STG is one of the most consistently
identified regions involved in its pathophysiology (Fitzgerald
et al., 2008). Takahashi et al. (2010) delineated STG subregions
(namely, the planum polare, planum temporale, rostral STG,
caudal STG and Heschl’s gyrus) and the temporal pole using
MRI in 29 currently depressed patients, 27 remitted depressed
patients, and 33 age- and gender-matched healthy control
subjects. Both the current and remitted MDD patients showed
significant volume reductions in the left planum temporale and
the bilateral caudal STG compared with healthy controls. Guo
et al. (2011) used a regional homogeneity approach to explore
the brain activity features of TRD patients. Compared with
healthy controls, decreased regional homogeneity was found in
the TRD patients in the left insula, STG, inferior frontal gyrus,
lingual gyrus and anterior cerebellar lobe. Our finding showing
reduced FC between the hypothalamus and the STG in D-AD
patients is consistent with those of previous studies, suggesting
that abnormal STG activity may be associated with negative
emotional processing.

Several limitations should be considered when interpreting
our results. First, the hypothalamus encompasses a relatively
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small volume; thus, the accuracy of the seed point location
depends on the spatial resolution of the fMRI images and the
accuracy of the registration method. Higher spatial resolution
fMRI images and a higher accuracy registration method should
be used to improve the accuracy of the seed point location
(Klein et al., 2009; Yacoub et al., 2015). Second, a group of
MDD patients should be included in future studies. Comparisons
betweenMDD andD-AD patients can providemore information
regarding the pathophysiology of depression in AD patients.
Third, in this study, in consideration of the dysregulation of the
HPA-axis involved in both MDD and AD (Sudheimer et al.,
2015) and the critical role of the PVN in the dysregulation of
the HPA-axis, we choose the PVN as the seed point for the FC
analyses of the whole brain. Meanwhile, both the AVP and CRH
released by the HPA-axis contribute to the signs and symptoms
of depression; thus, detecting the hormone concentrations of
AVP, CRH and ACTH will be one of our future studies. Third,
we used a relatively small sample; therefore, our statistical power
was low and limited. Future studies should use a larger sample
size to increase the statistical power. Finally, there are issues of
the sample, where they were notmatched on bodyweight or Body
Mass Index, which may be one of the factors that can affect the
brain function network in AD patients (Sugimoto et al., 2017).

CONCLUSION

Here, we used rsfMRI and rsFC analysis to examine the intrinsic
dysconnectivity patterns of the hypothalamus in both D-AD

and nD-AD patients. We found decreased FC in the right
middle temporal lobe and the right superior temporal lobe.
These findings enhanced our understanding of hypothalamic
dysfunction in D-AD patients.
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