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MEF2 signaling and human diseases
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ABSTRACT

The members of myocyte Enhancer Factor 2 (MEF2) protein family was previously 
believed to function in the development of heart and muscle. Recent reports indicate 
that they are also closely associated with development and progression of many 
human diseases. Although their role in cancer biology is well established, the 
molecular mechanisms underlying their action is yet largely unknown. MEF2 family 
is closely associated with various signaling pathways, including Ca2+ signaling, MAP 
kinase signaling, Wnt signaling, PI3K/Akt signaling, etc. microRNAs also contribute 
to regulate the activities of MEF2. In this review, we summarize the known molecular 
mechanism by which MEF2 family contribute to human diseases.

INTRODUCTION

MEF2 transcription factor plays vital role in both 
physiological and pathological processes. The members 
of MEF2 family have been mainly involved in neural 
development, muscle formation, heart development, and 
carcinogenesis. Emerging evidences indicate that MEF2 
family contributes to the development of various human 
diseases due to its complex function by interacting with 
numerous signaling pathways and small non-coding RNA 
such as microRNAs [1–4]. This review summarizes the 
relationship between MEF2 family and their molecular 
mechanisms of development and progression of several death 
causing human diseases. We also described signaling pathways 
and microRNAs directly involved in regulation of expression 
and activity of MEF2. In addition, we have summarized some 
of the new drugs that targeting MEF2 family.

BASIC KNOWLEDGE OF MEF2 FAMILY

The MEF2 family and gene mapping

MEF2 proteins belong to MADS-box family of 
transcription factors. MADS-box is named from the four 

proteins minichromosome maintenance genes (MCM1), 
agamous (AG), deficiens (DEFA) and serum response 
factor (SRF), which share a contiguous conserved motif in 
eukaryotic organisms [5, 6]. MEF2 proteins were initially 
identified as a vital factor for skeletal muscle development 
that have the ability to bind A/T-rich sequences within 
gene promoter of muscle creatine kinase (MCK) [7, 8]. 
MEF2 is a single gene in Drosophila, Caenorhabditis 
elegans and Saccharomyces cerevisiae, while vertebrates 
have four distinct numbers—namely, MEF2A, B, C and D 
[3]. The evolutionary history of MEF2 family is inferred 
using the Neighbor-Joining method (Figure 1). The sole 
MEF2 gene in Drosophila melanogaster is located on 
chromosome 2. Murine MEF2A, C and D are located in 
chromosome 7, 13 and 3, respectively. A study deduced 
that MEF2B may be located on chromosome 8. In human, 
MEF2A, B, C and D are confirmed to be located on 
15q26, 19q12, 5q14 and 1q12-q23, respectively [9].

The structure of MEF2 proteins

MEF2 family proteins from different species share 
a very similar N-termini that contains a highly conserved 
MADS-box domain and an immediate adjacent MEF2 
domain, however, there is a diversity in the structure of 
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C-terminal transactivation domain [4] (Figure 2). The 
MADS-box domain which is a DNA-binding region 
of MEF2 protein consists of 55 amino acids with some 
conserved residues shared by other transcription factors 
of MADS-box family, and this region plays a key role in 
the recognition of their target sequences. The main role 
of these invariable residues are combined with abundant 
A/T DNA sequences and they mediate dimerization of 
MADS-box proteins and provide places for interaction 
of MEF2 with other cofactors. Due to the conserved 
sequence within MEF2 domain, MEF2A, B, C and D 
can form homo-dimerization structures with themselves, 
or hetero-dimerization with other molecules [10]. In 
C-terminal part of MEF2 proteins, conserved regions 
contain potential phosphorylation sites recognized by 
some specific kinases, but other amino acid sequences 
are highly diverse. Intriguingly, alternative splicing of 

MEF2 mRNAs take place in the sequences coding their 
C-terminal regions, which contribute to the regulation of 
MEF2 proteins’ activity [11].

Transcriptional targets of MEF2 family

In the neural development, MEF2 has directly 
engaged in many genetic programs. The previous 
publications had identified that the (C/T)TA(T/
A)4TA(G/A),a ten-nucleotide motif , could be MEF2 
binging site. In addition, the activity-dependent MEF2 
genetic program may use polyA site switch mechanisms 
to inference the functions of proteins. The activity-
regulated neuronal target genes of MEF2 and Poly A 
switch are JSAP1, Odz2, Arhgef9, Csnk1e, Vesl-1, 
Omp25, Pkib, Septin 11, Rinzf, Klf6 and Tcf4 [12]. In 
the cardiovascular development, especially during mouse 

Figure 1: This is the phylogenetic tree of MEF2 family. Evolutionary analyses tree of MEF2 family was conducted in 
software MEGA7 by using Neighbor-Joining method.
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embryogenesis and adulthood, myocardin had been 
proved to be a direct transcriptional target of MEF2,Tead 
and Foxo proteins [13]. Consistently, myomaxin also 
had been identified as the direct downstream target 
gene of MEF2A [14]. During the Drosophila embryonic 
development, researchers had constructed a temporal 
map of MEF2 activity by immune-precipitation analysis 
and gene expression profiles. The results indicated that 
Mhc, mbl, nau and meso18E were directly regulated 
by MEF2 [15]. Recent researches have determined the 
putative recognition motif of MEF2 transcription factors 
within the promoter or enhancer of their downstream 
target genes, which are enriched in the constitution 
of adenine and thymine. Recently, researchers used a 
powerful approach to illuminate the genomic functions of 
MEF2A and MEF2C and to identify their transcriptional 
targets by ChIP-seq in mouse cortical neurons. MEF2A 
and MEF2C may encode similar epigenetic programs 
by binding enhancer regulatory elements close to 
the target genes involved in neuronal plasticity and 

calcium signaling. The results indicated SRF could 
bind to MEF2,AP1and NeuroD1,CPBE/ATF could 
bind to MEF2A enhancers and CEBP/A and forkhead 
box factors could bind to MEF2C. And the LRP8-
Reelin-Regulated Neuronal enhancers (LRN) could be 
recognized by both MEF2A and MEF2C in synapse-to-
nucleus pathway. According to KEGG pathway analysis, 
the MEF2 factors could regulate signaling pathways 
including glutamatergic synaptic transmission, drug 
addiction, axon guidance and MAPK signaling pathways 
[6]. During the evolution of abthropoid primates, a 
new enhancer element emerged due to 5-10 nucleotide 
changes in osteocrin (OSTN). The element was an 85 
bp-long sequence and located about 600 bp upstream 
of OSTN transcription initiation site. Intriguingly, 
MEF2 can bind to this sequence, indicating that OSTN 
is a potential target of MEF2s. Further study on the 
mechanism between MEF2 and OSTN may contribute to 
our better understanding of human cognition and brain 
function. [16].

Figure 2: These are structures of MEF2 proteins in human. The structures of MEF2 proteins were conducted in IBS(illustrator 
for Biological Sequences). MEF2 family proteins, including MEF2A, B, C, and D, share a similar N-terminal that contains a highly 
conserved MADS-box domain and an immediate adjacent MEF2 domain. MADS-box and MEF2 domain have 55 and 29 amino acids, 
respectively, and both contribute to DNA binding and dimerization. There is a diversity in the structure of C-terminal transactivation 
domain of MEF2 proteins. MEF2B is the simplest protein among MEF2 proteins. MEF2A, C, and D contain several amino acids with the 
potential of phosphorylation.
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MEF2 PHYSIOLOGICAL FUNCTION 
AND SIGNAL PATHWAYS

MEF2 family is mainly associated with a variety of 
physiological processes, including muscle formation [17], 
nervous system development [18], heart development 
[19], etc. They are also implicated in human diseases, such 
as liver fibrosis [20], cancers [21] and neurodegenerative 
diseases [22]. Atkins et al. established a Ras-driven 
tumorigenesis model in Drosophila epithelial tissues 
to study gene regulatory networks in cancer cells. They 
discovered that Mef2 is involved in a cross-regulation 
with other factors such as Sat, AP-1, Myc, AP-4, Ftz-f1, 
and Taiman/SRC3 [23]. MEF2 family can be regulated by 
multiple signaling pathways during normal physiological 
processes as well as in pathological conditions (Figure 3). 
Accumulating evidence show that MEF2 proteins promote 
the differentiation of skeletal, cardiac and smooth muscle 
myocytes [24, 25]. MEF2 proteins are widely expressed 
in muscle and nervous tissues, and they can integrate 
extracellular signaling into promoters or enhancers of 
tissue-specific genes. Some researchers revealed a link 
between MEF2A and SRF in the activation of selective 
muscle-specific promoters in different muscle cell lines. 
Similarly, MEF2C and SRF can cooperatively regulate the 
expression of miR-133a [26]. MEF2 activity is controlled 
by the myogenic regulatory factor MRF4 in the adult 
skeletal muscle [27]. A recent study showed a significant 
up-regulation of MEF2C and MEF2D mRNA levels in 
both sporadic and SOD1+ amyotrophic lateral sclerosis 
(ALS) patients detected by gene expression analysis, and 
a down-regulation of their targets, BDNF, KLF6, and 
RUFY3 [28].

The family members of MEF2 transcription 
factor are closely associated with calcium-dependent 
signaling pathway [8], which play an important role 
in the development of nervous system and neuronal 
differentiation [29]. All MEF2 family members, especially 
MEF2C, are highly expressed in the neuron of central 
nervous system [30]. MEF2A and MEF2D are found to 
exhibit transcriptional activity in post-mitotic cerebellar 
granule neurons [31]. Surprisingly, MEF2A, C, and D play 
a distinct role in cell- and non-cell-autonomous control of 
adult hippocampal neurogenesis [32]. MEF2B acts as a 
valuable marker of normal germinal center (GC) B cells, 
and it is potentially useful for differential diagnosis of 
small B cell lymphomas [33]. As an Epstein-Barr virus 
(EBV) nuclear antigen 1 (EBNA1)-bound gene, MEF2B 
is important for the survival of B cells infected with EBV 
[34].

As a cardiac-specific marker gene, MEF2 can 
be regulated by focal adhesion kinase to enhance the 
expression of Jun in cardiomyocytes [35]. MEF2C is also 
associated with congenital human heart defects due to its 
regulatory function on teratocarcinoma-derived growth 
factor 1 expression (Tdgf1), which is essential for the 

early embryonic heart development. The abnormalities in 
the expression of MEF2C and its associated Tdgf1 leads 
to developmental defects and congenital heart problems 
[36]. Mef2c can physically interact with Suv39h1 and 
their interaction contributes to the regulation of myogenic 
expression, histone methylation modification, and 
myoblast differentiation. Furthermore, MEF2 transcription 
activity could be inhibited by Suv39h1 in a dose-
dependent manner [37].

MEF2 family members also have close connections 
with biological characteristics (e.g., uncontrolled 
proliferation and enhancement of invasion) and clinical 
outcomes of cancer. MEF2D is overexpressed in colorectal 
cancer tissues and it promotes cancer cell invasion and 
metastasis [38]. A study in our laboratory also found that 
MEF2D acts as an oncogene in HCC. The expression 
of MEF2D is up-regulated in hepatocellular carcinoma 
(HCC) and this increase can accelerate cell proliferation 
in HCC [39]. MEF2D co-operationally promotes HCC 
invasion with other oncogene, such as Pokemon [40]. 
Molecular studies revealed that MEF2 family members 
promote invasion properties of HCC by enhancing the 
effect of TGF-β1 on EMT [41]. Increasing evidences 
indicate that MEF2C and MEF2D both act as tumor-
promoting or -suppressing proteins dependent on the type 
of cancer. In leukemic patients, the ectopic expression 
of MEF2s caused by chromosomal rearrangements 
is responsible for the development of leukemia. A 
high level expression of MEF2C is observed in T-cell 
acute lymphoblastic leukemia (T-ALL) [42, 43]. The 
chromosomal translocation generates reciprocal DAZAP1/
MEF2D and MEF2D/DAZAP1 fusion genes that promotes 
oncogenic properties in NIH 3T3 cells [44]. In contrast, 
the depression of MEF2C and MEF2D can promote cell 
proliferation and anchorage independent growth in lipo- 
and leiomyosarcoma by upregulating HDAC4 and PI3K/
Akt signaling [45].

The involvement of MEF2 family in Ca2+ 
signaling pathway

MEF2 family often acts as an effector of many 
extracellular and intracellular signals. Ca2+ signaling 
pathway is the major regulator of MEF2 activity by 
multiple mechanisms. MEF2 is required for calcineurin 
signaling in developing skeletal muscle [46]. MEF2 
mediates calcium/calmodulin-dependent signaling 
responsible for the terminal differentiation of skeletal 
muscle progenitor cells. In specifically, the activation of 
transcriptional activities of MEF2 proteins by calcineurin, 
a calcium/calmodulin-dependent protein phosphatase, 
is required for myogenic differentiation [47]. A further 
study showed that scaffolding protein mAKAP organizes 
a calcineurin/MEF2 signaling complex in myocytes, and 
which regulates gene transcription promoted by MEF2 
family members [48].



Oncotarget112156www.impactjournals.com/oncotarget

Apart from this, several cofactors and kinases also 
regulate MEF2 activity in calcium signaling. Hu et al. 
(2015) found that endothelin signaling activates various 
gene expression in neural crest by enhancing MEF2C 
activity through Calmodulin-CamKII-histone deacetylase 
signaling cascade [49]. In addition, salt inducible kinase 2 
(SIK2) tightly regulates CaMKI dependent transcriptional 
activities of MEF2C and disruption of SIK2 promotes 
activation of CaMKI depdendent activation of MEF2C 
mediated gene expression during cell proliferation and 
stress response [50]. Interestingly, a novel MHCI signaling 
regulates MEF2 transcription factors. MHCI pathway 
requires calcineurin-mediated activation of MEF2 to 
control synapse density in young rat cortical neurons 
[51]. In addition, Tsai1 et al. found that the activation 
of MEF2 proteins could induce synapse elimination and 
degradation of postsynaptic density protein 95 (PSD-
95) through protein phosphatase 2A (PP2A)-mediated 
dephosphorylation of murine double-2 (MDM2) in wild-
type neurons. However, eukaryotic elongation factor 1α 
(EEF1a) could inhibit MEF2-induced accumulation of 
MDM2 at the synapses in Fmr1 KO mouse neurons [52].

Surprisingly, MEF2 is not only expressed in 
myocytes and neurons, but also detected in Sertoli and 
Leydig cells of fetal and adult testis. In MA-10 Leydig 
cells, steroid hormone biosynthesis and steroidogenic 
gene expression are regulated by luteinizing hormone 
(LH), which activates Ca2+ signaling pathways and MEF2 

transcription factors [53]. Another study showed that 
MEF2 itself can bind and activate Gsta1 promoter as 
well as cooperate with Ca2+/calmodulin-CamKI to further 
enhance the initiation of Gsta1 transcription in Sertoli and 
Leydig cells [54].

The function of MEF2 proteins in MAP kinase 
signaling pathways

The mitogen-activated protein kinase (MAPK) 
signaling pathways are ubiquitous type of serine/
threonine protein kinase, which plays an important role 
in many biological processes (cell proliferation, cell 
differentiation, cell apoptosis, and etc.) [55, 56]. There 
are three independent MAPKs signaling pathways such 
as extracellular signal-regulated kinase (ERK) pathway, 
c-Jun N-terminal kinase/stress-activated protein kinase 
(JNK/SAPK) pathway and p38 MAPK pathway are 
found in mammalian cells [57], and MEF2 factors have 
been frequently found to be activated by these signaling 
pathways.

ERK protein kinase comprises five members namley 
ERK1, ERK2, ERK3, ERK4 and ERK5. Among them, 
ERK5 is closely associated with the activation of MEF2 
transcription factors. In myeloid leukemia cells, ERK5 
promotes activation of its direct downstream target, 
MEF2C transcription factor, and this activation required 
for the monocytic differentiation of leukemic cells [58]. 

Figure 3: The link between MEF2 proteins and signals in various types of cells and tissues. The microRNAs and signaling 
pathways such as Ca2+ signaling pathway, MAP Kinase signaling pathways, Wnt signaling pathway, PI3K/Akt signaling pathway, etc. can 
activate MEF2. This interaction between MEF2 proteins and signals ubiquitously exist in many types of cells and tissues.
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In sensory neurons, the ERK5/MEF2D pathway strictly 
regulates expression of Bcl-w, an anti-apoptopic bcl-2 
family member, which promotes sensory neuron survival 
[59]. Recently, a groundbreaking finding revealed that 
the activation of MEF2C/D transcription factors promote 
the development of early B-cell, which depends on their 
phosphorylation by ERK5. These researchers also reported 
that B-cell development is blocked at the pre-B-cell stage 
in MEF2C/D-knockout mice [60]. The ERK5-MEF2C 
signaling also plays a critical role in anti-apoptotic and 
neuroprotective actions of ischemic preconditioning in 
the hippocampus CA1 region [61]. In Hela cells, ERK5/
MEF2B signaling can upregulate apoptosis suppressor 
induced by DNA damage and promotes cancer cell 
invasion by activating β-catenin target genes [62].

p38 is an important member of MAPK family, 
which can be activated by physiological stress, 
lipopolysaccharide, osmotic stress and ultraviolet 
irradiation [63]. The relationship between p38 MAPK and 
MEF2s was first identified in myocardial cells. p38 MAPK 
can activate MEF2C by phosphorylation of three amino 
acids located in C-terminal active region [64]. p38 MAPK-
mediated phosphorylation-dependent activation of MEF2s 
increases its interaction with β-catenin, which stimulates 
cell proliferation in multiple cell types including primary 
VSMCs [65]. More intriguingly, MEF2 proteins are found 
to negatively regulate p38 MAPK pathway in a feedback 
fashion [66]. In recent years, more evidence have been 
shown that p38 MAPK pathway activates the expression 
of MEF2 genes under a variety of cellular circumstances. 
For instances, p38 MAPK signaling activates MEF2C 
to control B cell differentiation [67] and this signaling 
axis also promotes osteogenic differentiation [68]. In 
myocardial hypertrophy, MEF2 family is associated with 
increased heart mass in response to pressure overload, and 
its activation in hypertrophic heart requires adiponectin 
signaling mediated upregulation of p38 MAPK pathway 
[69]. Some researchers identified that microRNAs 
are critically regulating MEF2 and p38 MAPK axis. 
For example, miR-140 is a suppressor of p38 MAPK 
signal transduction pathway, and overexpression of this 
microRNA can reduce MEF2C expression [70]. Glycogen 
Synthase Kinase 3β (GSK3β) is a well-known regulator of 
striated muscle-related gene expression, which suppresses 
both myogenesis and cardiomyocyte hypertrophy. It is 
well known that MEF2 transcription factors are essential 
for the regulation of skeletal and cardiac muscle gene 
expression. GSK3β can regulate MEF2 activity indirectly 
through regulation of p38 MAPK [71].

The link between MEF2 and Wnt signaling

The Wnt signaling is a kind of evolutionarily 
conservative signaling pathway that exists widely in 
invertebrates and vertebrates. The Wnt signaling plays a 
vital role in developmental and physiological processes 

such as animal embryonic development [72], organ 
formation and tissue regeneration [73]. The Canonical 
Wnt/β-catenin pathway can activate expression of many 
nuclear target genes, and the aberrant activation of the Wnt 
signaling is closely implicated in malignant transformation 
and progression [74, 75] and blocking of Wnt/β-catenin 
signaling inhibits cancer cell proliferation. While a very 
high expression of MEF2C leads to risk of VEGF-induced 
malignancy [76].

The proteins of MEF2 family also serve as 
downstream targets of Wnt/β-cateinin pathway genes, 
and mediate its physiological functions. MEF2A and 
Wnt signaling both contribute to skeletal muscle 
regeneration in adult mice. A molecular study found that 
MEF2A promotes this process via directly regulating two 
microRNAs, miR-410 and miR-433. In MEF2A knockout 
mice, these two microRNAs are downregulated during 
skeletal muscle regeneration, which results in upregulation 
of SFRP2 expression and reduction of Wnt activity [77].

microRNAs associated regulation of MEF2 
proteins

Many recent studies observed that microRNAs, 
a type of small non-coding RNAs, participate in the 
regulation of MEF2s, especially in the progression of 
malignant diseases. miR-218 regulates MEF2D expression 
by targeting 3’UTR of its mRNA and down-regulation 
of miR-218 in cardiac myxoma condition can increase 
MEF2D expression and promote cell cycle progression 
[78]. In glioma cells, miR-18a binds with 3'UTR of 
MEF2D mRNA and negatively regulates its expression 
[79]. Similarly, miR-122 and miR-1244 negatively 
regulate MEF2D expression in hepatocellular carcinoma 
and lung cancer cells, respectively [39, 80]. Furthermore, 
MEF2D regulate miR-1244 by directly binding to its 
promoter and this molecular regulatory loop could be a 
target for lung carcinoma treatment [80]. Apart from their 
role in cancer, the regulatory functions of MEF2s are 
also well established in other human diseases. MEF2C 
is the cardiac-specific markers and its expression is 
upregulated in congenital heart disease (CHD) due to 
downregulation of the expression of miR-29C [81]. Li 
et al. (2015) found that MEF2D is an authentic target 
of miR-103, which promotes cell differentiation by 
targeting the AKT/mTOR signaling mediated activation of 
MEF2D [82]. In hyperhomocysteinemia induced cardiac 
hypertrophy, the downregulation and inactivation of 
MEF2C leads to attenuation of expression of miR-133a, 
an anti-hypertrophic factor in cardiomyocytes. Hydrogen 
sulfide (H2S) can mitigate hypertrophy via reversal of 
expression of miR-133a through activation of MEF2C in 
hyperhomocysteinemia cardiomyocytes [83]. Similarly, 
MEF2A and MEF2C regulate miR-143 and miR-23a 
activities via their interaction with 3’UTR region of 
microRNA in vascular smooth muscle cell (VSMC) and 
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cardiomyocytes from mice with myotonic dystrophy, 
respectively [84, 85]. These studies reveal that microRNA/
MEF2 pathway might play a key role in various types of 
cells and its dysregulation always contribute to various 
diseases (Figure 4). Therefore, targeting this molecular 
pathway could be a promising therapeutic strategy.

Besides, some studies have revealed that long 
noncoding RNAs (lncRNAs) play important roles in 
regulating some critical transcription factors, including 
MEF2A-D. Linc-MD1 is a kind of competing endogenous 
lncRNAs that its reduced expression level in Duchenne 
muscular dystrophy (DMD) promotes differentiation of 
myoblast. Notably, linc-MD1 detaches miR-135 away 
from MEF2C mRNA, and thus, depresses the expression 
of MEF2C in skeletal muscle development and disease 
[86]. Song and his/her colleagues found that the expression 
level of uc.167 was robustly elevated in ventricular septum 
defect (VSD) heart tissues and uc.167 had an effect on 
cell proliferation, apoptosis and differentiation of P19 cell 

by regulating MEF2C. In addition, the overexpression 
of uc.167 induced the reduction of MEF2C expression. 
Altogether, the concrete relationship between MEF2C and 
uc.167 still needs further investigation [87].

Other signaling pathways associated with 
MEF2s

The PI3K/Akt pathway is a newly confirmed 
MEF2-associated pathway, which is involved in 
the proliferation, differentiation, apoptosis and the 
regulation of glucose transport. The PI3K/Akt pathway 
is closely implicated in the occurrence of many human 
diseases [88, 89]. The PI3K/Akt signaling can enhance 
MEF2 transcriptional activity in muscle differentiation 
[90]. Interestingly, the depletion of MEF2D promotes 
neonatal cardiomyocyte proliferation by suppressing 
the expression of PTEN, which is the primary negative 
regulator of PI3K/Akt signaling. However, prolonged 

Figure 4: The regulation of MEF2 proteins by microRNAs in human diseases. The microRNAs in the figure can regulate 
MEF2 expression by targeting 3’UTR of its mRNA in human diseases.
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depletion of MEF2D in neonatal cardiomyocytes resulted 
in significant programmed cell death. This study suggest 
that MEF2D mediated regulation of PI3K/AKT signaling 
contributes to post-mitotic state of cardiomyocytes [91]. 
In contrast to this, a molecular study in sarcoma cells 
found that PI3K/Akt pathway influences the expression 
of target genes of MEF2-HDAC axis and increased 
activity of PI3K/Akt results in decreased expression of 
MEF2 [45].

Cyclic-AMP dependent protein kinase A (PKA) 
is a kind of protein kinase with simple structure, which 
is also connected to the transcriptional activities of 
MEF2. MEF2 can be a target of cAMP-PKA pathway in 
neuron [92]. Given the fact that MEF2 proteins are key 
regulators myogenesis, cAMP-PKA-pathway-mediated 
myogenic repression occurs through downregulation of 
MEF2D in myoblasts and this loss leads to inhibition 
of the skeletal muscle differentiation program. Given 
the fact that MEF2 proteins are key regulators of 
myogenesis, cAMP-PKA-pathway-mediated myogenic 
repression occurs through downregulation of MEF2D in 
myoblasts and this loss leads to inhibition of the skeletal 
muscle differentiation program [93].

In iron/sphingolipid/PDK1/Mef2 pathway, loss of 
FXN in vertebrates can upregulate 3-phosphoinositide 
dependent protein kinase-1 (Pdk1) and myocyte 
enhancer factor-2 (Mef2), and induce sphingolipid 
synthesis. Furthermore, the activation of Mef2 triggers 
the aberrant transcription of downstream targets. 
Similarly, loss of frataxin homolog (fh) in Drosophila 
nervous system causes the accumulation of iron, and 
in turn, enhances spingolipid synthesis. In addition, 
PDK1 and Mef2 were both activated to trigger neuro-
degeneration of adult photoreceptors. Since the above 
evidence has well documented that the mechanism of 
iron/sphingolipid/PDK1/Mef2 pathway is conserved 
among different species, targeting this pathway may 
benefit on the hearts of Friedreich ataxia (FRDA) 
patients [94].

As mentioned above, MEF2 is a single gene in 
Drosophila, and it is a vital gene in myogenesis of 
indirect flight muscles (IFMs). MEF2 can inhibit Notch 
pathway in non-myogenic cells [95]. Like other molecular 
regulator, MEF2s can also cooperate with key proteins 
in other signaling to modulate its final biological effect. 
For example, the Notch-MEF2 synergy acts upon JNK 

Figure 5: The function of MEF2 proteins in signaling pathways. MEF2 proteins act as effectors of many signaling pathways. In 
this figure, we show some representative pathways. 1) Wnt protein binds frizzled receptors to activate its downstream reactions. A stablized 
β-catenin is then translocated into the nucleus where it binds with MEF2 transcription factors. MEF2A can directly regulate microRNAs 
(miR-410 and miR-433) and thus inhibit the Wnt signaling pathway. 2) MAPK signaling (ERK and p38 MAPK) can be stimulated by 
external factors. The ERK signaling increases expression of its direct downstream targets, MEF2B, C and D. MEF2A and MEF2C can 
be activated by p38 MAPK. miR-140 is a suppressor of p38 MAPK signaling and its overexpression can decrease MEF2C expression in 
a p38MAPK-dependent pathway. 3) The expression of MEF2C can be enhanced by the activation of CaMK in Ca2+ signaling pathway.
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signaling and its downstream events to induce proliferation 
and metastasis in Drosophila [96].

DISCUSSION

Researchers are engaged in developing new drugs 
that target MEF2 family in order to treat MEF2 associated 
human diseases. For instances, oleanolic acid is a new 
type of anti-tumor drugs that suppresses proliferation of 
lung cancer cells via inhibition of MEF2D expression 
[97]. Similarly, estrogen alone or its co-treatment with 
parathyroid hormone can increase vertebral bone mass by 
suppressing the expression of MEF2s in ovariectomized 
rats [98]. Atorvastatin is a drug used to treat 
angiocardiopathy, which can reverse cardiac remodeling 
by suppressing protein kinase D/MEF2D activation in 
spontaneously hypertensive rats [99].

In this review, we summarized that MEF2 family 
plays significant roles in nervous system diseases, heart 
diseases, muscular disorders, and cancers (Table 1). The 
four members in MEF2 family are actually different from 
each other in their biochemical and physiological features, 
and these distinctions cause their different roles in human 
diseases. Although many signaling have been identified 
as a partner of MEF2 proteins, more new molecular 
pathways may be related to these transcription factors. 
MEF2s may participate in the regulation of YAP/Hippo 
signaling and EGFR-related pathway. Similarly, NF-kappa 
B pathway may also be regulated by MEF2 proteins during 
inflammatory reactions. Taken together, MEF2 proteins 
and their associated signaling pathways play important 
roles in both physiological and pathological process in 
human (Figure 5).

It is noteworthy that the MEF2 proteins could be 
potential targets during the treatment of many diseases. 
Although previous studies have reported various functions 
of MEF2 family proteins, further works are still needed to 
clarify the pathological and pharmacological mechanism 
by which MEF2 genes is connected to specific signaling 
pathway. The detailed elucidation of underlying 
mechanisms of MEF2 activation and its downstream 
targets could facilitate the development of efficient MEF2-
targeted therapeutic strategies.
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