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INTRODUCTION 
 

According to the 2020 Colorectal Cancer Statistics, in 

the United States, colorectal cancer (CRC) is the second 

most common cause of cancer death [1]. The early 

symptoms of CRC are not obvious. As cancer grows, 

bowel habits change, including blood in the stool, 

diarrhea, alternating diarrhea and constipation, and local 

abdominal pain [2].  
 

The latest report points out that the age of onset of CRC 

is getting younger, with the median age dropping  

from 72 years in 2001-2002 to 66 years in 2015- 

2016. However, new cases are still predominantly  

middle-aged and elderly, accounting for 88% of new 

diagnostic CRC patients in the United States in 2020. 

After age stratification, for people over 55 years old, the 

incidence rate increases by about 30% for each increase 

of 5 years old [1]. 

 

Population aging is a typical feature of many 

developed countries. The association between aging 

and cancer is becoming more and more apparent [3]. 

Aging is an important biological process and a general 

feature of biological organisms. The major 

manifestations of aging are the gradual loss of 

function or degeneration at the molecular, cellular, 

tissue and body levels [4]. Aging is an essential risk 

factor for cancer, as well. One of the characteristics of 

aging is hyperplasia, the most serious of which are 
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cancers. Besides, cancer, like other aging-related 

diseases, mostly begins at the midpoint of life [5]. 

Identifying the key features of senescence and 

induction of senescence in cancer cells has been 

considered in anti-cancer research [6]. Impaired 

antitumor immunity is a typical example of immune 

aging [7]. Immune-related risk signature [8], hypoxia-

related signature [9], autophagy score signature [10] 

and somatic mutation signatures [11] have been 

constructed to predict the overall survival (OS) of 

CRC patients. However, the aging-related risk 

signature to predict the survival of CRC patients has 

never been built. 

 

In this study, based on the Gene Set Enrichment 

Analysis (GSEA), we found that the aging-related 

gene sets, GO_AGING, GO_CELL_AGING and 

GO_CELLULAR_SENESCENCE, were activated 

significantly in CRC tissues. Next, we extracted 49 

aging-related gene sets at the Molecular Signatures 

Database v7.1, from which we collected 1693 aging-

related genes shared by the training group TCGA and 

testing group GSE39582. In the TCGA data set, we 

mined 258 differentially expressed aging-related 

genes and 26 prognostic aging-related genes. Based 

on the LASSO regression analysis, the 15-gene-aging-

related risk signature was constructed, significantly 

associated with the OS of CRC patients in both the 

training and testing groups. Survival analysis 

stratified by age, gender, American Joint Committee 

on Cancer (AJCC) stage, tumor size in situ (T), lymph 

node metastasis (N) and distant metastasis (M), 

clarified the stability and independence of aging-

related risk signature. Univariate and multivariate 

COX regression analysis further confirmed that our 

risk signature was an independent prognostic factor. 

At the same time, the Receiver Operating 

Characteristic (ROC) curve demonstrated the 

accuracy of this risk signature. The aging-related risk 

score was significantly increased in the advanced 

stage, T, N and M and positively correlated with the 

degree of 5 types of immune cell infiltration. The 15 

aging-related genes included in the signature were 

named hub genes. We further investigated the 

mutation and copy number alteration (CNA) of these 

hub genes at the DNA level. At the GeneMANIA 

website, we mined functionally similar genes of hub 

genes and constructed a protein-protein interaction 

network. Functional enrichment showed that these 

hub genes and functionally similar genes were mainly 

involved in platelet alpha granule and regulation of 

endopeptidase activity, consistent with results in 

plasma proteomic signature of age in healthy humans. 
In terms of hallmark gene sets and KEGG gene sets, 

we performed the gene set enrichment analysis 

(GSEA) between high- and low-risk groups to 

understand our risk signature’s molecular mechanisms 

and pathways.  

 

In conclusion, the aging-related risk signature can 

predict the OS, severity and immune cell infiltration of 

CRC patients. 15 hub genes are expected to become 

novel therapeutic targets in the future. 

 

RESULTS 
 

Compared with normal mucosa, the aging process of 

cells was activated significantly in colorectal cancer 

 

In vertebrates, aging leads to degenerative and 

proliferative pathological changes, the most fatal of 

which was cancer. Based on 3 independent data sets, 

TCGA, GSE39582, GSE87211 (Table 1), we 

conducted the Gene Set Enrichment Analysis (GSEA) 

on the gene sets of "GO_AGING, GO_CELL_AGING 

and GO_CELLULAR_SENESCENCE" and found 

that the aging-related gene sets were significantly 

activated in colorectal cancer (CRC) tissues compared 

with normal tissues (Figure 1). The above results 

showed that the aging process was involved in the 

development of CRC and suggested that aging-related 

signature might predict the survival of CRC patients.  

 

Identification of aging-related genes  

 

The inherently complex biological changes of aging, 

as well as inflammation, immune aging, oxidative 

stress, and age-related chronic diseases, have crucial 

impacts on the development and deterioration of 

malignant tumors. At the Molecular Signatures 

Database v7.1, we searched 49 gene sets related to 

aging (Table 2). 1837 aging-related genes were finally 

included in this study.  

 

Identification of differentially expressed and 

prognostic aging-related genes in the training group 

 

Based on the online Venn diagrams tool, we screened 

1693 common aging-related genes in the TCGA and 

GSE39582 databases (Figure 2A). The former was the 

training group while the latter was the testing group. 

Among 1693 genes, we further extracted 258 

differentially expressed genes in the TCGA and 

illustrated them in the heatmap (Figure 2B) and volcano 

map (Figure 2C), including 164 up-regulated and 94 

down-regulated. As expected, the Gene Ontology (GO) 

analysis revealed that 258 differentially expressed genes 

were mainly involved in aging (Figure 2D). To predict 

the prognosis of CRC patients, among these 258 genes, 

26 survival-related genes were screened and displayed 

in the forest plot (P <0.05), including 15 risky genes 

(HR > 1) and 11 protective genes (HR < 1) (Figure 2E). 
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Table 1. Number of samples and genes in colorectal cancer data set. 

Data sets Numbers of genes Normal tissues Tumor tissues 

TCGA 56753 44 568 

GSE39582 21655 19 566 

GSE87211 21754 160 203 

 

Protein-protein interaction and enrichment analysis 

among 258 aging-related genes 

 

Based on the STRING database and Cytoscape plugin 

cytohubba, we constructed a protein-protein interaction 

(PPI) network (Figure 3A). The darker the color was, 

the greater the number of neighboring nodes was. The 

top 30 genes with the most neighboring nodes were 

shown in Figure 3B. Next, we performed PPI 

enrichment analysis at the Metascape and screened the 

 

 
 

Figure 1. Gene Set Enrichment Analysis (GSEA). Three aging-related gene sets were significantly activated in colorectal cancer (CRC) 
tissues compared with normal tissues. The significance criteria were nominal P-value < 5% and FDR q-value<25%.  
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Table 2. Aging-related gene sets included in this study. 

Name (Number of genes) 

DEMAGALHAES_AGING_DN (16) DEMAGALHAES_AGING_UP (54) 

GO_AGING (323) GO_CELL_AGING (117) 

KIM_HYPOXIA (19) GO_CELLULAR_SENESCENCE (78) 

KYNG_DNA_DAMAGE_DN (184) KYNG_DNA_DAMAGE_UP (209) 

KYNG_NORMAL_AGING_DN (18) KYNG_NORMAL_AGING_UP (15) 

LY_AGING_MIDDLE_DN (16) LY_AGING_MIDDLE_UP (14) 

LY_AGING_OLD_DN (56) LY_AGING_OLD_UP (7) 

LY_AGING_PREMATURE_DN (30) GO_MUSCLE_ATROPHY (12) 

RODWELL_AGING_KIDNEY_DN (146) RODWELL_AGING_KIDNEY_UP (500) 

KYNG_WERNER_SYNDROM_DN (18) KYNG_WERNER_SYNDROM_UP (15) 

KYNG_WERNER_SYNDROM_AND_NORMAL_AGING_DN (194) 

KYNG_WERNER_SYNDROM_AND_NORMAL_AGING_UP (80) 

RODWELL_AGING_KIDNEY_NO_BLOOD_DN (147) 

RODWELL_AGING_KIDNEY_NO_BLOOD_UP (223) 

WEIGEL_OXIDATIVE_STRESS_BY_HNE_AND_H2O2 (36) 

WEIGEL_OXIDATIVE_STRESS_BY_HNE_AND_TBH (59) 

WEIGEL_OXIDATIVE_STRESS_BY_TBH_AND_H2O2 (35) 

WEIGEL_OXIDATIVE_STRESS_RESPONSE (33) 

GO_MULTICELLULAR_ORGANISM_AGING (35) 

GO_NEGATIVE_REGULATION_OF_CELL_AGING (28) 

GO_POSITIVE_REGULATION_OF_CELL_AGING (23) 

GO_REGULATION_OF_CELL_AGING (60) 

GO_REPLICATIVE_SENESCENCE (14) 

GO_STRIATED_MUSCLE_ATROPHY (9) 

KYNG_DNA_DAMAGE_BY_4NQO (36) 

KYNG_DNA_DAMAGE_BY_4NQO_OR_GAMMA_RADIATION (15) 

KYNG_DNA_DAMAGE_BY_4NQO_OR_UV (60) 

KYNG_DNA_DAMAGE_BY_GAMMA_AND_UV_RADIATION (81) 

KYNG_DNA_DAMAGE_BY_GAMMA_RADIATION (78) 

KYNG_DNA_DAMAGE_BY_UV (56) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_DN (17) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_NOT_BY_4NQO_IN_OLD (12) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_NOT_BY_4NQO_IN_WS (37) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_NOT_BY_GAMMA_IN_OLD (29) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_NOT_BY_GAMMA_IN_WS (31) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_NOT_BY_UV_IN_OLD (23) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_NOT_BY_UV_IN_WS (12) 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_UP (53) 

MA_PITUITARY_FETAL_VS_ADULT_UP (0) 
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first MCODE components, which were mainly enriched 

in the cell cycle (Figure 3C). On this website, the legend 

of the same MCODE component was shown in the 

same color. 

 

Development of aging-related risk signature  

 

Based on TCGA data set, univariate COX and LASSO 

analysis, we established an aging-related risk 

signature of CRC patients. The explicit formula of 

aging-related risk signature was as follow:  CCNB1 

expression *(-0.00482) + PIGR expression *(-

0.000151) + CXCL1 expression *(-0.000198) + 

CCL28 expression *(-0.00104) + PLK1 expression *(-

0.0130) + VEGFA expression *0.0201 + RPN2 

expression *(-0.00195) + CLU expression *0.00171 + 

FOXM1 expression *0.0117 + TIMP1 expression 

*0.00144 + PCSK5 expression *0.0167 + MPC1 

expression *(-0.00826) +CD36 expression *0.0405 + 

IGHG1 expression *1.33e-05 + IGFBP3 expression 

*0.00373. The 15 genes included in the model were 

named hub genes. In terms of the training group 

TCGA, according to the median of the risk score, we 

equally divided CRC patients into 2 groups, low- and 

high-risk groups (Figure 4A). The number of deaths 

of CRC patients in the high-risk group was 

significantly higher than that in the low-risk group 

(Figure 4B). Heatmap showed the differential 

expression of hub genes between high- and low-risk 

groups (Figure 4C). We also confirmed that the 

overall survival (OS) of the low-risk group was 

significantly longer than that of the high-risk group 

(P<0.05) (Figure 4D).  

 

To demonstrate the universality of the risk signature, 

based on the median of risk score in the training group 

TCGA, we divided CRC patients of the testing group 

GSE39582 into low- and high-risk groups (Figure 4E). 

The number of deaths of CRC patients in the high-risk 

group was slightly higher than that in the low-risk group 

(Figure 4F), and hub genes were also differentially 

expressed between these 2 groups (Figure 4G). Next,  

 

 
 

Figure 2. Identification of differentially expressed and prognostic aging-related genes in CRC. (A) Aging-related genes shared by 

the training group TCGA and testing group GSE39582. (B) Differentially expressed aging-related genes in the TCGA was displayed in the 
heatmap and (C) the volcano map. (D) Gene ontology (GO) analysis of these genes. (E) Forest plot of prognostic aging-related genes in the 
training group.  
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we draw the same conclusion that the aging-related 

risk signature was significantly associated with the 

OS of CRC patients in the testing group (P<0.05) 

(Figure 4H). 

 

Validation of the aging-related risk signature 

 

To investigate whether our aging-related risk signature 

was a clinically independent prognostic factor, we 

performed univariate independent prognostic analysis 

and found that our signature was an independent 

prognostic factor, like stage, T, N and M, in the training 

group (Figure 5A). Next, we conducted multivariate 

independent prognostic analysis and revealed that in the 

training group, stage and risk score were independent 

prognostic factors (Figure 5B). Second verification was 

performed in the testing group GSE39582 and we draw 

the same conclusions (Figure 5C, 5D). The above 

 

 
 

Figure 3. Protein-protein interaction (PPI) of differentially expressed aging-related genes. (A) In the PPI network, the darker the 
color was, the greater the number of neighboring nodes was. (B) Top 30 genes with the most neighboring nodes. (C) The first MCODE 
component identified in this gene list and pathway and process enrichment analysis of this MCODE component was significantly related to 
the cell cycle.  
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results suggested that the aging-related risk signature 

could be used to predict the survival of CRC patients. 

To exclude the effect of multicollinearity between stage 

and T, N, M, T, N and M were not included in the 

multivariate independent prognostic analysis. 

 

To evaluate our signature’s prediction accuracy, we 

plotted the Receiver Operating Characteristic (ROC) 

curve and calculated the areas under the curves (AUC). 

Finally, we concluded that the risk score performed well 

in the training and testing groups, compared with T, N 

and M (Figure 5E, 5F). 

 

Stratified survival assays 

 

The clinical characteristics of the training and testing 

group were illustrated in Table 3. To verify our model’s 

stability and independence in different clinical 

subgroups, we performed the stratified survival analysis 

of 1015 CRC patients adjusted to age, gender, stage, T, 

N and M using the aging-related risk score. All CRC 

patients in the training and testing group were 

summarized in the stratified survival analysis. Finally, 

we concluded that our signature had an excellent 

prognosis stability. Results of stratified survival 

analysis were displayed in Figure 6.  

 

Pearson correlation analysis between 15 hub genes  

 

To clarify whether there was any epistasis among the 15 

hub genes, by summarizing the training set and 

validation set data, we conducted a Pearson correlation 

analysis between 15 hub genes, and results showed that 

all the correlation coefficients were less than 0.6, which 

 

 
 

Figure 4. Prognostic signature based on 15 hub genes. (A) Distribution of groups based on the aging-related risk score. (B) The scatter 

plot demonstrated the differences in the survival status of CRC patients between high- and low-risk groups. (C) Heatmap showed differential 
expression of included 15 hub genes in both groups. (D) The overall survival (OS) of the high-risk group was significantly shorter than that of 
the low-risk group. (E–H) The second verification was performed in the testing group GSE39582.  



 

www.aging-us.com 7337 AGING 

showed that the problem of gene epistasis could be 

ignored. The correlation diagram was shown in 

Supplementary Figure 1. Red and blue represented  

the negative correlation and positive correlation, 

respectively. Both values and dots size represented the 

Pearson correlation coefficient. * indicated the statistical 

difference and P-value was set to 0.05. 

Clinical relevance of risk signature 
 

In the training group, we assessed the relevance between 

the aging-related risk score and clinicopathological traits, 

including stage, T, N and M. The aging-related risk 

score was significantly increased in advanced stage 

cases (Figure 7A), advanced T stage cases (Figure 7B),

 

 
 

Figure 5. Validation of prognostic signature. (A, B) Univariate and multivariate COX regression analysis in the training group. (C, D) 
Univariate and multivariate COX regression analysis in the testing group. The receiver operating characteristic (ROC) curve and the areas 
under the curve verified the accuracy of prognostic signature in the (E) training and (F) testing groups.  
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Table 3. Clinical characteristics of the training group TCGA and the testing group GSE39582. 

Clinical characteristics 
Number and percentage of CRC patients 

TCGA (%) GSE39582 (%) 

Total 490 525 

Age (years) ≤68 264 (53.9%) 270 (51.4%) 

 >68 226 (46.1%) 255 (48.6%) 

Gender Male 266 (54.3%) 285 (54.3%) 

 Female 224 (45.7%) 240 (45.7%) 

Stage-AJCC I&II 277 (56.5%) 278 (53.0%) 

 III&IV 213 (43.5%) 247 (47.0%) 

T T1-2 100 (20.4%) 54 (10.3%) 

 T3-4 390 (79.6%) 471 (89.7%) 

N N0 286 (58.4%) 290 (55.2%) 

 N1-3 204 (41.6%) 235 (44.8%) 

M M0 417 (85.1%) 466 (88.8%) 

 M1 73 (14.9%) 59 (11.2%) 

*68 years old is the median age of 1,015 CRC patients in our study. 

 

positive lymph node metastasis cases (Figure 7C) and 

positive distant metastasis cases (Figure 7D). In the 

testing group, we got the same conclusion (Figure 7E). 

These results were consistent with the shorter OS of the 

high-risk group. Compared with other clinicopathological 

traits, we could clearly find that the P-values of 'M' 

were relatively less significant. The above results  

meant that care should be taken when judging whether 

CRC patients have distant metastases based on the 

score. 

 

Correlations with immune cell infiltration 

 

One of aging characteristics is immune remodeling, 

which mainly included T cell immunosenescence and 

immune dysregulation. In order to determine whether 

this risk signature accurately reflected the immune 

status of the CRC tumor microenvironment, we 

evaluated the relationships between the infiltration of 6 

types of immune cells and the aging risk score in the 

training group. We found that except B cells (Figure 

8A), five types of immune cells, CD4+T cells (Figure 

8B), CD8+T cells (Figure 8C), Neutrophils (Figure 8D), 

macrophages (Figure 8E) and dendritic cells (Figure 

8F), were positively correlated with the aging risk score 

(P<0.05).  

 

Mutation and copy number alteration (CNA) analysis 

of 15 hub genes 

 

At the cBioPortal, we found that these 15 hub genes 

were altered in 152 (29%) of 526 patients/samples 

(TCGA, PanCancer Atlas), specifically 35.71% of 56 

cases with mucinous adenocarcinoma of the colon and 

rectum, 28.83% of 333 cases with colon adenocarcinoma 

patients and 26.28% of 137 cases with rectal 

adenocarcinoma (Figure 9A). The amplification of 

RPN2 and the deep deletion of CLU were the most 

frequent CNA among these 15 hub genes (frequency 

>5%), while there was no amplification or deep 

deletion changes in IGHG1 (Figure 9B). 

 

Protein-protein interactions (PPI) of hub genes at 

the GeneMANIA 

 

The GeneMANIA is used to predict functionally similar 

genes of hub genes. We obtained 20 similar genes of 

hub genes (Figure 10). The hub genes were located in 

the inner circle, while the predicted genes were in the 

outer circle. Their functions focused on platelet alpha 

granule and endopeptidase activity, which coincided 

with the previous study of functional pathways of age-

related proteins [12]. The release of platelet alpha 

granule increases during blood coagulation, and blood 

coagulation is the main functional pathway of age-

related proteins. 

 

Molecular characteristics and pathways of the aging-

related risk signature 

 

Based on the training and testing data sets, we 

conducted GSEA on 50 hallmark gene sets and 178 

KEGG gene sets between low- and high-risk groups. 

For the hallmark gene sets, 23/50 gene sets were 
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Figure 6. Stratified survival analysis adjusted to age, gender, stage, T, N and M. All CRC patients in the training and testing groups 

were summarized in the stratified survival analysis. 68 years old was the median age of 1,015 CRC patients.  
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Figure 7. Relationships between risk score and clinicopathological traits. The aging risk score of (A) stage III & IV, (B) T3-4, (C) N1-3 

and (D) M1 were significantly higher than that of stage I&II, T1-2, N0 and M0 in the training group (P < 0.05). (E) The same conclusion was 
obtained in the testing group.  

 

 
 

Figure 8. Pearson correlation analysis between the risk score and infiltration abundances of 6 types of immune cells in the 
training group. (A) B cells; (B) CD4+T cells; (C) CD8+T cells; (D) neutrophils; (E) macrophages and (F) dendritic cells. P < 0.05 was considered 
statistically significant.  
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Figure 9. Mutation and copy number alteration (CNA) analysis of hub genes. (A) Frequency of mutation and CNA in hub genes in 3 
types of CRC patients; (B) Mutation and CNA of each hub gene. 

 

 
 

Figure 10. GeneMANIA website was used to identify functionally similar genes and establish a PPI network. The 20 functionally 

similar genes were located in the outer circle, while hub genes were located in the inner circle. The color of nodes was related to the protein 
function while line color represented the type of protein interaction.  
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commonly upregulated in the high-risk group and 9/50 

gene sets were commonly upregulated in low-risk 

groups (Figure 11A–11D). For the KEGG gene  

sets, KEGG_BASAL_CELL_CARCINOMA were 

commonly upregulated in high-risk groups, while none 

gene sets was commonly upregulated in low-risk 

groups. The filter criteria for enrichment was nominal 

P-value < 5% and FDR q-value<25%. 

 

DISCUSSION 
 

Colorectal cancer (CRC) remains the third most 

commonly diagnosed cancer, ranking second of cancer-

related mortality. Due to changes in living habits and 

population aging, CRC incidence is increasing 

continuously [13]. 

 

As the public databases of the TCGA, GEO and 

Molecular Signatures Database (MSigDB) are freely 

available, increasing risk models have been established 

to prejudge the overall survival (OS) of CRC patients. 

However, among the various risk signatures, the aging-

related risk signature has never been mentioned. 

 

Our study identified 1693 aging-related genes shared in 

both the training group TCGA and testing group 

GSE39582 and further constructed a 15-gene risk 

signature using the LASSO COX regression analysis 

based on the TCGA data set. The aging-related risk 

score was significantly associated with the OS of CRC 

patients and higher in the advanced AJCC stage, T 

stage, N stage and M stage, whose accuracy for the 

prediction of the OS was credible based on the ROC 

curve and the area under the curve (AUC). We also 

confirmed that this aging-related risk signature was 

positively correlated with the degree of immune cell 

infiltration in the CRC tumor microenvironment. All in 

all, we could predict the survival, severity and immune 

 

 
 

Figure 11. In the 50 hallmark gene sets, we conducted GSEA between the high- and low-risk groups. (A) Significant enrichment 

of 27 hallmark gene sets in the high-risk group of training group TCGA; (B) Significant enrichment of 18 hallmark gene sets in the low-risk 
group of the training group; (C) Significant enrichment of 24 hallmark gene sets in the high-risk group of testing group GSE39582; (D) 
Significant enrichment of 9 hallmark gene sets in the low-risk group of the testing group. Dark black represented the enrichment results 
common to both datasets (Nominal P-value < 5% and FDR q-value<25%).  
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cell infiltration of CRC patients based on our risk 

signature. The same conclusions were obtained in the 

testing group. 

 

Biologically speaking, aging is an inevitable process 

that occurs spontaneously in organisms over time. It is 

manifested by the degenerative changes of structure and 

the decline of function, adaptability and resistance. 

Physiologically, aging is regarded as the history of 

individual development from the beginning of the 

fertilized egg to old age. Pathologically, aging is the 

results of stress, injury, infection, declining immune 

response, malnutrition, metabolic disorders and drug 

abuse. Aging is considered as an independent risk factor 

for many chronic diseases and most common 

malignancies, including CRC [6]. The mutation 

accumulation theory of aging partially explains the 

relationship between aging and cancer [14]. In cancer 

research, malignant tumors and aging can be seen as 

two aspects of the same underlying cellular and 

molecular process [15]. Aging promotes carcinogenesis, 

tumor progress and resistance to cancer therapy [16]. 

Inflammation, one of the seven pillars of aging, 

increases the risk of cancer and leads to the initial 

mutation of genes and metastasis of cancer [17]. 

Immunosuppression promotes age-related impairment 

of antitumor immunity, which is a typical example of 

immune aging [7]. Novel markers of aging also have 

prognostic potentials for cancer [18]. Besides, 

senescence also has tumor-suppressing functions, owing 

to the persistence of growth stagnation caused by 

senescence, which paves the way for cancer treatment 

[19]. The above facts indicate that there is an urgent 

need to improve our understanding of the relationship 

between aging biology and cancer. 

 

Among 15 hub genes, ribophorin-II (RPN2) had a 

higher amplification frequency. Previous studies have 

revealed that increased RPN2 is significantly 

associated with poor histological differentiation, 

advanced stages and lymph nodes metastasis in 

patients with CRC [20]. RPN2 promotes CRC cell 

proliferation by upregulating the glycosylation of 

EGFR [21]. Moreover, the downregulation of RPN2 

can induce apoptosis and inhibit migration and 

invasion [22]. Among 15 hub genes, the deep deletion 

of clusterin (CLU) was the most obvious. Previous 

studies have shown that high CLU mRNA expression 

levels in CRC patients often represent a poor outcome. 

Some controversial data have been published and 

reveals its dual faces as a tumor suppressor or a pro-

survival factor in CRC [23]. Besides, Immunoglobulin 

Heavy Constant Gamma 1 (IGHG1) had no copy 
number changes in CRC patients. The role of IGHG1 

in CRC has never been investigated. In prostate cancer 

research, inhibition of IGHG1 can suppress cell 

growth and induce cell cycle arrest and ultimate 

apoptosis [24].  

 

In the study of plasma proteomic signature of age in 

healthy humans, functional pathways of age-related 

proteins mainly included blood coagulation, chemo-

kines and inflammatory pathways, axon guidance, 

peptidase activity, and apoptosis [12]. At the 

GeneMANIA, hub genes and predicted 20 similar genes 

were mainly focused on blood coagulation and 

endopeptidase activity, which indicated that hub genes 

were associated with the aging process. 

 

Our research’s advantage is a large number of samples 

in the TCGA and GEO databases to identify and verify 

risk signature. The limitation of our study is that only 

retrospective studies have been performed. Thus, a 

cohort of CRC patients will be needed to test this 

signature in the future. 

 

CRC is getting younger and younger, and it is urgent to 

make accurate survival prediction for diagnosed patients 

and make better treatment strategies. We first 

constructed and verified the aging-related risk signature 

in different data sets. This risk score was significantly 

increased in patients with advanced AJCC stage, T3-4, 

positive lymph node metastasis and positive distant 

metastasis. Compared with other clinical parameters, 

the P-values of "M" is relatively insignificant. We need 

to be cautious when determining whether CRC patients 

have distant metastases based on this score. Moreover, 

this risk score was significantly and positively 

correlated with the richness of 5 types of immune cell 

infiltration in the tumor microenvironment.  

 

Taken together, our prognostic signature can predict the 

severity of CRC and the level of immune cell 

infiltration. Aging-related risk signature will be a novel 

prognostic assessment tool, and the 15 hub genes also 

need more functional analysis to explore their possible 

clinical values. 

 

MATERIALS AND METHODS 
 

Data collection 

 

In this study, the transcriptome profiling data and 

corresponding clinical information of colorectal cancer 

(CRC) were downloaded from The Cancer Genome 

Atlas (TCGA) (https://portal.gdc.cancer.gov/) and Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm. 

nih.gov/geo/). The samples with follow-up time less 

than 30 days were excluded to reduce the interference of 

unrelated factors. 49 aging-related gene sets, 50 

hallmark gene sets and 178 KEGG gene sets were 

downloaded from the Molecular Signatures Database 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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v7.1 (https://www.gsea-msigdb.org/gsea/index.jsp) [25, 

26]. The data on the immune cell content of 32 tumors 

in the TCGA database was downloaded from the 

Tumor-Infiltrating Immune Cells (TIMER) website 

(https://cistrome.shinyapps.io/timer/) [27]. 

 

Gene set enrichment analysis (GSEA) 

 

Table 1 showed the number of CRC tumor samples, 

normal samples and detected genes in 3 data sets, 

TCGA, GSE39582 [28] and GSE87211 [29]. The 

GSEA was a computational method that could predict 

whether the defined set of genes showed statistically 

significant, concordant differences between 2 biological 

conditions [30]. To study the role of aging in CRC, 

GSEA was performed to analyze the enrichment  

of GO_AGING, GO_CELL_AGING and 

GO_CELLULAR_SENESCENCE between tumor 

samples and normal samples via GSEA software 

version 4.0.1. To investigate the aging-related risk 

signature’s molecular characteristics and pathways, we 

conducted GSEA to displayed differences between 

high- and low-risk groups in 50 hallmark gene sets and 

178 KEGG gene sets. Significance criteria were 

nominal P-value <5% and false positive rate (FDR) 

<25%. Gene set permutations were performed 1,000 

times for each analysis. 

 

Differential gene analysis 

 

With the help of the Venn diagrams tool (http:// 

bioinformatics.psb.ugent.be/webtools/Venn/) and the R 

software “limma” package (http://www.bioconductor. 

org/) [31], 258 differentially expressed aging-related 

genes were extracted from the TCGA database. P<0.05 

and logFC>1 were set as filter criteria. Heatmap and 

volcano plot were used to visualize differential genes.  

 

Metascape 

 

The Metascape (http://metascape.org) is a friendly, 

reliable tool for functional enrichment analysis [32]. 

The number of min overlaps and min enrichment were 3 

and P-value cutoff was 0.05. Next, we performed the 

protein-protein interaction enrichment analysis on this 

website, and the Molecular Complex Detection 

(MCODE) algorithm had been applied to determine 

densely connected network components [33]. Pathway 

and process enrichment analysis had also been used to 

each MCODE component independently. 

 

Protein-protein interaction (PPI) 

 
The STRING website (https://string-db.org/) integrated 

and constructed the PPI using computational 

predictions, which visualized the intrinsic links among 

258 differentially expressed aging-related genes [34]. 

Cytoscape's plugin CytoHubba was used to discover 

key nodes in the PPI network [35].  

 

Development of the prognostic signature based on 

the LASSO COX regression  

 

Univariate COX and LASSO-penalized COX regression 

were used to construct optimal prognostic risk 

signatures for CRC samples in the training group. The 

COX regression model with the LASSO penalty 

successfully achieved compression and selected 15 

aging-related genes simultaneously [36]. The risk score 

formula was as follows: risk score = ∑ expiβin
i=1  

where exp represented the gene expression value while 

β represented the LASSO coefficient.  

 

Validation of the predictive value of the aging-

related signature in both the training and testing 

groups  

 

In both the training and testing groups, based on the 

median of risk score, CRC patients were divided into 

high- and low-risk groups. Scatter plots was used to 

display the survival status of CRC patients of the low-

and the high-risk group. Utilizing the “pheatmap” 

package, a heatmap was constructed to show the 

differential expression of hub genes between the low-

and the high-risk groups. The R packages “survival” 

and “survminer” were used to explore the optimal cut‐

off of risk score and drawn the Kaplan-Meier survival 

curve. Age stratification was based on the median age 

of 1015 CRC patients. The two-sided log-rank P < 0.05 

was considered statistically significant for survival 

analysis.  

 

Pearson correlation analysis 

 

With the help of “corrplot” packages, we had drawn the 

correlation map, which reported Pearson correlation 

values between 15 hub genes. 

 

Evaluating signature performance in training and 

testing groups  

 

Aging-related risk signature and clinical parameters, 

including age, gender, stage, T, N and M, were 

considered as covariates. We performed univariate 

independent prognostic analysis. In order to avoid 

multicollinearity between stage and T, N, M, the 

multivariate independent prognostic analysis only 

included gender, age, stage and risk score. Results 

were illustrated in the forest plots. Green and red 

represented univariate and multivariate independent 

prognostic analysis, respectively. P-value, hazard 

ratios (HR) and 95% CI of each variable were also 

https://www.gsea-msigdb.org/gsea/index.jsp
https://cistrome.shinyapps.io/timer/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://metascape.org/
https://string-db.org/
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displayed in the forest plots. The “survivalROC” 

package was applied to confirm the predictive 

accuracy of the risk signature [37].  

 

The clinical correlation and the correlation of 

immune cell infiltration  

 

Differences between risk signature and 

clinicopathological parameters stage, T, N and M were 

tested using independent t-tests [38]. The Tumor 

IMmune Estimation Resource (TIMER) database 

analyzes the richness of immune cell infiltration in the 

tumor microenvironment [27]. The current version of 

TIMER incorporates 11510 samples across 32 cancer 

types of TCGA database [38]. 6 types of immune cells 

are B cells, CD4 T cells, CD8 T cells, neutrophils, 

macrophages and dendritic cells. Spearman correlation 

analysis was performed between aging-related risk 

score and immune cell infiltration. P-values of less than 

0.05 were considered statistically significant. 

 

Mutation and copy number alteration (CNA) 

analysis of hub genes 

 

The cBioPortal (https://www.cbioportal.org) is a 

friendly website exploring, visualizing and analyzing 

multi-dimensional cancer genomic data [39]. The copy-

number alteration (CNA) and mutation of 15 hub genes 

were identified using segmentation analysis and 

GISTIC algorithm in the cBioPortal among 526 CRC 

patients/samples (TCGA, PanCancer Atlas) [40].  

 
GeneMANIA 

 
The GeneMANIA website (http://genemania.org) is 

used to predict functionally similar genes of hub genes 

and construct the PPI network among them [41]. It can 

also predict the relationships among functionally similar 

genes and hub genes, including protein-protein, protein-

DNA interactions, pathways, physiological and 

biochemical reactions, co-expression, co-localization 

[42]. In this study, we explored functionally similar 

genes of hub genes and performed functional 

enrichment analysis. 

 
Statistical analysis 

 
Statistical analysis in this study were performed with R 

software 3.6.1. P <0.05 and logFC>1 were the filtering 

criteria for differential genes. LASSO regression 

analysis was utilized to exclude highly correlated aging-

related genes and prevented the signature from 

overfitting. The Kaplan-Meier survival curves were 

constructed to analyze survival differences between the 

low- and high -risk groups. Student's t-test was used to 

determine the relationships between the risk score and 

clinical parameters. Based on univariate and 

multivariate COX proportional hazard models, we 

calculated the hazard ratios of prognostic factors and 

screened independent prognostic factors. The ROC 

curve was used to evaluate the accuracy of our aging 

signature. P < 0.05 was considered as statistical 

significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Pearson correlation analysis between 15 hub genes. The bar on the left of the map indicated the legend 

of the Pearson correlation coefficient. Dots size and values showed the degree of their correlation, and dots color indicated whether they 
were positive-related (blue dots) or negative-related (red dots). * meant significance (p < 0.05). 


